
Machine Learning for Theorem Proving
Lecture 8 (VU)

Cezary Kaliszyk



Overview

Last Lecture

• Syntactic methods for premise selection

• Random forests

Today

• short reminder on neural networks

• deep learning for premise selection

• type inference

1



Neural Network: Recognize a handwritten character
We create an input layer that takes as input the pixels of an image. Intermediate layers
use weights to compute intermediate values. The values in the output layer are then
compared to predict the digit. Measure: recognition rate.

Such networks work very well i.e. on the MNIST dataset.
2



Neural Networks: Third edition

Modelling of Neurophysiological Networks (1950s – 1960s)

• Simple networks of individual perceptrons, with basic learning

• Severe limitations [Minsky,Papert]

Paralled Distributed Processing (1990s)

• rejuvenated interest [Rumelhart,MacClelland]

• But statistical algorithms were comparably powerful (SVM)

Deep Learning (2010s)

• Data-oriented algorithms

• Data and processing were a limitation before

3



Expressiveness of multilayer perceptron networks

Perceptrons implement linear separators, but:

• Every continuous function modeled with three layers
(this means just one hidden)

• Every function can be modeled with four layers

• But the layers are assumed to be arbitrarily large
(and indeed they would be enormous)!

These results have been recently formalized [Bentkamp’17]

4



Deep Learning vs Shallow Learning

Hand crafted Features

Predictor

Data

Traditional machine 
learning

• Mostly convex, provably
tractable

• Special purpose solvers

• Non-layered architectures

Learned Features

Predictor

Data

Deep Learning

• Mostly NP-Hard

• General purpose solvers

• Hierarchical models

5



Deep Learning vs Shallow Learning

Hand crafted Features

Predictor

Data

Traditional machine 
learning

• Mostly convex, provably
tractable

• Special purpose solvers

• Non-layered architectures

Learned Features

Predictor

Data

Deep Learning

• Mostly NP-Hard

• General purpose solvers

• Hierarchical models

5



Deep Learning vs Shallow Learning

Hand crafted Features

Predictor

Data

Traditional machine 
learning

• Mostly convex, provably
tractable

• Special purpose solvers

• Non-layered architectures

Learned Features

Predictor

Data

Deep Learning

• Mostly NP-Hard

• General purpose solvers

• Hierarchical models
5



Deep Learning

• Lots of successes with traning “deep” networs (multiple layers)

• Image classification: sequential extraction of information
• Big data, fast processing, some tricks

• ReLU, Faster Propagation, Autoencoding, Dropout, Residual connections, ...

6



Recurrent Neural Networks

An alternatives to convolutions are recurrent neural networks, where the input is
processed sequentially and the results of processing of a part of the input is used as
part of the input of the processing of a next one.

Recurrent Neural Networks (RNN)

process sequences by feeding back the output into the next input

Long-Short Term Memory (LSTM)

add forgetting to RNNs [Hochreiter]

These can be used to build end-to-end learning, for example sequence-to-sequence
models used in language translation today.

7



DeepMath intuition [Alemi’16]

Simple classifier on top of concatenated embeddings

• different model of premise selection

• trained to estimate usefulness

• positive and negative examples

Architecture

Statement to be proved

Embedding network

Potential Premise

Embedding network

Combiner network

Classifier/Ranker
8



Deep Learning for Mizar Lemma Selection [Alemi+2016]

• No hand-engineered features

• Comparison of various neural architectures

• Semantic-aware definition embeddings

• Complementary to previous approaches

• Can be ensembled

9



DeepMath: Dataset [Alemi+2016]

10



DeepMath: Problem, Metric, Model [Alemi+2016]

11



DeepMath: Architectures [Alemi+2016]

12



DeepMath: Results [Alemi+2016]

Cutoff k-NN Baseline (%) char-CNN (%) word-CNN (%) def-CNN-LSTM (%) def-CNN (%) def+char-CNN (%)
16 674 (24.6) 687 (25.1) 709 (25.9) 644 (23.5) 734 (26.8) 835 (30.5)
32 1081 (39.4) 1028 (37.5) 1063 (38.8) 924 (33.7) 1093 (39.9) 1218 (44.4)
64 1399 (51) 1295 (47.2) 1355 (49.4) 1196 (43.6) 1381 (50.4) 1470 (53.6)

