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René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/


Type-Checking and Type-Inference
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Static and Dynamic Type-Checking

• every Haskell expression is type-checked

• static type-checking: ill-typed expressions are detected at compile time
• big advantage: well-typed programs cannot go wrong (w.r.t. typing errors)

• evaluation cannot change the type of an expression
• example: if f :: String -> Int and e :: String, then f e :: Int,

independent of evaluation
• conclusion: detect type-errors at compile-time, erase types at runtime

• alternative: dynamic type-checking (e.g., Python)
• dynamic: types are determined at run-time
• consider f x = if x > 3.1415 then "foo" else 5
• now evaluate f (approxPi 1000) - 2

• only after evaluation of approxPi 1000 we can determine the Boolean
approxPi 1000 > 3.1415

• this Boolean decides whether f (approxPi 1000) evaluates to the string "foo" or to the
number 5

• only then we know whether we will get a type error ("foo" - 2) or no type-error (5 - 2)
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def f(x): return ("foo" if x > 3.1415 else 5)

# pi = 4 * (1 - 1/3 + 1/5 - 1/7 + 1/9 - ...)

def approxPi(x):

p = 1

y = 3

m = -1

while (x > 0):

x -= 1

p += m/y

y += 2

m *= -1

return (4 * p)

# question: do the following python functions lead to type-errors?

def test1(): return f(approxPi(1000)) - 2

def test2(): return f(approxPi(1001)) - 2
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Static Type-Checking and Type-Inference
• type-checking: given expression e, context Γ and type ty, determine whether

Γ ⊢ e :: ty (e has type ty in context Γ)

using some typing rules, e.g., the ones of Haskell, ML, . . .
• context Γ: stores types of previously defined variables, functions and constructors

• Γ might contain (:) :: a -> [a] -> [a], True :: Bool, id :: a -> a, . . .
• we often just write e :: ty instead of Γ ⊢ e :: ty if choice of Γ is clear

• type-inference: given expression e and context Γ,
determine a most general type (aka principal type) of e or report non-typability

• most general: ty1 is more general than ty2 if there is some type-substitution τ such that
ty1τ = ty2

• a is more general than any type ty, choose τ := {a/ty}
• a -> Int -> b is more general than [b] -> Int -> String, take τ := {a/[b], b/String}
• a -> Int -> b is not more general than Char -> [Int] -> Char

• Haskell performs type-inference where type-inference will be applied twice
• on function definitions in Haskell programs
• on each expression before it is evaluated in ghci
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Non-Deterministic Type-Checking Algorithm

• note: we restrict to expressions built from variables, constants and applications
• algorithm to type-check new definition of f p1 ... pn = rhs in context Γ

• guess a type for f of shape ty1 -> ... -> tyn -> ty

(or take a user-defined type annotation for f)
• guess a type for each variable x in the defining equation
• for each constant c ̸= f that appears in the defining equation, guess an instance w.r.t. Γ

• e.g., if id :: a -> a ∈ Γ, then each occurrence of id can choose a different substitution,
e.g., id :: Int -> Int and id :: Bool -> Bool

• define a local context Γ′ that extends Γ by all guesses
• type-check definition of f by checking Γ′ ⊢ f p1 ... pn :: ty and Γ′ ⊢ rhs :: ty by

recursion on the expressions
• Γ′ ⊢ xf :: t if xf :: t ∈ Γ′ if xf is a variable or xf = f
• Γ′ ⊢ c :: t if c :: t ∈ Γ′ according to guessed instance for each constant c ̸= f
• type-check all applications Γ′ ⊢ e1 :: t1 -> t2 Γ′ ⊢ e2 :: t1

Γ′ ⊢ e1 e2 :: t2

• finally, store f :: ty1 -> ... -> tyn -> ty in Γ
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Example

• f x = if id (x > 0) then id x * f (x - 1) else 1
• guess f :: Int -> Int
• guess x :: Int
• instantiate if-then-else :: Bool -> Int -> Int -> Int

(if-then-else :: Bool -> a -> a -> a ∈ Γ)
• instantiate id :: Bool -> Bool (id :: a -> a ∈ Γ)
• instantiate (>) :: Int -> Int -> Bool
• instantiate 0 :: Int
• instantiate id :: Int -> Int
• instantiate * :: Int -> Int -> Int
• instantiate - :: Int -> Int -> Int
• instantiate 1 :: Int
• instantiate 1 :: Int

