
WS 2024/2025

Advanced Functional Programming
Week 3 – Type-Inference in Haskell, Kinds and Explicit Foralls

René Thiemann

Department of Computer Science

Type-Inference in Haskell

RT (DCS @ UIBK) Week 3 2/26

Last Week: Type-Inference Algorithm of Hindley and Milner

• assign one type variable to term variables and to arguments of newly defined function
• f :: a1 -> a2 -> a3, x :: a4, . . .

• each type variable in previously defined function in Γ is replaced by fresh one
• (:) :: a5 -> [a5] -> [a5] for one occurrence of (:), and
(:) :: a6 -> [a6] -> [a6] for another occurrence of (:)

• assign type variable to each non-atomic subterm
• (:) x :: b1, . . .

• constraints ensure that applications are well-typed
• a5 -> [a5] -> [a5] = a4 -> b1 for application (:) x, . . .

• unification detects type-problem or results in most general type
f :: (a1 -> a2 -> a3)τ

• finally, f :: (a1 -> a2 -> a3)τ is added to context Γ

• simplified presentation: original algorithm merges constraint generation and unification

RT (DCS @ UIBK) Week 3 3/26

When to Instantiate Type Variables?

• after a function f :: ty has been type checked,
future uses of f can instantiate the type variables: f :: ty τ
twice :: a -> [a]

twice x = [x, x]

test1 = (twice True, twice (twice (5 :: Int)))

• this also happens for locally defined functions within a let
test2 = let twiceLocal x = [x, x] in (twiceLocal True, twiceLocal 'c')

• in contrast, variables in λ’s or variables in lhss are restricted to one type during type
checking; therefore the following functions are not well-typed
createGen1 p = (p True, p 'c') -- not allowed

createGen2 = \ p -> (p True, p 'c') -- not allowed

test3 = createGen1 twice

test4 = createGen2 twice

RT (DCS @ UIBK) Week 3 4/26

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Instantiations with Explicit Type Annotations

• consider the following program
typingTest 0 x y = x

typingTest n x y =

if typingTest (n - 1) True (x > y)

then y

else typingTest (n - 1) y x

• using type inference without given type for typingTest
• third line: typingTest takes Booleans as second and third argument
• inferred type: (Eq a, Num a) => a -> Bool -> Bool -> Bool

• using explicit type annotation
typingTest :: (Eq a, Num a, Ord b) => a -> b -> b -> b

• in each occurrence of rhs, typingTest can be instantiated differently
• line 3: b = Bool
• line 5: b = b

• overall, get more general type than by type inference alone
• sometimes, typing is not possible without explicit annotation

RT (DCS @ UIBK) Week 3 5/26

Order of Type-Inference

• consider program containing definitions of functions f1, f2, . . .

• for type-inference, first a call-graph is constructed and call-dependencies are tracked

• whenever fi calls fj , but not vice-versa (directly or indirectly),
then fj is type-checked before fi

• consequence: type of fj can be instantiated when type-checking fi

• mutually recursive functions are type-checked at the same time

• example
f x = if x == 0 then g h else g (g (f (x - 1))) -- f calls g,h

h = g (f 5) -- h calls f,g

g x = x . x

j c = if c == 'a' then 'z' else i c -- j calls i

i c = pred c

• order: i < j and g < {f, h}

RT (DCS @ UIBK) Week 3 6/26

Types, Type-Expressions and Kinds

RT (DCS @ UIBK) Week 3 7/26

Expressions Revisited

• grammar describes building rules of expressions
• variables are expressions
• if f is n-ary function and e1, . . . , en are expressions, then so is f e1 . . . , en (first order)
• function names are expressions (higher order)
• if e1 and e2 are expressions then so is e1 e2 (higher order)
• if x is a variable and e is an expression then so is λx → e (higher order)

• restriction to well-typed expressions expr :: ty

Types Revisited

• grammar describes building rules of types
• variables are types
• if c is n-ary type-constructor and t1, . . . , tn are types, then so is c t1 . . . , tn (first order)

• example: Either (Int, Bool, Char) [[String]]

• missing: generalization to higher-order types

• missing: what are well-typed types? ty :: ???

