M universitat
™ innsbruck

Machine Learning for Theorem Proving
Lecture 8 (VU)

Cezary Kaliszyk

Overview

Last Lecture

® Syntactic methods for premise selection
® Random forests

® short reminder on neural networks
® deep learning for premise selection
® type inference

-

Neural Network: Recognize a handwritten character

We create an input layer that takes as input the pixels of an image. Intermediate layers
use weights to compute intermediate values. The values in the output layer are then
compared to predict the digit. Measure: recognition rate.

1
60000000000000000000 2
SUbyv N suY oy
2224+222222322322238%2 3
$3333333%333332%3%33
QY44 4UY4UY I € 44449 4
$5555575555S6555555¢65
0b66UGLeC0666bLLLEWE ©
721773)F72F72107F1 77
PECETIECBLEZYETLICBOVL s
NP?9929% 2199599394924 .
&

Such networks work very well i.e. on the MNIST dataset.

Neural Networks: Third edition

Modelling of Neurophysiological Networks (1950s - 1960s)

® Simple networks of individual perceptrons, with basic learning

® Severe limitations [Minsky,Papert]
Paralled Distributed Processing (1990s)
o rejuvenated interest [Rumelhart,MacClelland]

® But statistical algorithms were comparably powerful (SVM)

Deep Learning (2010s)

® Data-oriented algorithms
® Data and processing were a limitation before

Expressiveness of multilayer perceptron networks

Perceptrons implement linear separators, but:

® Every continuous function modeled with three layers
(this means just one hidden)

® Every function can be modeled with four layers

® But the layers are assumed to be arbitrarily large
(and indeed they would be enormous)!

These results have been recently formalized [Bentkamp’17]

Deep Learning vs Shallow Learning

Predictor

i

Hand crafted Features

Traditional machine
learning

Deep Learning vs Shallow Learning

Predictor

i

Predictor

Hand crafted Features

i

Traditional machine
learning

Learned Features

Deep Learning

Deep Learning vs Shallow Learning

Predictor

i

Hand crafted Features

Traditional machine
learning

® Mostly convex, provably
tractable

® Special purpose solvers
® Non-layered architectures

Predictor

i

Learned Features

=
Deep Learning

® Mostly NP-Hard
® General purpose solvers
® Hierarchical models

Deep Learning

® Lots of successes with traning “deep” networs (multiple layers)
® Image classification: sequential extraction of information

® Big data, fast processing, some tricks
® RelU, Faster Propagation, Autoencoding, Dropout, Residual connections, ...

Diagonal

Line

Face
MNode

Recurrent Neural Networks

An alternatives to convolutions are recurrent neural networks, where the input is
processed sequentially and the results of processing of a part of the input is used as
part of the input of the processing of a next one.

Recurrent Neural Networks (RNN)
process sequences by feeding back the output into the next input

Long-Short Term Memory (LSTM)
add forgetting to RNNs [Hochreiter]

These can be used to build end-to-end learning, for example sequence-to-sequence
models used in language translation today.

~

DeepMath intuition (Alemi‘16]

Simple classifier on top of concatenated embeddings

e different model of premise selection
® trained to estimate usefulness
® positive and negative examples

Architecture
Statement to be proved Potential Premise
Embedding network Embedding network

—

Combiner network

J

Classifier/Ranker

©

Deep Learning for Mizar Lemma Selection

No hand-engineered features

® Comparison of various neural architectures
® Semantic-aware definition embeddings

® Complementary to previous approaches

® Can be ensembled

DeepMath: Dataset

The Mizar Mathematical Library (MML) is a corpus of formal mathematical proofs, containing 57,917 theorems from a wide
varity of mathematical subjects. We worked with a version converted to first order logic in the TPTP format.

