
WS 2024/2025

Advanced Functional Programming
Week 5 – Monads in General, State Monads

René Thiemann

Department of Computer Science

Last Week: Functors

• class definition

class Functor f where

fmap :: (a -> b) -> f a -> f b

• structure preserving map-function, fmap id = id, fmap (f . g) = fmap f . fmap g

• instances: Maybe, [], Either a, (,) a, (,,) a b, Data.Map.Map k, Parse

• not instances: Data.Set.Set

Last Week: Development of Parsers for PGM Raw Format

• explicit case-analysis for error-handling and explicit state

• implicit error handling and explicit state: (>>?) operation

• implicit error handling and implicit state: Parse type and (==>) operation

RT (DCS @ UIBK) Week 5 2/24

Monads

RT (DCS @ UIBK) Week 5 3/24

Parsing With Implicit Error Handling and Explicit State

parseP5_take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)

parseP5_take2 s =

matchHeader (L8.pack "P5") s >>?

\ s -> getNat s >>?

skipSpace >>?

\(width, s) -> getNat s >>?

skipSpace >>?

\(height, s) -> getNat s >>?

\(maxGrey, s) -> getBytes 1 s >>?

(getBytes (width * height) . snd) >>?

\(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)

observations

• (>>?) combines computations

• state s is explicitly updated and passed around

• Just is used to indicate final result

RT (DCS @ UIBK) Week 5 4/24

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing With Implicit Error Handling and Implicit State

parseRawPGM :: Parse Greymap

parseRawPGM =

parseWhileWith w2c (not . isSpace) ==> \header -> skipSpaces ==>&

assert (header == "P5") "invalid raw header" ==>&

parseNat ==> \width -> skipSpaces ==>&

parseNat ==> \height -> skipSpaces ==>&

parseNat ==> \maxGrey ->

parseByte ==>&

parseBytes (width * height) ==> \bitmap ->

identity (Greymap width height maxGrey bitmap)

observations

• (==>) combines computations

• (==>&) is restricted version of (==>): p1 ==>& p2 = p1 ==> \ _ -> p2

• identity turns value into a parsing result

RT (DCS @ UIBK) Week 5 5/24

Similarities of Operations
• there is an operator to chain computations

(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b

(==>) :: Parse a -> (a -> Parse b) -> Parse b

known operator to chain I/O actions

(>>=) :: IO a -> (a -> IO b) -> IO b

• abstract view: replace concrete type constructors by variable m, use (>>=) as name of op.

(>>=) :: m a -> (a -> m b) -> m b

• there is an operator to lift a plain value into the more complex type without requiring
computation
Just :: a -> Maybe a

identity :: a -> Parse a

return :: a -> IO a

• abstract view: replace concrete type constructors by m again (use return as name)

return :: a -> m a

RT (DCS @ UIBK) Week 5 6/24

Monads

• identified similarities
• there is type constructor m of kind * -> *
• there is an operation to chain two computations

(>>=) :: m a -> (a -> m b) -> m b

the latter computation may depend on the result of the former
• there is an operator to lift an a-element into an m a-element

return :: a -> m a

• the combination of m, >>= and return form a monad
• >>= is called bind
• the three monad-laws must be satisfied

• return x >>= f = f x return is left neutral
• mv >>= return = mv return is right neutral
• mv >>= (\x -> f x >>= g) = (mv >>= f) >>= g bind is associative

• examples: Maybe, (>>?), Just is monad as well as Parse, (==>), identity

• another example: IO, (>>=), return is a monad

RT (DCS @ UIBK) Week 5 7/24

Monads in Haskell

• similar to functors, there is a type-class for monads
class Functor f => Applicative f where ... -- details omitted now

class Applicative m => Monad m where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

ma >> mb = ma >>= (\ _ -> mb)

• IO and Maybe are already instances of Monad
• for Parse, we will define the instance where

• (>>=) = (==>),
• (>>) = (==>&), and
• return = identity

RT (DCS @ UIBK) Week 5 8/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Advantages of Abstract Monad Class

• same syntax for all monads: (>>=) and (>>) and return and do-notation
• write common functions which are available for all monads