RT (DCS @ UIBK) Week 3 8/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Type-Expressions: Higher-Order Types

• generalize grammar for types to higher-order: partial application
• types (or type-expressions) are build as follows

• variables are type-expressions
• type-constructors are type-expressions
• whenever te1 and te2 are type-expressions, then so is te1 te2

• there is no λ for type-expressions
• examples

• Either (Int, Bool, Char) is a type expression
(recall: data Either a b = Left a | Right b)

• a b is a type expression
• (a b){a/Either (Int, Bool, Char)} is the type Either (Int, Bool, Char) b

• notion used in this course
• type expressions: as defined by grammar above
• types: type expressions without partial application
• clarification: next slides

RT (DCS @ UIBK) Week 3 9/26

Kinds: The Type of Type Expressions

• kinds are used to describe the structure of types

• kind-inference determines whether some type(-expression) t has kind k, written t :: k

• kinds themselves are formed as follows
• * is a kind, representing types, but not partially applied type expressions
• if k1 and k2 are kinds, then so is k1 -> k2

• examples
• t :: * means that t is a type

• Int, [Bool], a -> a, etc.

• t :: * -> * means that t is expecting one argument (a type) to become a type
• Maybe, [], (->) Int, Either Bool

• t :: * -> * -> * (identical to: * -> (* -> *))
• t is a type-expression that expects two types to deliver a type
• Either :: * -> * -> *
• (->) :: * -> * -> *, the function type constructor needs two types

RT (DCS @ UIBK) Week 3 10/26

Kinds Continued

• often n-ary type constructor have kind * -> * -> ... -> * -> *

where there are n many ->

• example type constructors
• arity 0: Int, Integer, Char, Double, (), Bool, Ty where data Ty = ...
• arity 1: Maybe, Set, [] (the list-type constr.), Ty where data Ty a = ...
• arity 2: Either, Map, (->) (the function-type constr.), Ty where data Ty a b = ...

• rule for determining kinds using some context Γ
• whenever Γ ⊢ ty1 :: k1 -> k2 and Γ ⊢ ty2 :: k1 then Γ ⊢ ty1 ty2 :: k2
• Γ ⊢ a :: k whenever a :: k ∈ Γ for every type variable a and kind k

• example: Either Int :: * -> *, since Either :: * -> (* -> *) and Int :: *

• example: try :k Either Maybe in ghci
• remark: also type-classes have a kind, using the special kind Constraint

• Show, Num, Eq, Ord :: * -> Constraint
• classes of shape class C a b where ... often have kind * -> * -> Constraint

RT (DCS @ UIBK) Week 3 11/26

Higher-Order Kinds

• consider data Ty a b = ...

• often such a datatype definition results in Ty :: * -> * -> *

• however, this is not always the case, since we might have higher-order kinds
• example: data Ty a b = Con (a b)

• here, a :: * -> *, since a is applied on b
• this is automatically inferred using kinds-inference
• consequently: Ty :: (* -> *) -> * -> *
• Ty takes a unary type constructor (or more precisely: any type expression of kind * -> *)

and a type to deliver a type
• example: Ty Maybe Int :: * and Con (Just 5) :: Ty Maybe Int

• we will see that even standard libraries utilize higher-order kinds

• example: :t minimum, :k Foldable

RT (DCS @ UIBK) Week 3 12/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example using Higher-Order Kinds
• week 1 already used types and type-classes with higher-order kinds (docu arrays)
class IArray a e where

bounds :: Ix i => a i e -> (i,i)

...

• from the type a i e we infer
• a :: * -> * -> *
• i :: *
• e :: *

• consequently, class IArray requires as arguments
• something of kind * -> * -> *, e.g., a binary type constructor a (the array constructor),
• and an element type e

• in total: IArray :: (* -> * -> *) -> * -> Constraint

• example instantiation:
instance IArray Array e

(the type-constructor Array implements IArray for every element type e)

• starting next week, we will see further type-classes using higher-order kinds
RT (DCS @ UIBK) Week 3 13/26

Language Extensions Involving Explicit Forall

RT (DCS @ UIBK) Week 3 14/26

Quantification of Type Variables

• consider polymorphic function, e.g., map :: (a -> b) -> [a] -> [b]

• type variables are implicitly universally quantified

we may substitute a and b by all types

• some Haskell extension allows us to make universal application explicit by keyword forall
map :: forall a b. (a -> b) -> [a] -> [b]

Language Extensions

• supported by GHC, extend the Haskell standard
• need to be activated explicitly

• activation at the beginning of a Haskell file
{-# LANGUAGE ExplicitForAll, ... #-}

• or project-wide activation in cabal-file
default-extensions: ExplicitForAll, ...