• on next slide, abbreviate Int -> Int -> Bool by IIB, etc.
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Example Typing

f x = if id (x > 0) then id x * f (x - 1) else 1
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Example Typing

f x = if id (x > 0) then id x * f (x - 1) else 1

• guesses work out
• we assumed f :: Int -> Int and x :: Int
• then lhs f x :: Int and rhs if ... :: Int
• so f :: Int -> Int is added to Γ

• guesses might be too specific, but it is possible to guess most general type

Next Step – Type Inference

• avoid guesses

• compute most generic types instead
• algorithm of Hindley and Milner

• use very generic types first (which might be too generic)
• setup constraints
• solve constraints and thereby specialize initial types
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Example Typing – Inferring a Most General Type

map f [] = []

map f (x : xs) = f x : map f xs

• n-ary function gets type a0 -> ... -> an with type-variables a0, ..., an
• map :: a1 -> a2 -> a3

• each variable in defining equation gets assigned fresh type-variable
• f :: a4 (in principle one could distinguish both fs)
• x :: a5
• xs :: a6

• instantiate all type-variables in type of constants by fresh type-variables
• instantiate [] :: [a7]
• instantiate [] :: [a8]
• instantiate (:) :: a9 -> [a9] -> [a9]
• instantiate (:) :: a10 -> [a10] -> [a10]
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Example Typing – Setting Up Constraints

map f [] = []

map f (x : xs) = f x : map f xs

• setup from previous slide
• map :: a1 -> a2 -> a3, f :: a4, x :: a5, xs :: a6
• [] :: [a7], [] :: [a8], (:) :: a9 -> [a9] -> [a9],
(:) :: a10 -> [a10] -> [a10]

• further assign type-variables to all non-atomic subexpressions of patterns and rhss
• (:) x :: b1, x : xs :: b2, f x :: b3, (:) f x :: b4, map f :: b5,
map f xs :: b6, f x : map f xs :: b7

• finally add constraints to ensure applicability of typing rules
• a1 = a4, first argument of map in lhss of equations
• a2 = [a7], a2 = b2, second argument of map in lhss of equations
• a3 = [a8], a3 = b7, return type of map equals type of rhss in both equations
• consider each application e1 e2

• lookup types for e1 :: t1, e2 :: t2, and e1 e2 :: t3
• add constraint t1 = t2 -> t3
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Example Typing – Final Constraints

map f [] = []

map f (x : xs) = f x : map f xs

• setup
• map :: a1 -> a2 -> a3, f :: a4, x :: a5, xs :: a6
• [] :: [a7], [] :: [a8], (:) :: a9 -> [a9] -> [a9],
(:) :: a10 -> [a10] -> [a10]

• (:) x :: b1, x : xs :: b2, f x :: b3, (:) f x :: b4, map f :: b5,
map f xs :: b6, f x : map f xs :: b7

• constraints
• a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7
• a9 -> [a9] -> [a9] = a5 -> b1
• b1 = a6 -> b2
• a4 = a5 -> b3
• a10 -> [a10] -> [a10] = b3 -> b4
• a1 -> a2 -> a3 = a4 -> b5
• b5 = a6 -> b6
• b4 = b6 -> b7
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Example Typing – Current State

map f [] = []

map f (x : xs) = f x : map f xs

• setup
• map :: a1 -> a2 -> a3, . . .

• constraints
• U = {a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
a9 -> [a9] -> [a9] = a5 -> b1, b1 = a6 -> b2, a4 = a5 -> b3,
a10 -> [a10] -> [a10] = b3 -> b4, a1 -> a2 -> a3 = a4 -> b5, b5 = a6 -> b6,
b4 = b6 -> b7}

• connection of constraints and types via substitution τ , mapping type-variables to types
• theorem: (sτ = tτ for all s = t ∈ U) iff map :: (a1 -> a2 -> a3)τ
• task: find most general τ such sτ = tτ for all s = t ∈ U unification problem
• such a most general unifier (mgu) τ yields the most general type for map
• unification is decidable and a most general unifier can be computed
• unification is the core algorithm for type-inference

(unification works on terms, and indeed types are terms where [.] is unary symbol,
. -> . is binary symbol, Bool and Int are constants, etc.)
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Unification Algorithm of Martelli & Montanari

Transform unification problem U until no further rules are applicable

• {s = s} ⊎ U ↪→ U (delete)

