
Machine Learning for Theorem Proving
Lecture 9 (VU)

Cezary Kaliszyk



Overview

Last Lecture

• deep learning for premise selection

• negative mining, definition embeddings

• state estimation

Today

• deep learning for E-prover

• Enigma

1



What about learning for ATPs?
Most ATPs work as follows

Proof by contradiction

• Assume that the conjecture does not hold

• Derive that axioms and negated conjecture imply ⊥

The main process is:

Saturation

• Convert problem to CNF (last lecture)

• Enumerate the consequences of the available clauses

• Goal: get to the empty clause

Additionally to avoid explosion we deal with

Redundancies

Simplify or eliminate some clauses (contract)
2



Calculus improvements (sources of inefficiency)

• Consider the clause (a ∨ b) ∧ ¬a ∧ ¬b

• Two ways to derive a contradiction: we first resolve on a then on b or the other way
around

• Orders allow specifying that a must come before be (or the other way around)

• This still remains sound and complete.

• Second source of inefficiency comes from the handing of equality

3



Calculus improvement (formally)

Ordered

Resolution

Aσ strictly maximal wrt Cσ and B maximal wrt Dσ.

Equality axioms?

Ordered

Paramodulation

(s = t)σ and L[s′]σ′ maximal in their clauses.

4



Calculus improvement (formally)

Ordered Resolution

Aσ strictly maximal wrt Cσ and B maximal wrt Dσ.

Equality axioms?

Ordered

Paramodulation

(s = t)σ and L[s′]σ′ maximal in their clauses.

4



Calculus improvement (formally)

Ordered Resolution

Aσ strictly maximal wrt Cσ and B maximal wrt Dσ.

Equality axioms?

Ordered

Paramodulation

(s = t)σ and L[s′]σ′ maximal in their clauses.

4



Calculus improvement (formally)

Ordered Resolution

Aσ strictly maximal wrt Cσ and B maximal wrt Dσ.

Equality axioms?

Ordered Paramodulation

(s = t)σ and L[s′]σ′ maximal in their clauses.

4



Further calculus improvements

Equalities are no longer instantiated blindly, but we still rewrite in both directions

Given an equality like x + 0 = x we can realize that actually removing all the ...+ 0...
and ...0 + .. is safe, and we do not need to add ...+ 0 anywhere.

A procedure that given a set of equalities finds a set of oriented equalities, such that we
only need to replace left sides by right sides is called completion. Completion will be
tried on some small set of equalities in the practical session, here we only give the rules
for it.

5



Completion

6



Superposition Calculus

Current most efficient theorem provers combine ordered paramodulation with
completion. The calculus that combines these is called the superposition calculus and is
the basis for (among others):

Current ATP provers

• E, Vampire, Spass, Prover9, Metis

7



Beyond the Calculus
Given a clause which has a literal and its negation, it does not bring in any information:

Tautology Detection (and deletion)

a ∨ b ∨ ¬a ∨ d

Clauses that less general than ones derived in the past

Subsumption (forward and backward)