• just for type-system, there are several extensions

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/types.html

RT (DCS @ UIBK) Week 3 15/26

Extension of Scoped Type Variables

• consider the following Haskell code
sortRev :: forall a. Ord a => [a] -> [(a, a)]

sortRev xs = zip sorted reversed where

sorted :: [a]

sorted = sort xs

reversed :: [a]

reversed = reverse xs

• this program does not type check without suitable language extensions

• reason: in each of the three type annotations, the a is implicitly quantified, so it is
equivalent to use annotations sorted :: [a1], reversed :: [a2]

• using extension ScopedTypeVariables, the forall a binds all a’s in the function body,
including the where-blocks

• then the above code compiles, since all type annotation refer to the same type variable a

• remark: activating ScopedTypeVariables implicitly activates ExplicitForAll

RT (DCS @ UIBK) Week 3 16/26

https://hackage.haskell.org/package/array/docs/Data-Array-IArray.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/types.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Existential Types

• consider a polymorphic (universally quantified) function such as
map :: forall a b. (a -> b) -> [a] -> [b]

• view point from user of map
• polymorphism: ability to substitute a and b by more concrete types
• the more generic the type is, the more flexible it can be used

• view point from implementation of map
• type variables a and b cannot be instantiated, represent unknown types
• the more generic the type is, the less one can perform
• example: there are only two functions of type a -> a

• existentially quantified types: change role of user and implementation
• implementation can instantiate type variables
• user needs to provide polymorphic input

RT (DCS @ UIBK) Week 3 17/26

Example Application: Generic Logger
• consider application, that processes many different kinds of data

• certain events should be logged, each event might have different type

• logging method should be parametric, e.g., log to stdout, log to file, no logging, etc.

• application in Haskell
appl :: ??? -> IO ()

appl log = do

inputs <- readFile "inputs.txt"

...

log ("init DB access")

...

log ("login failed", user, timeStamp)

...

log (Transaction client1 amount client2)

...

• current type-inference algorithm will fail;
three incompatible input arguments: a string, a triple, and a custom datatype

RT (DCS @ UIBK) Week 3 18/26

Towards Existential Types in Haskell

• consider first order logic

1. P (a) → Q(f(b))
2. ∀b a. (P (a) → Q(f(b)))
3. ∀b. ((∀a. P (a)) → Q(f(b)))

• formulas 1 and 2 are equivalent (using implicit universal quantification of free variables)

• formula 3 is different, since the ∀ is put to the left of an implication
• in fact, formula 3 is equivalent to formula 4 with an existential quantifier

4. ∀b. ∃a. (P (a) → Q(f(b)))

• observation: using ∀ inside left argument of an implication leads to an ∃ on top-level

• formulas 1 and 2 have quantifier alternation depth 1

• formulas 3 and 4 have quantifier alternation depth 2
• now, let us do the same as in formula 3 in Haskell to obtain existentially quantified types

• ∀ = forall and → = ->
• quantifier alternation depth = rank

RT (DCS @ UIBK) Week 3 19/26

Rank

• types without type-variables have rank 0

• types with (implicitly) universally quantified variables have rank 1

• type has rank 2 if it contains a rank-1 type on the left of ->

• type has rank 3 if it contains a rank-2 type on the left of ->

• . . .
• examples

• rank 1: (a -> b) -> [a] -> [b] and forall a. Show a => a -> a -> String
• rank 2: Ord b => [b] -> (forall a. Show a => a -> String) -> Int -> b
• rank 3: (forall b. (forall a. a -> c -> a) -> [b] -> c) -> Maybe c -> c

• extension RankNTypes enables user to specify types with arbitrary rank

• type-inference with arbitrary ranks is undecidable
• rule of thumb

• whenever an explicit forall is required, then type has to be user-provided
• automatic type-inference only works if inferred types have rank of at most 1

RT (DCS @ UIBK) Week 3 20/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Free Usage of Forall in Type Definitions of Haskell: Existential Types

• swaps role of implementation and user of function
• example assumes type fun :: (forall a. Ord a => [a] -> a) -> ... -> ...