:: t99_jordan: Jordan curve theorem in Mizar
for C being Simple_closed_curve holds C is Jordan;

:: Translation to first order logic
fof (t99_jordan, axiom, (! [A] : ((vi_topreal2(A) & mil_subset_1(A,
k1_zfmisc_1(ul_struct_0(k15_euclid(2))))) => vi_jordani(4)))).

Figure 1: (top) The final statement of the Mizar formalization of the Jordan curve theorem. (bottom) The
translation to first-order logic, using name mangling to ensure uniqueness across the entire corpus.

10! 10! 10° 10!
10* 10° 10! 10°
102 10? 10° 10?
10! 10! ot 10!

0 0 101 \0

10 ! 10! Ii" | 100 10

10° 100 10* 10° 10* 10° 10° 10' 10° 10° 10" 10° 0 200 400 600 800 1000 0 20 40 60 80 100

(a) Length in chars. (b) Length in words. (c) Word occurrences. (d) Dependencies.

Figure 2: Histograms of statement lengths, occurrences of each word, and statement dependencies in the
Mizar corpus translated to first order logic. The wide length distribution poses difficulties for RNN models and
batching, and many rarely occurring words make it important to take definitions of words into account.

10

DeepMath: Problem, Metric, Model

Definition (Premise selection problem). Given a large set of premises P, an ATP system A with
given resource limits, and a new conjecture C, predict those premises from P that will most likely
lead to an automatically constructed proof of C by A.

aMRR = mean max rank(P7 7DE).Vail((j))
G PePe(C) |Pavail(0)|

Logistic loss
Fully connected layer with 1
output
Fully connected layer with
1024 outputs

Concatenate embeddings

Maximum

[CNNIRNN Sequence model | [CNNIRNN Sequence model |
Axiom first order logic Conjecture first order logic
sequence sequence

Figure 3: (left) Our network structure. The input sequences are either character-level (section 5.1) or word-level
(section 5.2). We use separate models to embed conjecture and axiom, and a logistic layer to predict whether the

axiom is useful for proving the conjecture. (right) A convolutional model.
11

Char-level 1-layer CNN

DeepMath: Architectures

Char-level 2-layer CNN

Char-level 3-layer CNN

1-hot encoded
character sequence

1-hot encoded
character sequence

1-hot encoded
character sequence

ConvolutionlD, filters: 128
window size: 5

stride: 2

activation: relu

Convolution1D, filters: 128
window size: 5

stride: 2

activation: relu

Convolution1D, filters: 512
window size: 5

stride: 2

activation: relu

Char-level CNN-LSTM

ConvolutionlD, filters: 1024
window size: 7

window size: 5

stride: 2 stride: 1 stride: 1

activation: relu activation: relu activation: relu
= 3

Convolution1D, filters: 1024
window size: 5

ConvolutionlD, filters: 1024

1-hot encoded
character sequence

Char-level 2-layer CNN

Global temporal MaxPooling |

|Glnha\ temporal MaxPooling |

I Global temporal MaxPooling I

3

1024-dimensional
sequence embedding

1024-dimensional
sequence embedding

1024-dimensional
sequence embedding

LSTM, 1024 units (last state)

1024-dimensional
sequence embedding

Word-level CNN

sequence of

Char-level LSTM

Char-level GRU

ConvolutionlD, filters: 1024
window size

1-hot encoded
character sequence

1-hot encoded
character sequence

stride: 1

activation: relu I LSTM, units: 1024 | GRU, units: 1024 |
~ ~+

Global temporal MaxPooling I | last state | last state |

1024-dimensional
sequence embedding

1024-dimensional
sequence embedding

1024-dimensional
sequence embedding

Figure 4: Specification of the different embedder networks.

