M universitat WS 2024/2025
™ innsbruck

Advanced Functional Programming

Week 1 — Organisation and Introduction, Strict- and Lazy-Evaluation

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Organization

RT (DCS @ UIBK) Week 1 2/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Organization of Course
® |V-Number: 703139

® |lecturer: René Thiemann
consultation hours: Tuesday 10:15—11:15 in 3M09 (ICT building)

® time and place: Tuesday, 13:15 — 15:45 in 3W04
® course website: http://cl-informatik.uibk.ac.at/teaching/ws24/afp/ k

® |ecture will be in English

® slides are available online and contain links
® modus: VU 3

® 3 hours per week
® attendance is obligatory
® VU: lecture and exercises combined

® today: just lecture
® from next week onwards: first presentation of exercises, afterwards lecture

RT (DCS @ UIBK) Week 1 3/30

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703139
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/teaching/ws24/afp//material.php?lan=de
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Schedule

® detailed schedule: see website
® special dates

® today: just lecture

® January 21, Q & A session, no new content

® January—28: no large enough room for first exam
® February 6, 9:00 — 12:00: first exam

RT (DCS @ UIBK) Week 1 4/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Evaluation

50 % exercises + 50 % exam

1st exam on February 6, repeat exams will be scheduled on demand
exercises will be handed out every week

mark solved exercises and upload Haskell sources in OLAT

deadline in OLAT: Monday, 3pm

definition of solved:

® 100 % solutions are not required, but a significant part of tasks should have been solved
® capability to explain your solution to everyone in this room
® not permitted: just copy some internet/chatGPT solution without understanding it

positive evaluation: get in total at least 50 % of points

RT (DCS @ UIBK) Week 1

5/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

[§ slides and exercises

® no other topics will appear in exam . ..

® .. but topics need to be understood thoroughly
® read and write functional programs
® apply presented techniques on new examples
® not only knowledge reproduction

@ Bryan O'Sullivan, John Goerzen and Don Stewart. Real World Haskell, O'Reilly.
[...see slides

RT (DCS @ UIBK) Week 1 6/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Prerequisites: Basic Knowledge of Functional Programming
® knowledge on lists, trees and other algebraic data types
¢ knowledge on recursive function definitions

® basic knowledge on type-classes (Eq, Ord, Show, Num)

basic knowledge on programming with higher-order functions
(map, filter, foldr, ., partial application, ...)

basic knowledge on I0
(separate pure from |0-computations, do-notation, .. .)

RT (DCS @ UIBK) Week 1 7/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Strict- and Lazy-Evaluation

RT (DCS @ UIBK) Week 1 8/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example
Consider
® program square x = x * ¥, and

® expression square (3 + 2)

Different Ways to Apply Equations
® strict/innermost: evaluate arguments before doing a function application
square (3 + 2) = square 5 =5 * 5 = 25
® non-strict/lazy: apply program equation as soon as possible
square (3 + 2) = (3+ 2) * (3+2) =5 %5 =25

where the sub-expression 3+2 is shared and hence, only evaluated once

RT (DCS @ UIBK) Week 1 9/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Values and Thunks

value: a fully evaluated term, e.g., 5, "hello", [1,2,3]
thunk: a term that needs further evaluation, e.g., 2 + 3, "hel" ++ "lo", ...
strict/innermost: evaluate arguments to values before invoking function application

non-strict/lazy: arguments can be passed as values or as thunks
consequences
® strict/innermost is easier to implement; takes less space per cell

® non-strict/lazy includes overhead when working with thunks;
admits new kinds of programming styles

ML and OCaml use a strict/innermost evaluation strategy

Haskell uses non-strict/lazy as default evaluation strategy;
strict/innermost on demand

® offer strict and lazy folding functions

® offer strict and lazy arrays

® offer strict and lazy dictionaries

® enforce strictness via seq, via strict datatypes, ...

RT (DCS @ UIBK) Week 1

10/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (foldl and foldl')

foldl, foldl' :: (b -=> a -> b) > b -> [a] > b
foldl £ y [1 =y
foldl f y (x : xs) =

let z = f y x

in foldl f z xs

foldl' £y [1 =y
foldl' f y (x : xs) =
let z = f y x
in seq z $ foldl' f z xs

® seq x y returns y after evaluating x to weak-head normal form (WHNF), i.e., after
outermost constructor has been computed

® example:

(let xs = take 2 [5..] in seq xs xs) = ... 1 : take (2 - 1) [6 + 1..]
RT (DCS @ UIBK) Week 1 11/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Lazy Evaluation via foldl)

foldl £y [1 =y
foldl f y (x : xs) =

let

z

fyx

in foldl f z xs

foldl (+) 0 [1,2,3,4,5,6]

= let
= let
= let
let
= let
let

z1
z1
z1
z4
z1
z4

0+ 1 in foldl (+) z1 [2,3,4,5,6]

0+ 1 in let z2 = z1 + 2 in foldl (+) z2 [3,4,5,6] = ...

