
WS 2024/2025

Advanced Functional Programming
Week 4 – Functors, Record Syntax, Case Study: A Simple Parser

René Thiemann

Department of Computer Science

Last Week

• generalization of types: higher order type-expressions using partial application
• type-expressions can be used in function definitions and in type-class definitions
• kinds are used to “type” type-expressions
• example
class IArray a e where

bounds :: Ix i => a i e -> (i,i)

ghci> :k IArray

IArray :: (* -> * -> *) -> * -> Constraint

• explicit forall can be used for existential quantification
• implementation can choose how to instantiate type variables of parameter

• using forall requires user-specified types
• automation cannot infer foralls automatically
• type-inference is undecidable with explicit foralls

RT (DCS @ UIBK) Week 4 2/34

Functor

RT (DCS @ UIBK) Week 4 3/34

map
• consider the following Haskell source
sqrtInt :: Int -> Double

sqrtInt x = sqrt (fromIntegral x)

sqrtList [] = []

sqrtList (x : xs) = sqrtInt x : sqrtList xs

• we clearly see that sqrtList just applies sqrtInt on every number in a list

• there are many more functions that process the elements in a list pointwise

• abstraction: program map once, and then apply it several times
map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x : xs) = f x : map f xs

sqrtList = map sqrtInt

upperString = map toUpper

...

RT (DCS @ UIBK) Week 4 4/34

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

mapTree
• now consider trees
data Tree a = Leaf a | Node (Tree a) (Tree a) deriving Show

sqrtTree (Leaf x) = Leaf (sqrtInt x)

sqrtTree (Node l r) = Node (sqrtTree l) (sqrtTree r)

• we see that sqrtTree just computes the square-root of every number in the tree

• there are many more functions that might process a tree in the same way, i.e., performing
pointwise updates in the tree

• abstraction: program mapTree once, and then apply it several times
mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Node l r) = Node (mapTree f l) (mapTree f r)

sqrtTree = mapTree sqrtInt

upperTree = mapTree upperString

...

RT (DCS @ UIBK) Week 4 5/34

Functor
• clearly, there are strong similarities between map and mapTree

map :: (a -> b) -> [a] -> [b]

mapTree :: (a -> b) -> Tree a -> Tree b

• we could also have written further map-functions for other types, e.g.
mapMaybe :: (a -> b) -> Maybe a -> Maybe b

• generalize common idea of structure preserving map-functions
• consider some unary type-constructor f for containers over arbitrary type a,

i.e., f a stores values of type a
• a map-function fmap for f takes an arbitrary function of type a -> b in order to convert

some f a-element to an f b-element in a way that
• the structure is not altered (same shape of list, tree, . . .)
• fmap id = id
• fmap (g . h) = fmap g . fmap h

in this case we say that f is a functor

• examples
• the list type-constructor is a functor, with map being the map-function
• the tree type-constructor is a functor, with mapTree being the map-function

RT (DCS @ UIBK) Week 4 6/34

Functors in Haskell

• in Haskell it is possible to define a type-class to represent functors
class Functor f where

fmap :: (a -> b) -> f a -> f b

• note: higher-order kinds are required: Functor :: (* -> *) -> Constraint

• instance declarations are as usual
instance Functor [] where

fmap = map -- use existing function

instance Functor Tree where

fmap = mapTree -- use existing function

instance Functor Maybe where

fmap g Nothing = Nothing -- define map within functor instance

fmap g (Just x) = Just (g x)

• observe: instances are type-constructors ([], Maybe, ...), not types ([a], Maybe a)

RT (DCS @ UIBK) Week 4 7/34

Functors in Haskell, Continued

• now it is possible to write one function which applies the square-root operation on
arbitrary functors
fmapSqrt = fmap sqrtInt

• type: fmapSqrt :: Functor f => f Int -> f Double

• type-substitution: fMapSqrt has the following more concrete types
• fmapSqrt :: [Int] -> [Double] f = []
• fmapSqrt :: Tree Int -> Tree Double f = Tree
• . . .

