
WS 2024/2025

Advanced Functional Programming
Week 1 – Organisation and Introduction, Strict- and Lazy-Evaluation

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Organization

RT (DCS @ UIBK) Week 1 2/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Organization of Course

• LV-Number: 703139

• lecturer: René Thiemann
consultation hours: Tuesday 10:15 – 11:15 in 3M09 (ICT building)

• time and place: Tuesday, 13:15 – 15:45 in 3W04

• course website: http://cl-informatik.uibk.ac.at/teaching/ws24/afp/

• lecture will be in English

• slides are available online and contain links
• modus: VU 3

• 3 hours per week
• attendance is obligatory
• VU: lecture and exercises combined

• today: just lecture
• from next week onwards: first presentation of exercises, afterwards lecture

RT (DCS @ UIBK) Week 1 3/30

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703139
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/teaching/ws24/afp//material.php?lan=de
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Schedule

• detailed schedule: see website
• special dates

• today: just lecture
• January 21, Q & A session, no new content
• January 28: no large enough room for first exam
• February 6, 9:00 – 12:00: first exam

RT (DCS @ UIBK) Week 1 4/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Evaluation

• 50 % exercises + 50 % exam

• 1st exam on February 6, repeat exams will be scheduled on demand

• exercises will be handed out every week

• mark solved exercises and upload Haskell sources in OLAT

• deadline in OLAT: Monday, 3pm
• definition of solved:

• 100 % solutions are not required, but a significant part of tasks should have been solved
• capability to explain your solution to everyone in this room
• not permitted: just copy some internet/chatGPT solution without understanding it

• positive evaluation: get in total at least 50 % of points

RT (DCS @ UIBK) Week 1 5/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

slides and exercises

• no other topics will appear in exam . . .
• . . . but topics need to be understood thoroughly

• read and write functional programs
• apply presented techniques on new examples
• not only knowledge reproduction

Bryan O’Sullivan, John Goerzen and Don Stewart. Real World Haskell, O’Reilly.

. . . see slides

RT (DCS @ UIBK) Week 1 6/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Prerequisites: Basic Knowledge of Functional Programming

• knowledge on lists, trees and other algebraic data types

• knowledge on recursive function definitions

• basic knowledge on type-classes (Eq, Ord, Show, Num)

• basic knowledge on programming with higher-order functions
(map, filter, foldr, ., partial application, . . .)

• basic knowledge on IO

(separate pure from IO-computations, do-notation, . . .)

RT (DCS @ UIBK) Week 1 7/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Strict- and Lazy-Evaluation

RT (DCS @ UIBK) Week 1 8/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

Consider

• program square x = x * x, and

• expression square (3 + 2)

Different Ways to Apply Equations

• strict/innermost: evaluate arguments before doing a function application

square (3 + 2) = square 5 = 5 * 5 = 25

• non-strict/lazy: apply program equation as soon as possible

square (3 + 2) = (3 + 2) * (3 + 2) = 5 * 5 = 25

where the sub-expression 3+2 is shared and hence, only evaluated once

RT (DCS @ UIBK) Week 1 9/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Values and Thunks

• value: a fully evaluated term, e.g., 5, "hello", [1,2,3]

• thunk: a term that needs further evaluation, e.g., 2 + 3, "hel" ++ "lo", . . .

• strict/innermost: evaluate arguments to values before invoking function application

• non-strict/lazy: arguments can be passed as values or as thunks
• consequences

• strict/innermost is easier to implement; takes less space per cell
• non-strict/lazy includes overhead when working with thunks;

admits new kinds of programming styles

• ML and OCaml use a strict/innermost evaluation strategy

• Haskell uses non-strict/lazy as default evaluation strategy;
strict/innermost on demand

• offer strict and lazy folding functions
• offer strict and lazy arrays
• offer strict and lazy dictionaries
• enforce strictness via seq, via strict datatypes, . . .

RT (DCS @ UIBK) Week 1 10/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (foldl and foldl')

foldl, foldl' :: (b -> a -> b) -> b -> [a] -> b

foldl f y [] = y

foldl f y (x : xs) =

let z = f y x

in foldl f z xs

foldl' f y [] = y

foldl' f y (x : xs) =

let z = f y x

in seq z $ foldl' f z xs

Remark
• seq x y returns y after evaluating x to weak-head normal form (WHNF), i.e., after
outermost constructor has been computed

• example:
(let xs = take 2 [5..] in seq xs xs) = ... = 1 : take (2 - 1) [5 + 1..]