0O+ 1in let z2 =z1 + 2 in let 2z3 = z2 + 3 in

z3 + 4 in let z5 = z4 + 5 in let z6 = z5 + 6 in foldl (+) z6 []
O+ 1in let z2 =z1 + 2 in let 2z3 = z2 + 3 in

z3 + 4 in let z5 = z4 + 5 in let z6 = z5 + 6 in z6

= ((((0+ 1) +2) +3) +4) +5) +6

=21

Linear space requirement!

RT (DCS @ UIBK)

Week 1 12/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Strict Evaluation via foldl')

foldl' £y [=y
foldl' f y (x : xs) =
let z = f y x
in seq z § foldl' f z xs

foldl' (+) 0 [1,2,3,4,5,6]
= let z1 = 0 + 1 in seq z1 $ foldl' (+) zl1l [2,3,4,5,6]
= let z1 = 1 in seq zl $ foldl' (+) z1 [2,3,4,5,6]
= foldl' (+) 1 [2,3,4,5,6]
= let z2 = 1 + 2 in seq z2 $ foldl' (+) z2 [3,4,5,6]
= let z2 = 3 in seq z2 $ foldl' (+) z2 [3,4,5,6]
= foldl' (+) 3 [3,4,5,6]

= foldl' (+) 21 []
= 21
Constant space requirement!

RT (DCS @ UIBK) Week 1 13/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Sometimes foldl is Preferable)

mulNS x 0 = O
mulNS x y = x * y

-- compare

foldl mulNS 1 [3,6,undefined,0,7]
-- with

foldl' mulNS 1 [3,6,undefined,0,7]

-- result: only the former succeeds

RT (DCS @ UIBK) Week 1 14/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Use seq Carefully

® seq forces only an evaluation, if seq itself is at a position which should be evaluated

e usually, put seq on the outside

foy=...
fxy=1let z = in z "seq” f (x - 1) z -- evaluation of z to WHNF
fxy=1let z = in f (x - 1) (z “seq” z) -- no effect
fxy-=
let x1 = x - 1;
z =
in x1 “seq” z “seq” f xl1 z -- evaluate both x1 and z to WHNF

—- here: useless for x1

RT (DCS @ UIBK) Week 1 15/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Benefits from Lazy Evaluation: Modularity

® composing several programs can work out nicely with lazy evaluation, but is not
performant with strict evaluation

® example: compute the ten least-most elements in a list xs

® |azy approach: take 10 (sort xs)

® approach can be efficient, since due to laziness, not all of sorted xs has to be computed
(efficiency depends on utilized sorting algorithm)
® strict approach
® take 10 (sort xs) is inefficient to evaluate, if xs is long
® writing separate program from scratch requires work

RT (DCS @ UIBK) Week 1 16/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming with Lazy Evaluation

® task
® replace all elements in a non-empty list by the minimum in the list ...
® . .with only one list-traversal
® solution
findMinRepl :: Ord b => a -> [b] -> (b, [al])
findMinRepl r [x] = (x, [r])
findMinRepl r (x : xs) = case findMinRepl r xs of
(m, ys) > (min m x, r : ys)

replAl1ByMin :: Ord a => [a] -> [al]
replAl11ByMin xs =
let (m, ys) = findMinRepl m xs
in ys

® trick: m is evaluated lazily in replA11ByMin

RT (DCS @ UIBK) Week 1 17/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming with Lazy Evaluation

findMinRepl r [x] = (x, [r])
findMinRepl r (x : xs) = case findMinRepl r xs of
(m, ys) -> (min m x, r : ys)
replA11ByMin xs = let (m, ys) = findMinRepl m xs in ys

replABM [2,6,1]

= let (m, ys) = fMR m [2,6,1] in ys

= let (m, ys) = case fMR m [6,1] of (ml, ysl1) -> (min ml 2, m : ys1) in ys

= let (m, ys) = case (case fMR m [1] of (m2, ys2) -> (min m2 6, m : ys2))
of (ml, ys1) -> (min ml 2, m : ysl) in ys