• fact: for several types, there is no explicit named map-function such as mapMaybe,
mapTree, but only the fmap-instance

• note: there is a Set.map function, but no Functor instance for Set
• reason: Set.map is not structure preserving, i.e., it does not give rise to a functor

• view instances at https:
//hackage.haskell.org/package/base/docs/Control-Monad.html#t:Functor

RT (DCS @ UIBK) Week 4 8/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://hackage.haskell.org/package/base/docs/Control-Monad.html#t:Functor
https://hackage.haskell.org/package/base/docs/Control-Monad.html#t:Functor
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example of Using Functors, Syntax: fmap = <$>

• note that fmap is also available as infix <$> operator
• f $ applies a function f to an argument
• f <$> applies a function f to values within container argument

• note the similarity of the unsafe and the safe version to compute ⌊xy ⌋
2

safeDiv :: Int -> Int -> Maybe Int

safeDiv _ 0 = Nothing

safeDiv x y = Just (x `div` y)

unsafeSquareAfterDiv x y = (^2) $ x `div` y

safeSquareAfterDiv x y = (^2) <$> x `safeDiv` y

RT (DCS @ UIBK) Week 4 9/34

Functors of Non-Unary Type-Constructors
• consider types
data (a,b) = (a,b)

data (a,b,c) = (a,b,c)

data Either a b = Left a | Right b

• for all of these types, there is also a natural map-function

• there are two approaches in Haskell

• first approach: make a functor instance w.r.t. the last type variable
instance Functor (Either a) where

fmap f (Left x) = Left x

fmap f (Right y) = Right (f y)

instance Functor ((,) a) where

fmap f (x,y) = (x, f y)

instance Functor ((,,) a b) where

fmap f (x,y,z) = (x, y, f z)

RT (DCS @ UIBK) Week 4 10/34

Bifunctors
• second approach: use a bifunctor, map over last two type variables
class (forall a. Functor (p a)) => Bifunctor p where

bimap :: (a -> b) -> (c -> d) -> p a c -> p b d

first :: (a -> b) -> p a c -> p b c

second :: (b -> c) -> p a b -> p a c

first f = bimap f id

second g = bimap id g

instance Bifunctor Either where

bimap f g (Left x) = Left (f x)

bimap f g (Right y) = Right (g y)

instance Bifunctor (,) where

bimap f g (x,y) = (f x, g y)

instance Bifunctor ((,,) a) where

bimap f g (x,y,z) = (x, f y, g z)
RT (DCS @ UIBK) Week 4 11/34

Case Study: Parsing PGM-Graphics

RT (DCS @ UIBK) Week 4 12/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing

• parsing
• read some structured input format into internal representation
• or report error

• examples
• ghc parses Haskell source and converts it into abstract syntax tree;

this is one of the first steps of the compilation process
• browser parses HTML-file from server, and afterwards renders it

• parsers can be automatically generated in Haskell via deriving Read
• however, then the input format will be Haskell expressions
• in this course, we do not restrict to this approach

• generic idea of a parser for type ty
• take input
• consume first part of input and try to convert it to element x :: ty
• return x and remaining input, or fail if some error occurred

• example in this section: parse PGM raw format for .pgm images (portable grey map)

RT (DCS @ UIBK) Week 4 13/34

PGM Raw Format

• PGM raw format has following structure
• first two characters are “P5”
• then there are three numbers separated by arbitrary amount of white space

• width
• height
• maximal grey value

• after the last of these numbers, a single white space character appears
• finally the correct number of grey values of the image are provided as bytes

• example:

P5 1366 1036

255

here the binary part starts

RT (DCS @ UIBK) Week 4 14/34

Representation of Output – Datatypes with Record Syntax
• store width, height, max grey value and binary grey values
• data Greymap = Greymap Int Int Int L.ByteString