e.g. E uses Feature Vector Indexing

{C1, C2, C3, C4}

{C3, C4}
0

{C2}
1

{C1}

2

{C3}
0

{C4}
2

{C2}
0

{C1}
1

{C3}
0

{C4}
0

{C2}
1

{C1}
0

8



Still provers often fail deriving billions of clauses and no empty one...
fof(6, axiom,![X1]:![X2]:![X4]:gg(X1,sup_sup(X1,X2,X4)),file('i/f/1/goal_138__Q_Restricted_Rewriting.qrstep
fof(32, axiom,![X1]:![X2]:gg(set(product_prod(X1,X1)),transitive_rtrancl(X1,X2)),file('i/f/1/goal_138__Q_Re
fof(55, axiom,![X1]:![X19]:![X20]:(member(product_prod(X1,X1),X19,X20)=>member(product_prod(X1,X1),X19,tran
fof(68, axiom,![X1]:![X5]:![X3]:![X36]:![X20]:![X37]:![X16]:(ord_less_eq(set(product_prod(X1,X3)),X36,X20)=
fof(70, axiom,![X1]:![X20]:transitive_rtrancl(X1,transitive_rtrancl(X1,X20))=transitive_rtrancl(X1,X20),fil
fof(74, axiom,![X1]:![X24]:![X34]:![X33]:((~(member(X1,X24,X34))=>member(X1,X24,X33))=>member(X1,X24,sup_su
fof(78, axiom,![X1]:![X11]:![X13]:transitive_rtrancl(X1,sup_sup(set(product_prod(X1,X1)),transitive_rtrancl
fof(79, axiom,![X1]:![X22]:![X39]:(member(X1,X22,collect(X1,X39))<=>pp(aa(X1,bool,X39,X22))),file('i/f/1/go
fof(85, axiom,![X1]:(semilattice_sup(X1)=>![X23]:![X24]:![X22]:(ord_less_eq(X1,sup_sup(X1,X23,X24),X22)<=>(
fof(86, axiom,![X1]:![X11]:relcomp(X1,X1,X1,transitive_rtrancl(X1,X11),transitive_rtrancl(X1,X11))=transiti
fof(98, axiom,![X1]:![X33]:![X34]:(gg(set(X1),X34)=>(ord_less_eq(set(X1),X33,X34)<=>sup_sup(set(X1),X33,X34
fof(99, axiom,![X1]:![X33]:![X34]:ord_less_eq(set(X1),X33,sup_sup(set(X1),X33,X34)),file('i/f/1/goal_138__Q
fof(100, axiom,![X3]:![X1]:supteq(X1,X3)=sup_sup(set(product_prod(term(X1,X3),term(X1,X3))),supt(X1,X3),id(
fof(102, axiom,![X1]:![X34]:![X33]:ord_less_eq(set(X1),X34,sup_sup(set(X1),X33,X34)),file('i/f/1/goal_138__
fof(103, axiom,![X1]:![X33]:![X18]:![X34]:(ord_less_eq(set(X1),X33,X18)=>(ord_less_eq(set(X1),X34,X18)=>ord
fof(109, axiom,![X1]:![X34]:![X33]:(gg(set(X1),X33)=>(ord_less_eq(set(X1),X34,X33)=>sup_sup(set(X1),X33,X34
fof(114, axiom,![X1]:![X33]:![X18]:![X34]:![X48]:(ord_less_eq(set(X1),X33,X18)=>(ord_less_eq(set(X1),X34,X4
fof(116, axiom,![X1]:![X33]:ord_less_eq(set(X1),X33,X33),file('i/f/1/goal_138__Q_Restricted_Rewriting.qrste
fof(125, axiom,![X1]:![X24]:![X33]:![X34]:(member(X1,X24,X33)=>(~(member(X1,X24,X34))=>member(X1,X24,minus_
fof(127, axiom,![X1]:![X24]:![X33]:![X34]:(member(X1,X24,minus_minus(set(X1),X33,X34))=>~((member(X1,X24,X3
fof(131, axiom,![X1]:![X33]:(gg(set(X1),X33)=>collect(X1,aTP_Lamp_a(set(X1),fun(X1,bool),X33))=X33),file('i
fof(134, axiom,![X1]:(order(X1)=>![X35]:![X49]:((gg(X1,X35)&gg(X1,X49))=>(ord_less_eq(X1,X35,X49)=>(ord_les
fof(136, axiom,![X1]:(preorder(X1)=>![X35]:![X49]:![X50]:(ord_less_eq(X1,X35,X49)=>(ord_less_eq(X1,X49,X50)
fof(143, axiom,![X1]:![X33]:![X34]:(ord_less_eq(set(X1),X33,X34)<=>![X52]:(gg(X1,X52)=>(member(X1,X52,X33)=
fof(160, axiom,![X1]:![X39]:![X35]:![X33]:(pp(aa(X1,bool,X39,X35))=>(member(X1,X35,X33)=>?[X30]:(gg(X1,X30)
fof(171, axiom,![X1]:![X65]:![X66]:(pp(aa(X1,bool,aTP_Lamp_a(set(X1),fun(X1,bool),X65),X66))<=>member(X1,X6
fof(186, axiom,![X67]:semilattice_sup(set(X67)),file('i/f/1/goal_138__Q_Restricted_Rewriting.qrsteps_comp_s
fof(187, axiom,![X67]:preorder(set(X67)),file('i/f/1/goal_138__Q_Restricted_Rewriting.qrsteps_comp_supteq_s
fof(188, axiom,![X67]:order(set(X67)),file('i/f/1/goal_138__Q_Restricted_Rewriting.qrsteps_comp_supteq_subs
fof(207, conjecture,ord_less_eq(set(product_prod(term(a,b),term(a,b))),relcomp(term(a,b),term(a,b),term(a,b

9



Still the search space is huge: Can we use learning?

What has been tried

• Strategies: Which strategy to use for which problem (ordering, ...)

• Hints: Which clauses are specially interesting and we should aim for them instead
of the conjecture first

• Premise selection can remove some of the axioms before the translation to CNF

What can be chosen in core of the Superposition calculus itself?

• Term ordering

• (Negative) literal selection

• Clause selection

10



E-Prover given-clause loop

The author of E prover claims that the most important choice: unprocessed clause selection [Schulz 2015]
11



Learning for E: Data Collection

Dataset is based on Mizar top-level theorems [Urban 2006]

• Encoded in FOF

32,521 Mizar theorems with ≥ 1 proof

• training-validation split (90%-10%)

• replay with one strategy

Collect all CNF intermediate steps

• and unprocessed clauses when a proof is found

12



Deep Network Architectures

Clause Embedder
Negated conjecture 

embedder

Concatenate

Fully Connected
(1024 nodes)

Fully Connected
(1 node)