= let (m, ys) = case (case (1, [m]) of (m2, ys2) -> (min m2 6, m : ys2))
of (m1, ys1) -> (min ml 2, m : ysl1l) in ys

= let (m, ys) = case (min 1 6, [m, m])
of (ml, ys1) -> (min ml 2, m : ysl1) in ys

= let (m, ys) = (min (min 1 6) 2, [m, m, m]) in ys

= [min (min 1 6) 2, min (min 1 6) 2, min (min 1 6) 2] = ... = [1, 1, 1]

RT (DCS @ UIBK) Week 1 18/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming with Lazy Evaluation — Lazy Arrays

e several container data structures (arrays, dictionaries, ...) are provided both in a strict
and in a lazy variant in Haskell libraries
e advantage of strict versions

® no overhead from working with thunks
® |ess memory consumption, no boxing and unboxing of values

¢ advantage of lazy versions

® |azy initialization becomes possible:
already consume parts during construction (similar to m in previous example)

® documentation

® https://hackage.haskell.org/package/array/docs/Data-Array-IArray.html
® https://hackage.haskell.org/package/array/docs/Data-Array-Unboxed.html

RT (DCS @ UIBK) Week 1 19/30

https://hackage.haskell.org/package/array/docs/Data-Array-IArray.html
https://hackage.haskell.org/package/array/docs/Data-Array-Unboxed.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example with Lazy Initialization

import qualified Data.Array.IArray as L -- lazy, boxed, immutable arrays

fibsLazyArray :: Int -> [Integer]
fibsLazyArray n =
let a :: L.Array Int Integer
a = L.genArray (0,n)
(\i->4if i <=1 then 1 else a L.! (i - 1) + a L.! (i - 2))
in L.elems a

-- lazy approach: in order to construct array a, we already use it

-- index types Ix might be Int, Integer, Char, (Int, Int),

-- L.genArray :: (IArray a e, Ix i) => (i, 1) > (1 > e) > a i e
= (L.!") :: (IArray a e, Ix i) =>aie ->1 -> e
-— L.elems :: (IArray a e, Ix i) => a i e —> [e]

RT (DCS @ UIBK) Week 1 20/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy Initialization does Not Work with Strict Arrays

import Data.Array.Unboxed as S -- strict, unboxed arrays
-- UArray can store elements of type Int, Word32, ...,
-- but not Integer, String,

import Data.Word (Word64)

fibsStrictArray :: Int -> [Word64]
fibsStrictArray n =
let a :: S.UArray Int Word64
a = S.genArray (0,n)
(\i->4if i <= 1 then 1 else a S.! (i - 1) + a S.! (i - 2))
in S.elems a

-- computation of fibsStrictArray 10 does not succeed

-- similar interface in comparison to lazy arrays
-- S.genArray :: (S.IArray a e, S.Ix i) => (i, i) > (i > e) > a i e

RT (DCS @ UIBK) Week 1 21/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Another Example for Lazy Containers: Dynamic Programming

® bracketing problem

given is list of n — 1 compatible matrices Ag A; ... A, _2

in fact, only the dimensions of A; are given: [ag,...,a,—1], A; has dimension a; X a;11

task: figure out cheapest way to multiply all matrices, e.g., (AgA1)(A2(A344))

algorithm computes optimal costs to multiply A4, ... A;

cost(i,i) =0

cost(i, j) = min{cost(i, k) + cost(k +1,5) + ajapt1aj41 |1 <k <j}ifi<jy
————

matrix-multiplication

A A= (Ar . A (Argr - A))

a; XAk41 Ap41 X541

® naive recursive computation of cost results in exponential algorithm
® solution: dynamic programming
® compute values of cost(i, j) for increasing differences of i and j — without recomputation

RT (DCS @ UIBK) Week 1 22/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy Maps and Sets

® Data.Map.Lazy provides lazy dictionaries (or: maps) in Haskell
® multiple construction possibilities
® empty :: Map k v
® insert :: Ord k => k => v => Map k v -> Map k v
® unionWith :: Ord k => (v => v => v) -> Map k v -> Map k v -> Map k v
® fromList :: Ord k => [(k, v)] -> Map k v
® querying single keys
® lookup :: Ord k => k -> Map k v -> Maybe v (optional value)
® !l :: Ord k => Map kv >k —> v (might throw error)
® implemented as balanced trees
® Data.Set has similar functionality to represent sets