• {f(s1, . . . , sn) = f(t1, . . . , tn)} ⊎ U ↪→ {s1 = t1, . . . , sn = tn} ∪ U (decompose)

• {f(. . . ) = g(. . . )} ⊎ U ↪→ ⊥, if f ̸= g (clash)

• {f(. . . ) = x} ⊎ U ↪→ {x = f(. . . )} ∪ U (swap)

• {x = t} ⊎ U ↪→ {x = t} ∪ U{x/t}, if x ∈ Vars(U) \Vars(t) (substitute)

• {x = t} ⊎ U ↪→ ⊥, if x ∈ Vars(t) and x ̸= t (occurs check)

Properties

• ↪→ terminates

• if U ↪→ V then U and V have the same unifiers (⊥ has no unifiers)

• if U ↪→! V (U ↪→∗ V and there is no ↪→-step possible on V ) then either
• V = ⊥ and U has no unifier, or
• V = {x1 = t1, . . . , xn = tn} encodes a substitution τ , where the list x1, . . . , xn is distinct

and {x1, . . . , xn} ∩ (Vars(t1) ∪ · · · ∪Vars(tn)) = ∅; moreover τ is an mgu of U
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Example: Unification to Determine Type of Map

• a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
a9 -> [a9] -> [a9] = a5 -> b1, b1 = a6 -> b2, a4 = a5 -> b3,
a10 -> [a10] -> [a10] = b3 -> b4, a1 -> a2 -> a3 = a4 -> b5,
b5 = a6 -> b6, b4 = b6 -> b7

• decompose: a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7, a9 = a5,
[a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, a2 -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], a3 = b7, a9 = a5,
[a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7
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Example: Unification to Determine Type of Map

• a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,
b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,
b4 = b6 -> b7
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Example: Unification to Determine Type of Map

• a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,
b4 = b6 -> b7

• decompose: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] = a6, [a9] = b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, [a10] = b6,
[a10] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a5 -> b3, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7,
a9 = a5, [a5] = a6, [a5] = b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[b3] = b6, [b3] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, b4 = b6 -> b7

• swap: a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,
a6 = [a5], b2 = [a5], b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, b6 = [b3],
b7 = [b3], a6 = [a7], b6 = [a8], b5 = a6 -> b6, b4 = b6 -> b7
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Example: Unification to Determine Type of Map
• a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,
a6 = [a5], b2 = [a5], b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, b6 = [b3],
b7 = [b3], a6 = [a7], b6 = [a8], b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8],
a9 = a5, a6 = [a5], [a7] = [a5], b1 = [a5] -> [a7], a4 = a5 -> b3,
a10 = b3, b6 = [b3], [a8] = [b3], [a5] = [a7], [b3] = [a8],
b5 = [a5] -> [b3], b4 = b6 -> [a8]

• decompose: a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8],
a9 = a5, a6 = [a5], a7 = a5, b1 = [a5] -> [a7], a4 = a5 -> b3, a10 = b3,
b6 = [b3], a8 = b3, a5 = a7, b3 = a8, b5 = [a5] -> [b3], b4 = b6 -> [a8]

• substitute: a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3],
a9 = a5, a6 = [a5], a7 = a5, b1 = [a5] -> [a5], a4 = a5 -> b3, a10 = b3,
b6 = [b3], a8 = b3, a5 = a5, b3 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

• delete: a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5,
a6 = [a5], a7 = a5, b1 = [a5] -> [a5], a4 = a5 -> b3, a10 = b3, b6 = [b3],
a8 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]
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Example: Unification to Determine Type of Map

• final result of unification algorithm: mgu τ
a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5,
a6 = [a5], a7 = a5, b1 = [a5] -> [a5], a4 = a5 -> b3, a10 = b3, b6 = [b3],
a8 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

• most general type of map: (a1 -> a2 -> a3)τ , i.e.,

(a5 -> b3) -> [a5] -> [b3]
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Remarks

• we introduced fresh variables for every variable, for every argument of the function, and
every non-atomic subexpression

• this provides a systematic way (algorithm) to setup constraints
• when doing type-inference manually, one often immediately sees certain connections and

uses less variables and less constraints

• failures when running the unification algorithm correspond to type-errors of Haskell
programs

• clash appears on type-inference for function f xs = True ++ xs:
constant (++) :: [a] -> [a] -> [a], but fist argument True :: Bool;
this results in clash of equation [](a) = Bool