• is an obvious choice
• might be confusing: order of Ints unclear
• adding another entry will require to change patterns in function definitions

• data types can also use record syntax: more verbose, more flexible
data Greymap = Greymap {

greyWidth :: Int

, greyHeight :: Int

, greyMax :: Int

, greyData :: L.ByteString

} deriving Eq

greyWidth :: Greymap -> Int

ex1 = Greymap { greyHeight = 10, greyWidth = 5, greyData = ..., ...}

ex2 = ex1 { greyHeight = 30 } -- update by name

RT (DCS @ UIBK) Week 4 15/34

Representation of Input

• input mixes ASCII and binary encoding
• use Haskell ByteString as compact representation (uses arrays internally)
• ByteStrings can be read both in binary and in character-based mode
• sometimes conversion required, e.g., between String and ByteString

• example code
import qualified Data.ByteString.Lazy.Char8 as L8 -- ASCII

import qualified Data.ByteString.Lazy as L -- binary

L.readFile :: FilePath -> IO L.ByteString

L.drop :: Int64 -> L.ByteString -> L.ByteString

L.length :: L.ByteString -> Int64

L8.pack :: [Char] -> L.ByteString

L8.isPrefixOf :: L.ByteString -> L.ByteString -> Bool

L8.dropWhile :: (Char -> Bool) -> L.ByteString -> L.ByteString

L8.readInt :: L.ByteString -> Maybe (Int, L.ByteString)

• note: L.ByteString -> Maybe (a, L.ByteString) is type of parser for a-values

RT (DCS @ UIBK) Week 4 16/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

An Ad-Hoc Parser for PGM P5 Files
parseP5 :: L.ByteString -> Maybe (Greymap, L.ByteString)

parseP5 s =

case matchHeader (L8.pack "P5") s of

Nothing -> Nothing

Just s1 ->

case getNat s1 of

Nothing -> Nothing

Just (width, s2) ->

case getNat (L8.dropWhile isSpace s2) of

Nothing -> Nothing

Just (height, s3) ->

case getNat (L8.dropWhile isSpace s3) of

Nothing -> Nothing

Just (maxGrey, s4)

| maxGrey > 255 -> Nothing

| otherwise ->

case getBytes 1 s4 of

Nothing -> Nothing

Just (_, s5) ->

case getBytes (width * height) s5 of

Nothing -> Nothing

Just (bitmap, s6) ->

Just (Greymap width height maxGrey bitmap, s6)

RT (DCS @ UIBK) Week 4 17/34

An Ad-Hoc Parser for PGM P5 Files – Auxiliary Functions

matchHeader :: L.ByteString -> L.ByteString -> Maybe L.ByteString

matchHeader prefix str

| prefix `L8.isPrefixOf` str

= Just (L8.dropWhile isSpace (L.drop (L.length prefix) str))

| otherwise

= Nothing

getNat :: L.ByteString -> Maybe (Int, L.ByteString)

getNat s = case L8.readInt s of

Nothing -> Nothing

Just (num,rest)

| num <= 0 -> Nothing

| otherwise -> Just (fromIntegral num, rest)

getBytes :: Int -> L.ByteString -> Maybe (L.ByteString, L.ByteString)

getBytes n str = let count = fromIntegral n

both@(prefix,_) = L.splitAt count str

in if L.length prefix < count

then Nothing

else Just both

RT (DCS @ UIBK) Week 4 18/34

Problems of Ad-Hoc Parser

• problem 1: repetitive case-analysis on Maybe-values
• if we got a failure, then fail
• otherwise, extract the current input and proceed with the next parser

• solution: refactor by abstraction

• problem 2: direct pattern matching on pairs (parsed-value, remaining input)
• if we want to make a more verbose parser, e.g., tracking failure positions, we have to change

all occurrence of pairs within parser

• solution: refactor by abstraction and data-hiding

RT (DCS @ UIBK) Week 4 19/34

Solving Repetitive Case-Analysis

• general abstract scheme
• if we got a failure, then fail
• otherwise, extract the current input and proceed with the next parser

• idea of defining abstract scheme as function
• first argument is optional current value
• second argument is function how to proceed

• in Haskell

(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>? _ = Nothing

Just v >>? f = f v

RT (DCS @ UIBK) Week 4 20/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Solving Repetitive Case-Analysis: Adjusted Parser

parseP5_take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)

parseP5_take2 s =

matchHeader (L8.pack "P5") s >>?