® documentation
® https://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html
® https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html
® https://hackage.haskell.org/package/containers/docs/Data-Set.html

RT (DCS @ UIBK) Week 1 23/30

https://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html
https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html
https://hackage.haskell.org/package/containers/docs/Data-Set.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Implementation of Bracketing Problem in Haskell via Lazy Maps

import qualified Data.Array.IArray as L
import qualified Data.Map.Lazy as M -- lazy dictionaries

optBracketCosts :: [Integer] -> Integer
optBracketCosts xs =
let n = length xs - 1

a = L.listArray (O,n) xs :: L.Array Int Integer
m = M.fromList [((i,j),cost i j) | i <= [0..n - 1], j <= [i..n-1]]
cost 1 j

| i==3=0
| otherwise = foldrl min [costSplit k | k <= [1 .. j - 1]] where
costSplit k =
let c1 =m M.! (i,k)
c2 =m M.! (k+1,7)
incl+c2+al.l i*xal.t (k+1)*al.l (j+1)
in cost 0 (n-1)

RT (DCS @ UIBK) Week 1

24/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Analysis of optBracketCosts

no explicit sequence is given, in which dictionary is filled

instead, an over-approximation of required values (i, j) is used:
i <= [0..n - 1], j <= [i..n-1]

recursion is done implicitly: from (i,j) with i <= k <= j - 1
invoke both (i,k) and (k+1,3)

input list xs is converted to array a for efficient element access

the array might be changed to strict version (if input would be [Int]),
but the dictionary must be lazy

RT (DCS @ UIBK) Week 1 25/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Comparison of Maps and Immutable Arrays in Haskell

lookup is logarithmic for maps, but constant time for arrays

keys are arbitrary ordered objects, whereas type of array indices is restricted
keys can have arbitrary gaps, whereas indices in arrays are dense

maps also support deletion and change of key-value pairs

both are available in strict and lazy version

several variants of maps are available
https://haskell-containers.readthedocs.io/en/latest/map.html

RT (DCS @ UIBK) Week 1

26/30

https://haskell-containers.readthedocs.io/en/latest/map.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercise — Task 1 (5 points)

Design an algorithm optBrackets :: [Integer] -> Brackets that computes an optimal
bracketing, represented by the following data type, where the integer in a split indicates the
index of the matrix where the outermost brackets are added.

data Brackets = Leaf | Split Brackets Int Brackets

For instance, Split (Split Leaf O Leaf) 1 (Split Leaf 2 (Split Leaf 3 Leaf))
represents the bracketing (AgA;1)(A2(A3A4)).
Your algorithm should be similar in structure to optBracketCosts.

RT (DCS @ UIBK) Week 1 27/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercise — Task 2 (5 points)

First order terms are either variables or function symbols that are applied on lists of terms.
The following inference rules describe the embedding relation on terms.

° S1 i:emb ty .- Sn i__,emb tn (args)
f(s150,80) Zemb f(t1, ... tn)
8; 7 t
° i ~vemb (sub)
f(517"'75n) iemb t
o — (var)
z ?:,emb €

For example, one can infer f(m(z,y),s(2)) Zems f(y,s(2))
In the template file you find a naive implementation of the embedding relation. It requires

exponential time because of many overlapping recursive calls. Design a more efficient Haskell
function that decides s 7 ¢ t. It should avoid overlapping recursive calls by using lazy

dictionaries or lazy arrays.

RT (DCS @ UIBK) Week 1 28/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A Note on the Haskell Sources

® the demos and exercises are provided as a cabal package

® make sure to have ghc and cabal installed (via package manager or via ghcup)

download and extract the sources from the AFP website

change directory into demos (where afp.cabal is located)

® cabal repl (run cabal project interactively)
® :m Exercise0l (open Exercise01.hs)
® do {testsBrackets; testsEmb} (run tests)
o (edit src/Exercise01.hs)
e :r (reload program after changes)

® note: on first run, lean-check and other packages might be installed

® just upload updated version of Exercise0O1.hs in OLAT

RT (DCS @ UIBK) Week 1 29/30

https://www.haskell.org/ghcup/
http://cl-informatik.uibk.ac.at/teaching/ws24/afp//material.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature
® Real World Haskell, pages 32-33, 108-110, 270-274, 289-292

RT (DCS @ UIBK) Week 1 30/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Organization
	
	Strict- and Lazy-Evaluation