12

DeepMath: Results

Cutoff | k-NN Baseline (%) | char-CNN (%) | word-CNN (%) | def-CNN-LSTM (%) | def-CNN (%) | def+char-CNN (%)

16 674 (24.6) 687 (25.1) 709 (25.9) 644 (23.5) 734 (26.8) 835 (30.5)

32 1081 (39.4) 1028 (37.5) 1063 (38.8) 924 (33.7) 1093 (39.9) 1218 (44.4)

64 1399 (51) 1295 (47.2) 1355 (49.4) 1196 (43.6) 1381 (50.4) 1470 (53.6)

128 1612 (58.8) 1534 (55.9) 1552 (56.6) 1401 (51.1) 1617 (59) 1695 (61.8)
256 1709 (62.3) 1656 (60.4) 1635 (59.6) 1519 (55.4) 1708 (62.3) 1780 (64.9)
512 1762 (64.3) 1711 (62.4) 1712 (62.4) 1593 (58.1) 1780 (64.9) 1830 (66.7)
1024 1786 (65.1) 1762 (64.3) 1755 (64) 1647 (60.1) 1822 (66.4) 1862 (67.9)

Table 1: Results of ATP premise selection experiments with hard negative mining on a test set of 2,742 theorems.

® E-prover proved theorem percentages
® Union of all methods: 80.9%
® Union of deep network methods: 78.4%

Note: These results are good, but the improvement over a simple k-NN is just a few
percent. At the same time preparing k-NN on Mizar data

takes 2 seconds on a single CPU, while training the [Alemi+]

neural network took one week on multiple GPUs

DeepMath: Accuracy

2-layer CNN
3-layer CNN
1-layer CNN
CNN-LSTM
GRU

Accuracy

LSTM

o 50000 100000 150000 200000 250000 300000
Gradient descent steps

(a) Training accuracy for different character-level
models without hard negative mining. Recurrent
models seem underperform, while pure convolutional
models yield the best results. For each architecture,
we trained three models with different random initial-
ization seeds. Only the best runs are shown on this
graph; we did not see much variance between runs
on the same architecture.

Word:level CNN (random)
Char-level 3-la

Char-level 1-laver CNN
Char-level 2-layer
Word-level CNN (an Ievel)

Test average max relative rank

° 200000 400000 600000 800000 1000000
Gradient descent steps

(b) Test average max relative rank for different mod-
els without hard negative mining. The best is a
word-level CNN using definition embeddings from
a character-level 2-layer CNN. An identical word-
embedding model with random starting embedding
overfits after only 250,000 iterations and underper-
forms the best character-level model.

14

DeepMath: Statistics

kNN Baseline
char-CNN
word-CNN
word-CNN-LSTM
def-CNN
def+char-CNN

kNN Baseline

char-CNN

o
©
N

word-CNN
word-CNN-LSTM

def-CNN 0.80

def+char-CNN . 0.76

(a) Jaccard similarities between proved sets of con-
jectures across models. Each of the neural network
model prediction are more like each other than those
of the k-NN baseline.

Model | Test min average relative rank
char-CNN 0.0585
word-CNN 0.06
def-CNN-LSTM 0.0605
def-CNN 0.0575

(b) Best sustained test results obtained by the above
models. Lower values are better. This was moni-
tored continuously during training on a holdout set
with 400 theorems, using all true positive premises
and 128 randomly selected negatives. In this setup,
the lowest attainable max average relative rank with
perfect predictions is 0.051.

15

DeepMath: Hard Negatives

Initially as positive examples we use true dependencies, as negatives we use random
things that are not among our known dependencies. This still produced results worse
than kNN. A major necessary infrastructure required was Hard Negatives.

This means learn the negative examples that are not predicted correctly. Rather than
have 2 queues: half positives and half negatives, we have three queues: Positives,
negatives, and hard negatives, that is negatives that we have not predicted correctly.

16

Other neural network architectures

17

Other neural network architectures

® Seq2Seq
® GNN

How could we use these for theorem proving tasks?

Next problem: Lemma Usefulness

The next problem that we will look at will be intermediate lemma usefulness

In large proofs processed by an ITP (actually also by an ATP) there are many
intermediate steps. Some of these are particularly useful (can they be reused), and
some are useless (will not be necessary in the final proof as they are tautologies etc).