\ s -> getNat s >>?

skipSpace >>?

\(width, s) -> getNat s >>?

skipSpace >>?

\(height, s) -> getNat s >>?

\(maxGrey, s) -> getBytes 1 s >>?

(getBytes (width * height) . snd) >>?

\(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)

skipSpace :: (a, L.ByteString) -> Maybe (a, L.ByteString)

skipSpace (a, s) = Just (a, L8.dropWhile isSpace s)

RT (DCS @ UIBK) Week 4 21/34

Observations

• nested case-analysis is gone
• still two stylistic problems

• state s is explicitly passed around
• pattern matching on pairs is still present

• both problems will be handled by abstract new type for parsers

RT (DCS @ UIBK) Week 4 22/34

A Datatype for Parsing

RT (DCS @ UIBK) Week 4 23/34

Parser-State and Parser

• parser-state stores input and offset
• stored in dedicated datatype
data ParseState = ParseState {

string :: L.ByteString -- remaining input

, offset :: Int64 -- location w.r.t. global input

} deriving Show

• parser for elements of type a is a function from parser-state to either an error-message or
a pair consisting of an a-element and a new parser-state

• we encapsulate such a function in a separate type
newtype Parse a = Parse {

runParse :: ParseState -> Either String (a, ParseState)

}
• using newtype at this point: constructor Parse is not visible at runtime

RT (DCS @ UIBK) Week 4 24/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Chaining Parsers
• recall definition from previous slide
newtype Parse a = Parse {

runParse :: ParseState -> Either String (a, ParseState)

}

• design primitive for chaining two parsers for sequential composition
(==>) :: Parse a -> (a -> Parse b) -> Parse b

firstParser ==> secondParser = Parse chainedParser

where chainedParser initState =

case runParse firstParser initState of

Left err -> Left err

Right (firstResult, newState) ->

runParse (secondParser firstResult) newState

• both a Parse a-element and also p1 ==> \ x -> p2 x never execute the functions

• chaining two parsers without result dependence
(==>&) :: Parse a -> Parse b -> Parse b

p ==>& f = p ==> _ -> f

RT (DCS @ UIBK) Week 4 25/34

Four Basic Parsers

newtype Parse a = Parse {

runParse :: ParseState -> Either String (a, ParseState) }

• the parser that always succeeds and does not alter the state
identity :: a -> Parse a

identity a = Parse (\s -> Right (a, s))

• the parser that always fails
bail :: String -> Parse a

bail err = Parse (\s -> Left $

"byte offset " ++ show (offset s) ++ ": " ++ err)

• the parser that reveals the internal state
getState :: Parse ParseState

getState = Parse (\s -> Right (s, s))

• the parser that changes the internal state
putState :: ParseState -> Parse ()

putState s = Parse (_ -> Right ((), s))

RT (DCS @ UIBK) Week 4 26/34

Another Primitive: Parsing a Single Byte

parseByte :: Parse Word8

parseByte =

getState ==> \state ->

case L.uncons (string state) of

Nothing ->

bail "no more input"

Just (byte,remainder) ->

putState newState ==> _ ->

identity byte

where newState = state { string = remainder,

offset = newOffset }

newOffset = offset state + 1

L.uncons :: L.ByteString -> Maybe (Word8, L.ByteString)