RT (DCS @ UIBK) Week 1 11/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Lazy Evaluation via foldl)

foldl f y [] = y

foldl f y (x : xs) =

let z = f y x

in foldl f z xs

foldl (+) 0 [1,2,3,4,5,6]

= let z1 = 0 + 1 in foldl (+) z1 [2,3,4,5,6]

= let z1 = 0 + 1 in let z2 = z1 + 2 in foldl (+) z2 [3,4,5,6] = ...

= let z1 = 0 + 1 in let z2 = z1 + 2 in let z3 = z2 + 3 in

let z4 = z3 + 4 in let z5 = z4 + 5 in let z6 = z5 + 6 in foldl (+) z6 []

= let z1 = 0 + 1 in let z2 = z1 + 2 in let z3 = z2 + 3 in

let z4 = z3 + 4 in let z5 = z4 + 5 in let z6 = z5 + 6 in z6

= ((((0 + 1) + 2) + 3) + 4) + 5) + 6

= ... = 21
Linear space requirement!

RT (DCS @ UIBK) Week 1 12/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Strict Evaluation via foldl')

foldl' f y [] = y

foldl' f y (x : xs) =

let z = f y x

in seq z $ foldl' f z xs

foldl' (+) 0 [1,2,3,4,5,6]

= let z1 = 0 + 1 in seq z1 $ foldl' (+) z1 [2,3,4,5,6]

= let z1 = 1 in seq z1 $ foldl' (+) z1 [2,3,4,5,6]

= foldl' (+) 1 [2,3,4,5,6]

= let z2 = 1 + 2 in seq z2 $ foldl' (+) z2 [3,4,5,6]

= let z2 = 3 in seq z2 $ foldl' (+) z2 [3,4,5,6]

= foldl' (+) 3 [3,4,5,6]

= ...

= foldl' (+) 21 []

= 21
Constant space requirement!

RT (DCS @ UIBK) Week 1 13/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Sometimes foldl is Preferable)

mulNS x 0 = 0

mulNS x y = x * y

-- compare

foldl mulNS 1 [3,6,undefined,0,7]

-- with

foldl' mulNS 1 [3,6,undefined,0,7]

-- result: only the former succeeds

RT (DCS @ UIBK) Week 1 14/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Use seq Carefully

• seq forces only an evaluation, if seq itself is at a position which should be evaluated

• usually, put seq on the outside

f 0 y = ...

f x y = let z = ... in z `seq` f (x - 1) z -- evaluation of z to WHNF

f x y = let z = ... in f (x - 1) (z `seq` z) -- no effect

f x y =

let x1 = x - 1;

z = ...

in x1 `seq` z `seq` f x1 z -- evaluate both x1 and z to WHNF

-- here: useless for x1

RT (DCS @ UIBK) Week 1 15/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Benefits from Lazy Evaluation: Modularity

• composing several programs can work out nicely with lazy evaluation, but is not
performant with strict evaluation

• example: compute the ten least-most elements in a list xs
• lazy approach: take 10 (sort xs)

• approach can be efficient, since due to laziness, not all of sorted xs has to be computed
(efficiency depends on utilized sorting algorithm)

• strict approach
• take 10 (sort xs) is inefficient to evaluate, if xs is long
• writing separate program from scratch requires work

RT (DCS @ UIBK) Week 1 16/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming with Lazy Evaluation

• task
• replace all elements in a non-empty list by the minimum in the list . . .
• . . . with only one list-traversal

• solution
findMinRepl :: Ord b => a -> [b] -> (b, [a])

findMinRepl r [x] = (x, [r])

findMinRepl r (x : xs) = case findMinRepl r xs of

(m, ys) -> (min m x, r : ys)

replAllByMin :: Ord a => [a] -> [a]

replAllByMin xs =

let (m, ys) = findMinRepl m xs

in ys

• trick: m is evaluated lazily in replAllByMin

RT (DCS @ UIBK) Week 1 17/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming with Lazy Evaluation

findMinRepl r [x] = (x, [r])

findMinRepl r (x : xs) = case findMinRepl r xs of

(m, ys) -> (min m x, r : ys)

replAllByMin xs = let (m, ys) = findMinRepl m xs in ys

replABM [2,6,1]