• occurs check appears on type-inference for function f x = x : x:
subexpression (:) x :: [a] -> [a], but the next argument x :: a;
this results in occurs check of equation [a] = a
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Extensions of the Type-Inference System

• extend expressions, e.g., by allowing let and \ x -> e (exercises)
• integrate type-classes

• several functions are defined in type-classes or have type-class constraints
• fromEnum :: Enum a => a -> Int
• sort :: Ord a => [a] -> [a]
• 5 :: Num a => a

• these constraints have to be collected in addition to the equalities in the unification
algorithm

• whenever the variables in type-class constraints get instantiated, one needs to look into the
type-class instances to check the instantiation

• examples are given on the next slide, without providing a full algorithm
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Extensions of the Type-Inference System

• example 1
• we know map :: (a -> b) -> [a] -> [b] and show :: Show c => c -> String
• type-inference on map show works as follows

• map show :: ([a] -> [b])τ , for τ being mgu of
U = {(a -> b) = (c -> String)} for constraints C = {Show c}

• U ↪→ {a = c, b = String} and C remains unchanged
• result: map show :: Show c => [c] -> [String] where C is added as constraint

• example 2
• type-inference on f x = map show [(x, True, 'c')] works as follows

• assume x :: a
• map show :: Show b => [b] -> [String]
• [(x, True, 'c')] :: [(a, Bool, Char)]
• unification leads to b = (a, Bool, Char)
• now Show b is instantiated to Show (a, Bool, Char) and simplified to Show a, since

• instance (Show a, Show b, Show c) => Show (a, b, c)

• instance Show Bool

• instance Show Char
• result: f :: Show a => a -> [String]
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Limits of Type-Inference in the Presence of Type-Classes

• consider f = if 2 * 2^62 < 0 then "overflow" else "okay"
• question: which number-type is chosen for the comparison?
Int or Integer or Float or Double

• type-inference is of no help, e.g., (<) (2 * 2^62) :: (Num a, Ord a) => a -> Bool,
i.e., 2 * 2^62 < 0 :: Bool for any suitable a

• default rule
• for numeric types, Haskell uses a default rule: choose Integer as default, or switch to
Double if fractional computations are involved (2.0 < 4)

• if one does not want to use default types, provide explicit type annotation
• note: defaults can be overwritten, e.g. by line default (Int, Float)

• examples
• f evaluates to "okay"
• g = if 2 * 2^62 < (0 :: Int) then "overflow" else "okay" yields "overflow"
• [] in ghci is show ([] :: [a]) which evaluates to string [] after defaulting a to Integer
• [] :: String in ghci is show ([] :: String) which evaluates to string ""
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Limits of Default Rule

• built-in default rule is restricted to built-in numeric type classes

• consider function definition

f :: String -> Bool

f xs = show (read xs) == xs

• function f takes input xs, parses it into an element, which is then converted back to a
string via show and compared to the input

• read xs :: Read a => a
• show (read xs) :: (Show a, Read a) => String

where a is the type for the intermediate result of read xs

• it is completely unclear, which type a should be: Int, Bool, [Double], . . .

• ghc complains about ambiguous type variables at this point

• solution: provide explicit type annotation, e.g.

f xs = show (read xs :: [(Int, Bool)]) == xs
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Exercises – Task 1 (5 points)

Consider the following definition of a fold function on lists:
fold f [] e = e

fold f (x : xs) e = f x (fold f xs e)

1. Construct constraints to determine the most generic type of fold, similarly to Slide 12.

2. Encode the constraints in Haskell, and use the provided implementation of the unification
algorithm to obtain the most generic type of fold. Compare the computed type to the
type-inference algorithm of ghc. The latter can be invoked as follows:

cabal repl

ghci> :m Exercise02

ghci> :t fold
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Exercises – Task 2 (5 points)

1. Extend the type-inference algorithm so that it can handle λ-abstractions of the form
\ x -> e, where x is a variable and e some expression. What will be the constraints for
type-inference of function?
function = \ x -> x x

2. Compare the difference of type-inference of Haskell when treating λ and let. To this
end, invoke ghc on the following two functions. Try to explain the observed difference.
polymorphicLet :: (Bool, String)

polymorphicLet =

let f = id

in (f True, f "hello")

polymorphicLambda :: (Bool, String)

polymorphicLambda =

(\ f -> (f True, f "hello")) id
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