• example 1: (>>)
• example 2: monadic version of map
mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM f [] = return []

mapM f (x : xs) = f x >>= \ y -> mapM f xs >>= \ ys -> return $ y : ys

mapM f (x : xs) = do { y <- f x; ys <- mapM f xs; return $ y : ys }
• example 3: monadic version of map, ignoring the resulting list
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

mapM_ f [] = return ()

mapM_ f (x : xs) = f x >> mapM_ f xs

mapM_ f (x : xs) = do { f x; mapM_ f xs }
• example 4: monadic version of foldl
foldM :: Monad m => (b -> a -> m b) -> b -> [a] -> m b

• simplifies refactoring, e.g., change of monad

RT (DCS @ UIBK) Week 5 9/24

Example of Raw PGM Parser, No Do-Notation, Parse-Monad

parseRawPGM_noDoNotation :: Parse Greymap

parseRawPGM_noDoNotation =

parseWhileWith w2c (not . isSpace) >>= \ header ->

assert (header == "P5") "invalid raw header" >>

skipSpaces >>

parseNat >>= \ width ->

skipSpaces >>

parseNat >>= \ height ->

skipSpaces >>

parseNat >>= \ maxGrey ->

parseByte >>

parseBytes (width * height) >>= \ bitmap ->

return (Greymap width height maxGrey bitmap)

RT (DCS @ UIBK) Week 5 10/24

Example of Raw PGM Parser, Using Do-Notation and Parse-Monad

parseRawPGM :: Parse Greymap

parseRawPGM = do

header <- parseWhileWith w2c (not . isSpace)

assert (header == "P5") "invalid raw header"

skipSpaces

width <- parseNat

skipSpaces

height <- parseNat

skipSpaces

maxGrey <- parseNat

_ <- parseByte

bitmap <- parseBytes (width * height)

return (Greymap width height maxGrey bitmap)

RT (DCS @ UIBK) Week 5 11/24

Example of Raw PGM Parser, Using Do-Notation and Maybe-Monad

parseP5_doNotation :: L.ByteString -> Maybe (Greymap, L.ByteString)

parseP5_doNotation s = do

s <- matchHeader (L8.pack "P5") s

-- no assert here, part of matchHeader

s <- skipSpace s

(width, s) <- getNat s

s <- skipSpace s

(height, s) <- getNat s

s <- skipSpace s

(maxGrey, s) <- getNat s

(_, s) <- getBytes 1 s

(bitmap, s) <- getBytes (width * height) s

return (Greymap width height maxGrey bitmap, s)

RT (DCS @ UIBK) Week 5 12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Running the Monad

• consider monadic operations
• chain computations (>>=) :: m a -> (a -> m b) -> m b
• lift value return :: a -> m a

• operations provide means to enter the monad or stay in the monad m

• question: how to exit the monad, i.e., get return value of type without m
• for most monads, there are dedicated functions to execute or run the monad

• Parse parse :: Parse a -> L.ByteString -> Either String a
• Maybe maybe :: b -> (a -> b) -> Maybe a -> b
• . . .

all these monads can be used to build pure functions
• major exception: IO

• no way to get rid of the IO in the result type
• it is not possible to use IO-functions within pure functions

• consequence: using a monad is no conflict to staying pure

RT (DCS @ UIBK) Week 5 13/24

The State Monad

RT (DCS @ UIBK) Week 5 14/24

Monads for Programs using State

• main aim
• encapsulate some state that may easily be modified and read throughout the computation
• states should not be explicitly passed around as argument

• idea of monadic computation with state
• a computation that may read and write to a state of type s,
• and returns a result of type a

• example applications
• state stores set of visited nodes in graph traversal
• state manages generation of fresh names
• state manages generation of random numbers
• write some computed result to the file system

• example monads
• pure State monad

• newtype State s a = State { runState :: s -> (a, s) }
• simplified and more abstract version of Parse: no failure handling

• IO provides primitives for stateful computations

RT (DCS @ UIBK) Week 5 15/24

Running Example: Quicksort

• quicksort is fast sorting algorithm

• selection of pivot-element can improve or degrade performance

• useful strategy: random selection of pivot-elements yields O(n · log(n)) expected runtime

• non-randomized implementation (includes counting comparisons)

qsortCount :: Ord a => [a] -> (Integer, [a])

qsortCount [] = (0,[])

qsortCount (x : xs) = let

(low, high) = partition (< x) xs

c0 = fromIntegral $ length xs

(c1, qs1) = qsortCount low

(c2, qs2) = qsortCount high

in (c0 + c1 + c2, qs1 ++ [x] ++ qs2)