= let (m, ys) = fMR m [2,6,1] in ys

= let (m, ys) = case fMR m [6,1] of (m1, ys1) -> (min m1 2, m : ys1) in ys

= let (m, ys) = case (case fMR m [1] of (m2, ys2) -> (min m2 6, m : ys2))

of (m1, ys1) -> (min m1 2, m : ys1) in ys

= let (m, ys) = case (case (1, [m]) of (m2, ys2) -> (min m2 6, m : ys2))

of (m1, ys1) -> (min m1 2, m : ys1) in ys

= let (m, ys) = case (min 1 6, [m, m])

of (m1, ys1) -> (min m1 2, m : ys1) in ys

= let (m, ys) = (min (min 1 6) 2, [m, m, m]) in ys

= [min (min 1 6) 2, min (min 1 6) 2, min (min 1 6) 2] = ... = [1, 1, 1]

RT (DCS @ UIBK) Week 1 18/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming with Lazy Evaluation – Lazy Arrays

• several container data structures (arrays, dictionaries, . . .) are provided both in a strict
and in a lazy variant in Haskell libraries

• advantage of strict versions
• no overhead from working with thunks
• less memory consumption, no boxing and unboxing of values

• advantage of lazy versions
• lazy initialization becomes possible:

already consume parts during construction (similar to m in previous example)

• documentation
• https://hackage.haskell.org/package/array/docs/Data-Array-IArray.html
• https://hackage.haskell.org/package/array/docs/Data-Array-Unboxed.html

RT (DCS @ UIBK) Week 1 19/30

https://hackage.haskell.org/package/array/docs/Data-Array-IArray.html
https://hackage.haskell.org/package/array/docs/Data-Array-Unboxed.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example with Lazy Initialization

import qualified Data.Array.IArray as L -- lazy, boxed, immutable arrays

fibsLazyArray :: Int -> [Integer]

fibsLazyArray n =

let a :: L.Array Int Integer

a = L.genArray (0,n)

(\ i -> if i <= 1 then 1 else a L.! (i - 1) + a L.! (i - 2))

in L.elems a

-- lazy approach: in order to construct array a, we already use it

-- index types Ix might be Int, Integer, Char, (Int, Int), ...

-- L.genArray :: (IArray a e, Ix i) => (i, i) -> (i -> e) -> a i e

-- (L.!) :: (IArray a e, Ix i) => a i e -> i -> e

-- L.elems :: (IArray a e, Ix i) => a i e -> [e]

RT (DCS @ UIBK) Week 1 20/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy Initialization does Not Work with Strict Arrays

import Data.Array.Unboxed as S -- strict, unboxed arrays

-- UArray can store elements of type Int, Word32, ...,

-- but not Integer, String, ...

import Data.Word (Word64)

fibsStrictArray :: Int -> [Word64]

fibsStrictArray n =

let a :: S.UArray Int Word64

a = S.genArray (0,n)

(\ i -> if i <= 1 then 1 else a S.! (i - 1) + a S.! (i - 2))

in S.elems a

-- computation of fibsStrictArray 10 does not succeed

-- similar interface in comparison to lazy arrays

-- S.genArray :: (S.IArray a e, S.Ix i) => (i, i) -> (i -> e) -> a i e

RT (DCS @ UIBK) Week 1 21/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Another Example for Lazy Containers: Dynamic Programming

• bracketing problem
• given is list of n− 1 compatible matrices A0 A1 . . . An−2

• in fact, only the dimensions of Ai are given: [a0, . . . , an−1], Ai has dimension ai × ai+1

• task: figure out cheapest way to multiply all matrices, e.g., (A0A1)(A2(A3A4))
• algorithm computes optimal costs to multiply Ai . . . Aj

• cost(i, i) = 0
• cost(i, j) = min{cost(i, k) + cost(k + 1, j) + aiak+1aj+1︸ ︷︷ ︸

matrix-multiplication

| i ≤ k < j} if i < j

Ai . . . Aj = (Ai . . . Ak)︸ ︷︷ ︸
ai×ak+1

(Ak+1 . . . Aj)︸ ︷︷ ︸
ak+1×aj+1

• naive recursive computation of cost results in exponential algorithm
• solution: dynamic programming

• compute values of cost(i, j) for increasing differences of i and j – without recomputation

RT (DCS @ UIBK) Week 1 22/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy Maps and Sets

• Data.Map.Lazy provides lazy dictionaries (or: maps) in Haskell
• multiple construction possibilities

• empty :: Map k v
• insert :: Ord k => k -> v -> Map k v -> Map k v
• unionWith :: Ord k => (v -> v -> v) -> Map k v -> Map k v -> Map k v
• fromList :: Ord k => [(k, v)] -> Map k v

• querying single keys
• lookup :: Ord k => k -> Map k v -> Maybe v (optional value)
• ! :: Ord k => Map k v -> k -> v (might throw error)