Logistic loss

Clause tokens Negated conjecture 
tokens

Conv 5 (1024) + ReLU 

Input token embeddings

Conv 5 (1024) + ReLU

Conv 5 (1024) + ReLU 

Max Pooling

Overall network Convolutional Embedding

Non-dilated and dilated convolutions
13



Recursive Neural Networks

• Curried representation of first-order statements

• Separate nodes for apply, or, and, not

• Layer weights learned jointly for the same formula

• Embeddings of symbols learned with rest of network

• Tree-RNN and Tree-LSTM models1

1Note that these are related to features originating from term graphs
14



Model accuracy
Model Embedding Size Accuracy: 50-50% split

Tree-RNN-256×2 256 77.5%

Tree-RNN-512×1 256 78.1%

Tree-LSTM-256×2 256 77.0%

Tree-LSTM-256×3 256 77.0%

Tree-LSTM-512×2 256 77.9%

CNN-1024×3 256 80.3%

⋆CNN-1024×3 256 78.7%

CNN-1024×3 512 79.7%

CNN-1024×3 1024 79.8%

WaveNet-256×3×7 256 79.9%

⋆WaveNet-256×3×7 256 79.9%

WaveNet-1024×3×7 1024 81.0%

WaveNet-640×3×7(20%) 640 81.5%

⋆WaveNet-640×3×7(20%) 640 79.9%
⋆ = train on unprocessed clauses as negative examples

The accuracy is not that impressive.

15



Improving Proof Search inside E

Overview

Processed Clauses
Unprocessed 

Clauses

Select one
Using a deep neural 

network

Superposition

Problem

• Deep neural network evaluation is slow

• Slower than combining selected clause with all processed clauses2

• Solution 1: Batching clauses (evaluate as many clauses as possible at a time)

• Solution 2: Combining the neural heuristic with auto

2State of 2016
16



Hybrid heuristic

102 103 104 105

Processed clause limit

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
t 

u
n
p
ro

v
e
d

Pure CNN

Hybrid CNN

Pure CNN; Auto

Hyrbid CNN; Auto

102 103 104 105

Processed clause limit

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
t 

u
n
p
ro

v
e
d

Auto

WaveNet 640*

WaveNet 256

WaveNet 256*

WaveNet 640

CNN

CNN*

Overview

• Definitely better than the best E-prover heuristic (auto), especially after 200–1000
steps. But then the difference flattens out. So actually switching to the default
heuristic later might make sense.

17



Harder Mizar top-level statements
DeepMath 1 = neural premise selection
DeepMath 2 = neural clause guidance

Model DeepMath 1 DeepMath 2 Union of 1 and 2

Auto 578 581 674

⋆WaveNet 640 644 612 767

⋆WaveNet 256 692 712 864

WaveNet 640 629 685 997

⋆CNN 905 812 1,057

CNN 839 935 1,101

Total (unique) 1,451 1,458 1,712

Overall proved 7.4% of the harder statements

• Somewhat better than the best human defined heuristics, but it is
actually the fact that it is complementary that gives new solved
problems

• Model accuracy unsatisfactory

18



Harder Mizar top-level statements
DeepMath 1 = neural premise selection
DeepMath 2 = neural clause guidance

Model DeepMath 1 DeepMath 2 Union of 1 and 2

Auto 578 581 674

⋆WaveNet 640 644 612 767

⋆WaveNet 256 692 712 864

WaveNet 640 629 685 997

⋆CNN 905 812 1,057

CNN 839 935 1,101

Total (unique) 1,451 1,458 1,712

Overall proved 7.4% of the harder statements

• Somewhat better than the best human defined heuristics, but it is
actually the fact that it is complementary that gives new solved
problems

• Model accuracy unsatisfactory

18



ENIGMA
An alternative to deep-network guided E-prover has been developed by Jakubuv and
Urban. There, path features and fast random-forest based predictors were shown to
significantly improve E’s best strategy in reasonable time:

• Evaluation on AIM, 30 seconds
• Single best strategy: 239
• Combination of E’s strategies: 261
• Best trained strategy: 318 (includes prediction time)
• Different trained models: 337 19



Additional Literature (not required)

Karel Chvalovský, Jan Jakubuv, Martin Suda, and Josef Urban.
ENIGMA-NG: efficient neural and gradient-boosted inference guidance for E.
In Pascal Fontaine, editor, Automated Deduction - CADE 27 - 27th International
Conference on Automated Deduction, Natal, Brazil, August 27-30, 2019,
Proceedings, volume 11716 of Lecture Notes in Computer Science, pages 197–215.
Springer, 2019.

Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk.
Deep network guided proof search.
In Thomas Eiter and David Sands, editors, LPAR-21, 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017, volume 46 of EPiC Series in Computing, pages 85–105. EasyChair,
2017.

Stephan Schulz.
Simple and efficient clause subsumption with feature vector indexing.
In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and
Mathematics - Essays in Memory of William W. McCune, volume 7788 of Lecture
Notes in Computer Science, pages 45–67. Springer, 2013. 20



Summary

This Lecture

• learning for superposition calculus

• E-prover

• Enigma

Next

• Tableaux and learning for tableaux

• Reinforcement learning in theorem proving

• State evaluation

21


	.