Can we use learning methods to predict the particularly useful ones (to name them and
keep them for reuse) and can we predict the useless ones (to avoid work)?

We first look at a deep learning approach to the problem, and later at other (more
proving) specific learning methods.

18

Learning Lemma Usefulness

HOLStep Dataset

Intermediate steps of the Kepler proof
Only relevant proofs of reasonable size

Annotate steps as useful and unused

® Same number of positive and negative

Tokenization and normalization of statements

Train Test Positive Negative
Examples 2013046 196030 1104538 1104538
Avg. length 503.18 440.20 535.52 459.66
Avg. tokens 87.01 80.62 95.48 77.40
Conjectures 9999 1411 - -
Avg. deps 29.58 22.82 - -

Considered Models

1D CNN 1D CNN-LSTM Logistic regression
(unconditioned) (unconditioned) (unconditioned)
| |

Dropout
rate=o.5

Sigmoid Logreg

ConviD

Dropout
race-0.5

Sigmoid logreg

Logistic regression
(conditioned)
statement

conjecture

Embedd:
56

ng

Dropout
rate=2.5

Sigmoid Logreg

Siamese 1D CNN

Siamese 1D CNN-LSTM
(conditioned)
statement

conjecture

MaxPoolinglD MaxPooling1D
size-3 size-3

stride=3 stride=3
ConviD ConviD
dim256 4

MaxPoolinglD MaxPooling1D
sizess size-s
stridess stridess

(conditioned)
statement conjecture
Embedding Embedding

dine256 dine256
ConviD
din=256
MaxPooling1D MaxPooling1D
sizess sizess
serides3 strides3

Sigmoid logreg

Sigmoid Llogreg

20

Baselines (Training Profiles)

cojec

d

Iitione

uncond

ture

d

itione

cond

Validation accuracy

Validation accuracy

char-level
09
Char-level 10 CNN
(uncondifioned)
08
Char-level 1D CNN-LSTM
(uncanditioned)
0.7 ‘Char-level logistic regression
(unconditioned)
06
0% 20 30 40 50 60
Epochs (128000 steps / epoch)
09
Char-level siamese
1D CNN-LSTM
(conditioned)
08
Charlevel siamess 1D CNN
(conditioned)
0.7 Charlevel [ogistic regression
(conditioned)
06
05

20 30 40 50 60
Epochs (128000 steps / epoch)

Validation accuracy

Validation accuracy

token-leve

09
1D CNN
(unconditioned)
08 1D CNN-LSTM
(uncondiftioned)
Logistic regression
{unconditioned)
07
06
%% 20 30 40 50 60
Epochs (128000 steps / epoch)
09
Siamese 1D CNN
(conditioned)
08
Siamese 1D CNN-LSTM
(conditioned)
o7 Logistic régression
(conditioned)
06
05

20 30 40 50
Epochs (128000 steps / epoch)

21

Summary

This Lecture

® deep learning for theorem proving

® evaluation metrics
® start on ATPs

Additional Literature (not required)

The formalization of deep learning and deep learning for premise selection.

Alexander Bentkamp, Jasmin Christian Blanchette, and Dietrich Klakow.

A formal proof of the expressiveness of deep learning.

In Mauricio Ayala-Rincén and César A. Mufoz, editors, Interactive Theorem Proving -
8th International Conference, volume 10499 of LNCS, pages 46-64. Springer, 2017.

Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén, Francois Chollet,
and Josef Urban.

Deepmath - deep sequence models for premise selection.

In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2235-2243, 2016.

23

Work Here / Homework

Direct Neural Network Use

® Would it be possibly to apply a modern neural network to premise selection directly?

® What issues do you see?

Lemma Selection

® Run an ATP on a larger problem to produce a number of intermediate statements

® Are they useful for the conjecture using your algorithm implemented in one of the
previous homeworks?
(For features you can split the string on spaces for example)

	.