• implemented as balanced trees

• Data.Set has similar functionality to represent sets
• documentation

• https://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html
• https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html
• https://hackage.haskell.org/package/containers/docs/Data-Set.html

RT (DCS @ UIBK) Week 1 23/30

https://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html
https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html
https://hackage.haskell.org/package/containers/docs/Data-Set.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Implementation of Bracketing Problem in Haskell via Lazy Maps
import qualified Data.Array.IArray as L

import qualified Data.Map.Lazy as M -- lazy dictionaries

optBracketCosts :: [Integer] -> Integer

optBracketCosts xs =

let n = length xs - 1

a = L.listArray (0,n) xs :: L.Array Int Integer

m = M.fromList [((i,j),cost i j) | i <- [0..n - 1], j <- [i..n-1]]

cost i j

| i == j = 0

| otherwise = foldr1 min [costSplit k | k <- [i .. j - 1]] where

costSplit k =

let c1 = m M.! (i,k)

c2 = m M.! (k+1,j)

in c1 + c2 + a L.! i * a L.! (k + 1) * a L.! (j + 1)

in cost 0 (n-1)

RT (DCS @ UIBK) Week 1 24/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Analysis of optBracketCosts

• no explicit sequence is given, in which dictionary is filled

• instead, an over-approximation of required values (i,j) is used:
i <- [0..n - 1], j <- [i..n-1]

• recursion is done implicitly: from (i,j) with i <= k <= j - 1

invoke both (i,k) and (k+1,j)

• input list xs is converted to array a for efficient element access

• the array might be changed to strict version (if input would be [Int]),
but the dictionary must be lazy

RT (DCS @ UIBK) Week 1 25/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Comparison of Maps and Immutable Arrays in Haskell

• lookup is logarithmic for maps, but constant time for arrays

• keys are arbitrary ordered objects, whereas type of array indices is restricted

• keys can have arbitrary gaps, whereas indices in arrays are dense

• maps also support deletion and change of key-value pairs

• both are available in strict and lazy version

• several variants of maps are available
https://haskell-containers.readthedocs.io/en/latest/map.html

RT (DCS @ UIBK) Week 1 26/30

https://haskell-containers.readthedocs.io/en/latest/map.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercise – Task 1 (5 points)

Design an algorithm optBrackets :: [Integer] -> Brackets that computes an optimal
bracketing, represented by the following data type, where the integer in a split indicates the
index of the matrix where the outermost brackets are added.
data Brackets = Leaf | Split Brackets Int Brackets

For instance, Split (Split Leaf 0 Leaf) 1 (Split Leaf 2 (Split Leaf 3 Leaf))

represents the bracketing (A0A1)(A2(A3A4)).
Your algorithm should be similar in structure to optBracketCosts.

RT (DCS @ UIBK) Week 1 27/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercise – Task 2 (5 points)

First order terms are either variables or function symbols that are applied on lists of terms.
The following inference rules describe the embedding relation on terms.

• s1 ≿emb t1 . . . sn ≿emb tn
f(s1, . . . , sn) ≿emb f(t1, . . . , tn)

(args)

• si ≿emb t

f(s1, . . . , sn) ≿emb t
(sub)

•
x ≿emb x

(var)

For example, one can infer f(m(x, y), s(z)) ≿emb f(y, s(z))
In the template file you find a naive implementation of the embedding relation. It requires
exponential time because of many overlapping recursive calls. Design a more efficient Haskell
function that decides s ≿emb t. It should avoid overlapping recursive calls by using lazy
dictionaries or lazy arrays.

RT (DCS @ UIBK) Week 1 28/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A Note on the Haskell Sources

• the demos and exercises are provided as a cabal package

• make sure to have ghc and cabal installed (via package manager or via ghcup)

• download and extract the sources from the AFP website

• change directory into demos (where afp.cabal is located)

• cabal repl (run cabal project interactively)

• :m Exercise01 (open Exercise01.hs)

• do {testsBrackets; testsEmb} (run tests)

• (edit src/Exercise01.hs)

• :r (reload program after changes)

• note: on first run, lean-check and other packages might be installed

• just upload updated version of Exercise01.hs in OLAT

RT (DCS @ UIBK) Week 1 29/30

https://www.haskell.org/ghcup/
http://cl-informatik.uibk.ac.at/teaching/ws24/afp//material.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

• Real World Haskell, pages 32–33, 108–110, 270–274, 289–292

RT (DCS @ UIBK) Week 1 30/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Organization
	
	Strict- and Lazy-Evaluation