• implementation of fun can instantiate a, e.g.,
fun g x = ... g [True, b] ... g [1,7,3]

• user of fun needs to pass polymorphic function, e.g.,
... fun minimum ... or ... fun head ... or ... fun (\ xs -> xs !! 5) ...

• the following invocations are not possible
• ... fun and ... and :: [Bool] -> Bool is not generic enough
• ... fun sum ... sum :: Num a => [a] -> a is not generic enough

• generic logger on slide 18 is now typable:
appl :: (forall a. Show a => a -> IO ()) -> IO ()

• also createGen1 and createGen2 on slide 4 are typable

RT (DCS @ UIBK) Week 3 21/26

Generic Logger – Finalized

• type of application
appl :: (forall a. Show a => a -> IO ()) -> IO ()

• implement different logger algorithms in Haskell
noLog x = return ()

logToFile f x = appendFile f (show x ++ "\n")

logStdOut x = putStrLn $ "log: " ++ show x

• combine application with logger at the very end
main1, main2, main3 :: IO ()

main1 = appl noLog

main2 = appl (logToFile "log.txt")

main3 = appl logStdOut

RT (DCS @ UIBK) Week 3 22/26

Typing of createGen1 and createGen2

createGen1, createGen2 :: (forall a. a -> b a) -> (b Bool, b Char)

createGen1 p = (p True, p 'c')
createGen2 = \ p -> (p True, p 'c')

testList1, testList2 :: ([Bool], [Char]) -- b = []

testList1 = createGen1 (\ x -> [x,x])

testList2 = createGen2 (\ x -> [x,x])

testMaybe :: (Maybe Bool, Maybe Char) -- b = Maybe

testMaybe = createGen1 Just

RT (DCS @ UIBK) Week 3 23/26

Limits of Higher-Order Type Expressions in Haskell

createGen1 :: (forall a. a -> b a) -> (b Bool, b Char)

createGen1 p = (p True, p 'c')

testList = createGen1 (\ x -> [x, x])

testMaybe = createGen1 Just

testInt = createGen1 (\ _ -> 42)

• the output type of p may depend on a: indicated by using b a

• there is no λ-abstraction and β-reduction on types, but just partial application;
result: we cannot instantiate b = \ _ -> Int and simplify (\ _ -> Int) a to Int

• consequently, testInt is not typable, as (\ _ -> 42) :: forall a. a -> Int which
is not compatible with forall a. a -> b a, no matter how we choose b

• workaround via Const type
newtype Const a b = Const a -- predefined in module Data.Functor.Const

testInt :: (Const Int Bool, Const Int Char)

testInt = createGen1 (\ _ -> Const 42) -- b = Const Int

RT (DCS @ UIBK) Week 3 24/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Exercises

• Task 1 (8 points): See Exercise03.hs in the sources.

• Task 2 (2 points): Provide a type assignment for f, so that the following defining
equation is typeable:

f x = x x True

RT (DCS @ UIBK) Week 3 25/26

Literature

• Christopher Allen and Julie Moronuki: Haskell Programming from first principles,
Chapter 11.4: “Type constructors and kinds”

• Simon Thompson, The Craft of Functional Programming, Second Edition,
Addison–Wesley, Chapter 13: “Checking Types”

• Haskell Report 2010, Chapters 4.5 and 4.6,
https://www.haskell.org/onlinereport/haskell2010/

• https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/types.html

• https://serokell.io/blog/universal-and-existential-quantification

RT (DCS @ UIBK) Week 3 26/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://www.haskell.org/onlinereport/haskell2010/
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/types.html
https://serokell.io/blog/universal-and-existential-quantification
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Type-Inference in Haskell
	
	Types, Type-Expressions and Kinds
	
	Language Extensions Involving Explicit Forall

