

WS 2024/2025

Advanced Functional Programming

Week 3 – Type-Inference in Haskell, Kinds and Explicit Foralls

René Thiemann

Department of Computer Science

Last Week: Type-Inference Algorithm of Hindley and Milner

- assign one type variable to term variables and to arguments of newly defined function
 f :: a1 -> a2 -> a3, x :: a4, ...
- each type variable in previously defined function in Γ is replaced by fresh one
 - (:) :: $a5 \rightarrow [a5] \rightarrow [a5]$ for one occurrence of (:), and
 - (:) :: $a6 \rightarrow [a6] \rightarrow [a6]$ for another occurrence of (:)
- assign type variable to each non-atomic subterm
 - (:) x :: b1,...
- constraints ensure that applications are well-typed
 - a5 -> [a5] -> [a5] = a4 -> b1 for application (:) x, ...
- unification detects type-problem or results in most general type
- f :: $(a1 \rightarrow a2 \rightarrow a3)\tau$
- finally, f :: (a1 -> a2 -> a3) τ is added to context Γ
- simplified presentation: original algorithm merges constraint generation and unification

Type-Inference in Haskell

RT (DCS @ UIBK)

Week 3

2/26

When to Instantiate Type Variables?

- after a function f :: ty has been type checked, future uses of f can instantiate the type variables: f :: ty τ twice :: a -> [a] twice x = [x, x] test1 = (twice True, twice (twice (5 :: Int)))
- this also happens for locally defined functions within a let test2 = let twiceLocal x = [x, x] in (twiceLocal True, twiceLocal 'c')
- in contrast, variables in λ's or variables in lhss are restricted to one type during type checking; therefore the following functions are not well-typed createGen1 p = (p True, p 'c') -- not allowed createGen2 = \ p -> (p True, p 'c') -- not allowed test3 = createGen1 twice test4 = createGen2 twice

RT (DCS @ UIBK)

Instantiations with Explicit Type Annotations

<pre>• consider the following program typingTest 0 x y = x typingTest n x y = if typingTest (n - 1) True (x > y) then y </pre>			Order of Type-Inference					
			 consider program containing definitions of functions f₁, f₂, for type-inference, first a call-graph is constructed and call-dependencies are tracked whenever f_i calls f_j, but not vice-versa (directly or indirectly), then f_j is type-checked before f_i 					
			• consequence: type of \mathbf{I}_j can be instantiated when type-checking \mathbf{I}_i					
 using type interence with third line: typingTe inferred type: (Eq a using explicit type annow typingTest :: (Eq a in each occurrence of line 3: b = Bool line 5: b = b 	<pre>st takes Booleans as second and third argument , Num a) => a -> Bool -> Bool -> Bool tation ., Num a, Ord b) => a -> b -> b -> b f rhs, typingTest can be instantiated differently</pre>		 mutually recursive f example f x = if x == 0 h = g (f 5) g x = x . x j c = if c == 'a i c = pred c 	then g h else g (g (f (x - 1))) h' then 'z' else i c	me f calls g,h h calls f,g j calls i			
 overall, get more gen sometimes, typing is 	eral type than by type inference alone not possible without explicit annotation		• order: $i < j$ and g	< { f , h }				
(DCS @ UIBK)	Week 3	5/26	RT (DCS @ UIBK)	Week 3				

Expressions Revisited

• grammar describes building rules of expressions

- variables are expressions
- if f is n-ary function and e_1, \ldots, e_n are expressions, then so is $f e_1, \ldots, e_n$ (first order)
- function names are expressions (higher order)
- if e_1 and e_2 are expressions then so is $e_1 e_2$ (higher order)
- if x is a variable and e is an expression then so is $\lambda x \to e$ (higher order)
- restriction to well-typed expressions expr :: ty

Types Revisited

- grammar describes building rules of types
 - variables are types
 - if c is n-ary type-constructor and t_1, \ldots, t_n are types, then so is $c t_1 \ldots, t_n$ (first order)
- example: Either (Int, Bool, Char) [[String]]
- missing: generalization to higher-order types
- missing: what are well-typed types? ty :: ???