• here: pivot is always first element

• consequence: quadratic complexity on sorted input lists

RT (DCS @ UIBK) Week 5 16/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Randomized Quicksort using Monads

• random number generator (rng) is passed as monadic function of type Int -> m Int

• required: rng n delivers number between 0 and n

• main function, without fixing the monad

qsortMonadic :: (Monad m, Ord a) => (Int -> m Int) -> [a] -> m (Integer,[a])

qsortMonadic rng = qsortMain where

qsortMain [] = return $ (0, [])

qsortMain xs = do

pos <- rng $ n - 1

let (xs1, x : xs2) = splitAt pos xs

let (low, high) = partition (< x) (xs1 ++ xs2)

let c0 = fromIntegral $ n - 1

(c1,qs1) <- qsortMain low

(c2,qs2) <- qsortMain high

return $ (c0 + c1 + c2, qs1 ++ [x] ++ qs2)

where n = length xs

RT (DCS @ UIBK) Week 5 17/24

Randomized Quicksort using IO-Monad

• random numbers can be accessed from the global state
(IO can be seen as state monad with a special state: the world)

• implementation in Haskell with O(n · log(n)) complexity, assuming perfect rng

-- random number between lower and upper bound

randomRIO :: (Int, Int) -> IO Int

getRandomIO :: Int -> IO Int

getRandomIO n = randomRIO (0, n)

qsortIO :: Ord a => [a] -> IO (Integer,[a])

qsortIO = qsortMonadic getRandomIO

RT (DCS @ UIBK) Week 5 18/24

The Pure State-Monad

newtype State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where

return a = State (\ s -> (a, s))

st1 >>= aSt2 = State

(\ s -> let (a, s1) = runState st1 s

in runState (aSt2 a) s1)

get :: State s s

get = State (\ s -> (s, s))

put :: s -> State s ()

put s = State (\ _ -> ((), s))

• chaining via (>>=) very similar to (==>) in Parse

• two primitives to read and write state: get and put

RT (DCS @ UIBK) Week 5 19/24

Pseudo Random Number Generation
• a pseudo random number generator (rng) is a deterministic algorithm to

• produce an infinite sequence of numbers
• which look as if they where really randomly chosen numbers

• in Haskell: StdGen is the type of a pseudo rng
• uniformR (a,b) rng delivers a pair (r,rng')

• r is the first random number in the sequence, r is between a and b,
• rng' is the rng that produces the rest of the sequence

• encapsulate rng in State-monad

type RandomState = State StdGen

getRandomState :: Int -> RandomState Int

getRandomState n = do

rng <- get

let (r,rng') = uniformR (0,n) rng

put rng'
return r

RT (DCS @ UIBK) Week 5 20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Randomized Quicksort as Pure Function

qsortStateMain :: Ord a => [a] -> RandomState (Integer, [a])

qsortStateMain = qsortMonadic getRandomState

-- different versions to run the State monad

runState :: State s a -> s -> (a, s)

evalState :: State s a -> s -> a

execState :: State s a -> s -> s

qsortState :: Ord a => Int -> [a] -> (Integer,[a])

qsortState seed xs = evalState (qsortStateMain xs) (mkStdGen seed)

-- mkStdGen generates a pseudo rng from a starting seed value

RT (DCS @ UIBK) Week 5 21/24

Store Pseudo-RNG via IO References

newIORef :: a -> IO (IORef a) -- initial value

readIORef :: IORef a -> IO a -- get

writeIORef :: IORef a -> a -> IO () -- put

-- deterministic pseudo-rng based quicksort using IO references

qsortIOSeed :: Ord a => Int -> [a] -> IO (Integer, [a])

qsortIOSeed seed xs = do

rngRef <- newIORef (mkStdGen seed)

let getRandIO n = do

rng <- readIORef rngRef

let (r, rng') = uniformR (0,n) rng

writeIORef rngRef rng'
return r

qsortMonadic getRandIO xs

-- a bit faster than State, but cannot be used in pure functions

RT (DCS @ UIBK) Week 5 22/24

Exercises

See Exercise05.hs

RT (DCS @ UIBK) Week 5 23/24

Literature

• Real World Haskell, Chapter 14

RT (DCS @ UIBK) Week 5 24/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Monads
	
	The State Monad