RT (DCS @ UIBK) Week 4 27/34

Switching to Characters: Parsing a Single Char

parseByte :: Parse Word8 -- previous slide

parseChar :: Parse Char -- do not copy code of previous slide

w2c :: Word8 -> Char

w2c = chr . fromIntegral

parseChar :: Parse Char

parseChar = w2c <$> parseByte

-- requires Functor instance of Parse

instance Functor Parse where

fmap f parser = parser ==> \result ->

identity (f result)

RT (DCS @ UIBK) Week 4 28/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing Multiple Bytes

-- watching at the first byte, without consuming it

peekByte :: Parse (Maybe Word8)

peekByte = (fmap fst . L.uncons . string) <$> getState

-- parsing multiple bytes

parseWhile :: (Word8 -> Bool) -> Parse [Word8]

parseWhile p = (fmap p <$> peekByte) ==> \mp ->

if mp == Just True

then parseByte ==> \b ->

(b:) <$> parseWhile p

else identity []

-- and using conversion from Word8 to other type

parseWhileWith :: (Word8 -> a) -> (a -> Bool) -> Parse [a]

parseWhileWith f p = fmap f <$> parseWhile (p . f)

RT (DCS @ UIBK) Week 4 29/34

Final Parser

parseRawPGM :: Parse Greymap

parseRawPGM =

parseWhileWith w2c notWhite ==> \header -> skipSpaces ==>&

assert (header == "P5") "invalid raw header" ==>&

parseNat ==> \width -> skipSpaces ==>&

parseNat ==> \height -> skipSpaces ==>&

parseNat ==> \maxGrey ->

parseByte ==>&

parseBytes (width * height) ==> \bitmap ->

identity (Greymap width height maxGrey bitmap)

where notWhite = (`notElem` " \r\n\t")

-- clear structure

-- no handling of explicit states

-- assert, parseBytes, parseNat, skipSpaces: see next slides

RT (DCS @ UIBK) Week 4 30/34

Remaining Primitives (1/2)

skipSpaces :: Parse ()

skipSpaces = parseWhileWith w2c isSpace ==>& identity ()

assert :: Bool -> String -> Parse ()

assert True _ = identity ()

assert False err = bail err

parseNat :: Parse Int

parseNat = parseWhileWith w2c isDigit ==> \digits ->

if null digits

then bail "digit expected"

else let n = read digits

in if show n /= digits

then bail "integer overflow"

else identity n

RT (DCS @ UIBK) Week 4 31/34

Remaining Primitives (2/2)

parseBytes :: Int -> Parse L.ByteString

parseBytes n =

getState ==> \st ->

let n' = fromIntegral n

(h, t) = L.splitAt n' (string st)

st' = st { offset = offset st + L.length h, string = t }

in assert (L.length h == n') "end of input" ==>&

putState st' ==>&

identity h

-- running a parser

parse :: Parse a -> L.ByteString -> Either String a

parse parser input = fst <$> runParse parser (ParseState input 0)

RT (DCS @ UIBK) Week 4 32/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

1. Check that the implementation of the functor instance for Parse satisfies the first
functor-law, i.e., fmap id = id. Note that two function f and g are considered equal, iff
f x is equal to g x for all inputs x.
Further hints are given in Exercise04.hs

2. Write a parser in the style of Slide 30 for plain PGM files. Plain PGM files are similar to
raw PGM files, except that

• plain PGM files start with letters “P2” instead of “P5”, and
• the binary block is replaced by a list of ASCII encoded grey values, separated by whitespace,

e.g., 12 0 255 17 ...

3. Modify the plain PGM parser so that when parse errors occur, both the line number and
the column numbers are reported; moreover, it should be checked that all numbers in the
bitmap respect the max-grey value

RT (DCS @ UIBK) Week 4 33/34

Literature

• Real World Haskell, Chapter 10

RT (DCS @ UIBK) Week 4 34/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Functor
	
	Case Study: Parsing PGM-Graphics
	
	A Datatype for Parsing