RT

Types, Type-Expressions and Kinds

Type-Expressions: Higher-Order Types

• generalize grammar for types to higher-order: partial application • kinds are used to describe the structure of types types (or type-expressions) are build as follows • kind-inference determines whether some type(-expression) t has kind k, written t :: k • variables are type-expressions kinds themselves are formed as follows type-constructors are type-expressions • * is a kind, representing types, but not partially applied type expressions • whenever te_1 and te_2 are type-expressions, then so is te_1 te_2 • if k1 and k2 are kinds, then so is k1 \rightarrow k2 • there is no λ for type-expressions examples examples • t :: * means that t is a type • Either (Int, Bool, Char) is a type expression • Int, [Bool], a -> a, etc. (recall: data Either a b = Left a | Right b) • t :: * -> * means that t is expecting one argument (a type) to become a type • a b is a type expression • Maybe, [], (->) Int, Either Bool • (a b){a/Either (Int, Bool, Char)} is the type Either (Int, Bool, Char) b • t :: * -> * -> * (identical to: * -> (* -> *)) notion used in this course • t is a type-expression that expects two types to deliver a type • type expressions: as defined by grammar above • Either :: * -> * -> * • types: type expressions without partial application • (->) :: * -> * -> *, the function type constructor needs two types clarification: next slides

RT (DCS @ UIBK)

Week 3

9/26

RT (DCS @ UIBK)

Week 3

10/26

Kinds Continued

- often *n*-ary type constructor have kind * -> * -> ... -> * -> *
 where there are *n* many ->
- example type constructors
 - arity 0: Int, Integer, Char, Double, (), Bool, Ty where data Ty = ...
 - arity 1: Maybe, Set, [] (the list-type constr.), Ty where data Ty a = ...
 - arity 2: Either, Map, (->) (the function-type constr.), Ty where data Ty a b = ...
- rule for determining kinds using some context Γ
 - whenever $\Gamma \vdash ty1 :: k1 \rightarrow k2$ and $\Gamma \vdash ty2 :: k1$ then $\Gamma \vdash ty1 ty2 :: k2$
 - $\Gamma\vdash {\tt a}\ ::\ {\tt k}$ whenever ${\tt a}\ ::\ {\tt k}\in\Gamma$ for every type variable ${\tt a}$ and kind ${\tt k}$
- example: Either Int :: * -> *, since Either :: * -> (* -> *) and Int :: *
- example: try :k Either Maybe in ghci
- remark: also type-classes have a kind, using the special kind Constraint
 - Show, Num, Eq, Ord :: * -> Constraint
 - \bullet classes of shape class C a b where \ldots often have kind * -> * -> Constraint

Higher-Order Kinds

- consider data Ty a b = ...
- often such a datatype definition results in Ty :: * -> * -> *
- however, this is not always the case, since we might have higher-order kinds
- example: data Ty a b = Con (a b)

Kinds: The Type of Type Expressions

- here, $a :: * \rightarrow *$, since a is applied on b
- $\bullet\,$ this is automatically inferred using kinds-inference
- consequently: Ty :: (* -> *) -> * -> *
- Ty takes a unary type constructor (or more precisely: any type expression of kind * -> *) and a type to deliver a type
- example: Ty Maybe Int :: * and Con (Just 5) :: Ty Maybe Int
- we will see that even standard libraries utilize higher-order kinds
- example: :t minimum, :k Foldable

RT (DCS @ UIBK)

Example using Higher-Order Kinds

 week 1 already use 	ed types and type-classes with higher-order kinds (docu arrays)			
class IArray <mark>a</mark>	e where			
bounds :: Ix	i => a i e -> (i,i)			
 from the type a i 	e we infer			
• a :: * -> *	-> *			Longuage Extensions Involving Evulisit Facell
• i :: *				Language Extensions involving Explicit Forall
• e :: *				
 consequently, class 	s IArray requires as arguments			
something of kand an element	ind * -> * -> *, e.g., a binary type constructor <mark>a</mark> (the array construc t type e	tor),		
• in total: IArray	:: (* -> * -> *) -> * -> Constraint			
 example instantiat instance IArray 	ion: / Array <mark>e</mark>			
(the type-construc	tor Array implements IArray for every element type e)			
 starting next week 	, we will see further type-classes using higher-order kinds			
RT (DCS @ UIBK)	Week 3	13/26	RT (DCS @ UIBK)	Week 3