128 1612 (58.8) 1534 (55.9) 1552 (56.6) 1401 (51.1) 1617 (59) 1695 (61.8)
256 1709 (62.3) 1656 (60.4) 1635 (59.6) 1519 (55.4) 1708 (62.3) 1780 (64.9)
512 1762 (64.3) 1711 (62.4) 1712 (62.4) 1593 (58.1) 1780 (64.9) 1830 (66.7)

1024 1786 (65.1) 1762 (64.3) 1755 (64) 1647 (60.1) 1822 (66.4) 1862 (67.9)

Table 1: Results of ATP premise selection experiments with hard negative mining on a test set of 2,742 theorems.

• E-prover proved theorem percentages

• Union of all methods: 80.9%

• Union of deep network methods: 78.4%

Note: These results are good, but the improvement over a simple k-NN is just a few
percent. At the same time preparing k-NN on Mizar data
takes 2 seconds on a single CPU, while training the [Alemi+]
neural network took one week on multiple GPUs

13



DeepMath: Accuracy [Alemi+2016]

14



DeepMath: Statistics [Alemi+2016]

15



DeepMath: Hard Negatives

Initially as positive examples we use true dependencies, as negatives we use random
things that are not among our known dependencies. This still produced results worse
than kNN. A major necessary infrastructure required was Hard Negatives.

This means learn the negative examples that are not predicted correctly. Rather than
have 2 queues: half positives and half negatives, we have three queues: Positives,
negatives, and hard negatives, that is negatives that we have not predicted correctly.

16



Other neural network architectures

Examples

• Seq2Seq

• GNN

How could we use these for theorem proving tasks?

17



Other neural network architectures

Examples

• Seq2Seq

• GNN

How could we use these for theorem proving tasks?

17



Next problem: Lemma Usefulness

The next problem that we will look at will be intermediate lemma usefulness

In large proofs processed by an ITP (actually also by an ATP) there are many
intermediate steps. Some of these are particularly useful (can they be reused), and
some are useless (will not be necessary in the final proof as they are tautologies etc).

Can we use learning methods to predict the particularly useful ones (to name them and
keep them for reuse) and can we predict the useless ones (to avoid work)?

We first look at a deep learning approach to the problem, and later at other (more
proving) specific learning methods.

18



Learning Lemma Usefulness [ICLR 2017]

HOLStep Dataset

• Intermediate steps of the Kepler proof

• Only relevant proofs of reasonable size
• Annotate steps as useful and unused

• Same number of positive and negative

• Tokenization and normalization of statements

Statistics

Train Test Positive Negative

Examples 2013046 196030 1104538 1104538

Avg. length 503.18 440.20 535.52 459.66

Avg. tokens 87.01 80.62 95.48 77.40

Conjectures 9999 1411 - -

Avg. deps 29.58 22.82 - -
19



Considered Models

20



Baselines (Training Profiles)
char-level token-level

u
n
co

n
d
it

io
n
e
d

co
je

ct
u
re

co
n
d
it

io
n
e
d

The precision is up to 80% which is comparable to what simple
heuristics can do. Neural networks do not really use conjectures.

21



Summary

This Lecture

• deep learning for theorem proving

Next

• evaluation metrics

• start on ATPs

22



Additional Literature (not required)

The formalization of deep learning and deep learning for premise selection.

Alexander Bentkamp, Jasmin Christian Blanchette, and Dietrich Klakow.
A formal proof of the expressiveness of deep learning.
In Mauricio Ayala-Rincón and César A. Muñoz, editors, Interactive Theorem Proving -
8th International Conference, volume 10499 of LNCS, pages 46–64. Springer, 2017.

Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén, François Chollet,
and Josef Urban.
Deepmath - deep sequence models for premise selection.
In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2235–2243, 2016.

23



Work Here / Homework

Direct Neural Network Use

• Would it be possibly to apply a modern neural network to premise selection directly?

• What issues do you see?

Lemma Selection

• Run an ATP on a larger problem to produce a number of intermediate statements

• Are they useful for the conjecture using your algorithm implemented in one of the
previous homeworks?
(For features you can split the string on spaces for example)

24


	.