Quantification of Type Variables

- consider polymorphic function, e.g., map :: (a -> b) -> [a] -> [b]
- type variables are implicitly universally quantified

we may substitute a and b by all types

some Haskell extension allows us to make universal application explicit by keyword forall map :: forall a b. (a -> b) -> [a] -> [b]

Language Extensions

- supported by GHC, extend the Haskell standard
- need to be activated explicitly
 - activation at the beginning of a Haskell file {-# LANGUAGE ExplicitForAll, ... #-}
 - or project-wide activation in cabal-file default-extensions: ExplicitForAll, ...
- just for type-system, there are several extensions

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/types.html

Extension of Scoped Type Variables

- consider the following Haskell code sortRev :: forall a. Ord a => [a] -> [(a, a)] sortRev xs = zip sorted reversed where sorted :: [a] sorted = sort xs reversed :: [a] reversed = reverse xs
- this program does not type check without suitable language extensions
- reason: in each of the three type annotations, the **a** is implicitly quantified, so it is equivalent to use annotations sorted :: [a1], reversed :: [a2]
- using extension ScopedTypeVariables, the forall a binds all a's in the function body, including the where-blocks
- then the above code compiles, since all type annotation refer to the same type variable a
- remark: activating ScopedTypeVariables implicitly activates ExplicitForAll

RT (DCS @ UIBK)

 Existential Types consider a polymorphic (universally quares map :: forall a b. (a -> b) -> view point from user of map polymorphism: ability to substitute the more generic the type is, the more view point from implementation of mates type variables a and b cannot be ins the more generic the type is, the less example: there are only two function existentially quantified types: change implementation can instantiate type user needs to provide polymorphic in 	a and b by more concrete types ore flexible it can be used ap stantiated, represent unknown types s one can perform ns of type a -> a role of user and implementation e variables nput		 consider application certain events shou logging method shot application in Hask appl :: ??? -> appl log = do inputs <- read log ("init DB log ("login fa log (Transact current type-inferent 	<pre>h, that processes many different kinds of data ld be logged, each event might have different type build be parametric, e.g., log to stdout, log to file, no log ell IO () dFile "inputs.txt" access") ailed", user, timeStamp) ion client1 amount client2) nce algorithm will fail;</pre>	ging, etc.
RT (DCS @ UIBK)	Week 3	17/26	Three incompatible RT (DCS @ UIBK)	INPUT arguments: a string, a triple, and a custom dataty Week 3	ре

Towards Existential Types in Haskell

- consider first order logic
 - 1. $P(a) \rightarrow Q(f(b))$
 - 2. $\forall b \ a. \ (P(a) \rightarrow Q(f(b)))$
 - 3. $\forall b. ((\forall a. P(a)) \rightarrow Q(f(b)))$
- formulas 1 and 2 are equivalent (using implicit universal quantification of free variables)
- formula 3 is different, since the \forall is put to the left of an implication
- in fact, formula 3 is equivalent to formula 4 with an existential quantifier 4. $\forall b. \exists a. (P(a) \rightarrow Q(f(b)))$
- observation: using \forall inside left argument of an implication leads to an \exists on top-level
- $\bullet\,$ formulas 1 and 2 have quantifier alternation depth 1
- $\bullet\,$ formulas 3 and 4 have quantifier alternation depth 2
- now, let us do the same as in formula 3 in Haskell to obtain existentially quantified types
 - $\forall = \texttt{forall}$ and $\rightarrow = ->$
 - quantifier alternation depth = rank

Rank

• types without type-variables have rank 0

Example Application: Generic Logger

- types with (implicitly) universally quantified variables have rank $1 \$
- type has rank 2 if it contains a rank-1 type on the left of ->
- type has rank 3 if it contains a rank-2 type on the left of ->
- ...

RT (DCS @ UIBK)

- examples
 - rank 1: $(a \rightarrow b) \rightarrow [a] \rightarrow [b]$ and forall a. Show a \Rightarrow a \rightarrow a \rightarrow String
 - rank 2: Ord b => [b] -> (forall a. Show a => a -> String) -> Int -> b
 rank 3: (forall b. (forall a. a -> c -> a) -> [b] -> c) -> Maybe c -> c
- \bullet extension <code>RankNTypes</code> enables user to specify types with arbitrary rank
- type-inference with arbitrary ranks is undecidable
- rule of thumb
 - whenever an explicit forall is required, then type has to be user-provided
 - $\ensuremath{\,^\circ}$ automatic type-inference only works if inferred types have rank of at most 1

Free Usage of Forall in Type Definitions of Haskell: Existential Types **Generic Logger – Finalized** swaps role of implementation and user of function type of application • example assumes type fun :: (forall a. Ord a => [a] -> a) -> ... -> ... appl :: (forall a. Show a => a -> IO ()) -> IO () • implementation of fun can instantiate a, e.g., • implement different logger algorithms in Haskell fun $g x = \dots g$ [True, b] ... g [1,7,3] noLog x = return ()• user of fun needs to pass polymorphic function, e.g., logToFile f x = appendFile f (show x ++ "\n") ... fun minimum ... or ... fun head ... or ... fun ($\ xs \rightarrow xs !! 5$) ... logStdOut x = putStrLn \$ "log: " ++ show x • the following invocations are not possible combine application with logger at the very end • ... fun and ... and :: [Bool] -> Bool is not generic enough • ... fun sum ... sum :: Num $a \Rightarrow [a] \Rightarrow a$ is not generic enough main1, main2, main3 :: IO () main1 = appl noLog • generic logger on slide 18 is now typable: main2 = appl (logToFile "log.txt") appl :: (forall a. Show a => a -> IO ()) -> IO () main3 = appl logStdOut also createGen1 and createGen2 on slide 4 are typable RT (DCS @ UIBK) RT (DCS @ UIBK) Week 3 21/26 Week 3 Limits of Higher-Order Type Expressions in Haskell createGen1 :: (forall a. a -> b a) -> (b Bool, b Char) Typing of createGen1 and createGen2 createGen1 p = (p True, p 'c') createGen1, createGen2 :: (forall a. a -> b a) -> (b Bool, b Char) testList = createGen1 ($\ x \rightarrow [x, x]$) createGen1 p = (p True, p 'c') testMaybe = createGen1 Just createGen2 = $\ p \rightarrow$ (p True, p 'c') testInt = createGen1 (\rightarrow 42) • the output type of p may depend on a: indicated by using b a testList1, testList2 :: ([Bool], [Char]) -- b = [] testList1 = createGen1 ($\setminus x \rightarrow [x,x]$) • there is no λ -abstraction and β -reduction on types, but just partial application; result: we cannot instantiate $b = \langle - \rangle$ Int and simplify ($\langle - \rangle$ Int) a to Int testList2 = createGen2 ($\ x \rightarrow [x,x]$) • consequently, testInt is not typable, as (\ _ -> 42) :: forall a. a -> Int which testMaybe :: (Maybe Bool, Maybe Char) -- b = Maybe is not compatible with forall a. $a \rightarrow b a$, no matter how we choose b testMaybe = createGen1 Just • workaround via Const type newtype Const a b = Const a -- predefined in module Data.Functor.Const testInt :: (Const Int Bool, Const Int Char) testInt = createGen1 ($\ - > Const 42$) -- b = Const Int RT (DCS @ UIBK)

24/26

Exercises

- Task 1 (8 points): See Exercise03.hs in the sources.
- Task 2 (2 points): Provide a type assignment for **f**, so that the following defining equation is typeable:

f x = x x True

Literature

- Christopher Allen and Julie Moronuki: Haskell Programming from first principles, Chapter 11.4: "Type constructors and kinds"
- Simon Thompson, The Craft of Functional Programming, Second Edition, Addison–Wesley, Chapter 13: "Checking Types"
- Haskell Report 2010, Chapters 4.5 and 4.6, https://www.haskell.org/onlinereport/haskell2010/
- https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/types.html
- https://serokell.io/blog/universal-and-existential-quantification

RT (DCS @ UIBK)

Week 3

25/26

RT (DCS @ UIBK)

Week 3