
WS 2024/2025

Advanced Functional Programming
Week 6 – Evaluation of Monadic Code, Example: Tseitin, Error Monads

René Thiemann

Department of Computer Science

Last Week

• monads in general
• aim: convenient chaining of computations
• return and (>>=) can be user-defined: programmable semicolon
• monad laws must be satisfied
• do-notation
• example monads: Maybe, State, IO

• state monad
• encapsulate state
• purely functional: State s a is roughly s -> (a,s)
• or using IO: newIORef, readIORef, writeIORef

• example: randomized quicksort
• advantage IO: a bit faster than State and potentially perfect RNG
• advantage State: no side effects, final result is pure function

• in general there is a disadvantage of using IO
• function of type ... -> IO a can have arbitrary side effects
• function of type ... -> State s a can at most alter state of type s

RT (DCS @ UIBK) Week 6 2/30

Evaluation of Monadic Code

RT (DCS @ UIBK) Week 6 3/30

Evaluation of Monadic Code
• consider the following Haskell code
g b = putStrLn (show b) >> return b

f mb1 mb2 = do

b1 <- mb1

b2 <- mb2

return $ b1 || b2

• result of f (g True) (g False) (IO monad)
• both putStrLn will be executed, since both monadic operations will be executed, even if
b1 || b2 will not look at b2

• result of evalState (f (return True) (error "foo")) () (State monad)
• lazy evaluation will figure out that the final state is not required,

result is True without any error message

• result of f (return True) (error "foo") :: Maybe Bool (Maybe monad)
• bind of Maybe is strict, so computation is aborted with error "foo"

• overall: evaluation of monadic code highly depends on chosen monad

RT (DCS @ UIBK) Week 6 4/30

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Evaluation of Monadic Code, Another Example

• consider the following Haskell code
h m1 m2 m3 = do

x <- m1

y <- m2

z <- m3

return (x, y, z)

test1 = let xs = Just [1..100 :: Int] in h xs xs xs

test2 = let xs = [1..100 :: Int] in h xs xs xs

• result of test1
• Just ([1..100], [1..100], [1..100]) Maybe monad

• result of test2
• a list of all possible triples with numbers between 1 and 100 List monad

• overall: evaluation of monadic code highly depends on chosen monad

RT (DCS @ UIBK) Week 6 5/30

Example: Memoization of Embedding Relation, Handling Memoization
• we setup generic code for computing the embedding relation in a monadic way
embMain :: (Eq f, Eq v, Monad m) =>

(Term f v -> Term f v -> m (Maybe Bool)) -- lookup

-> (Term f v -> Term f v -> Bool -> m ()) -- store

-> Term f v -> Term f v -> m Bool

embMain look store = main where

main s t = do

maybeResult <- look s t

case maybeResult of

Just b -> return b

Nothing -> do

result <- main2 s t

store s t result

return result

• main just does the handling of memory-lookups and memory-stores

• main2 will perform the actual computation

RT (DCS @ UIBK) Week 6 6/30

Example: Memoization of Embedding Relation, Main Algorithm

• remaining code of embMain looks like the definition of the embedding relation
main2 (Var x) t = return $ t == Var x

main2 (Fun f ss) t@(Fun g ts)

| f == g = do

bigConj <- allM (\ (si,ti) -> main si ti) (zip ss ts)

bigDisj <- anyM (\ si -> main si t) ss

return $ bigConj || bigDisj

main2 (Fun f ss) t = anyM (\ si -> main si t) ss

allM, anyM :: Monad m => (a -> m Bool) -> [a] -> m Bool

• allM, anyM are monadic variants of all, any :: (a -> Bool) -> [a] -> Bool

• here: illustrate two variants how to achieve this lifting via mapM and foldM

allM f xs = and <$> mapM f xs

anyM f xs = foldM (\ b x -> (b ||) <$> f x) False xs

RT (DCS @ UIBK) Week 6 7/30

Example: Memoization of Embedding Relation, Wrapper using IO and State

• finally, we can derive two implementations via IO or via State
embState :: (Ord f, Ord v) => Term f v -> Term f v -> (Bool, Int)

embState s t = let

look s t = return . M.lookup (s,t) =<< get

store s t b = put . M.insert (s,t) b =<< get

(res, m) = runState (embMain look store s t) M.empty

in (res, M.size m)

embIO :: (Ord f, Ord v) => Term f v -> Term f v -> IO (Bool, Int)

embIO s t = do

ref <- newIORef M.empty

let look s t = return . M.lookup (s,t) =<< readIORef ref

let store s t b = writeIORef ref . M.insert (s,t) b =<< readIORef ref

res <- embMain look store s t

m <- readIORef ref

return (res, M.size m)

RT (DCS @ UIBK) Week 6 8/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Execution of Memoized Embedding Implementations

• consider execution time of embIO s t or embState s t for some test terms s and t
• embIO s t 1.77 seconds
• embState s t 1.45 seconds

• now let us only access the Boolean result (ignore size of the map)
• fst <$> embIO s t 1.80 seconds
• fst $ embState s t 0.16 seconds

• reason: State monad can profit from lazy evaluation, IO cannot
• as soon as the Boolean result is determined, all pending put-commands can be ignored in

the State monad
• using IO, each writeIORef operation must be performed

• solution to discrepancy: design some lazy monadic operations (exercises)

RT (DCS @ UIBK) Week 6 9/30

Example Application: Tseitin Transformation

RT (DCS @ UIBK) Week 6 10/30

More Complex Setups

• often, several values need to be stored and updated globally
• state for generating next fresh name, state for some dictionaries, . . .

• common solution: use one datatype as state with many entries and use record syntax

• moreover, one might require features of several monads

• common solution: make monad features abstract by using type classes

• setup of Haskell’s state monad in Control.Monad.State as type class

class Monad m => MonadState s m where

get :: m s

put :: s -> m ()

gets :: MonadState s m => (s -> a) -> m a -- get with selector function

modify :: MonadState s m => (s -> s) -> m ()

{- type "State" is just one instance of class "MonadState" -}

RT (DCS @ UIBK) Week 6 11/30

Example: Tseitin Transformation

• algorithm to convert propositional formula into conjunctive normal form (CNF)
• input: arbitrary Boolean formula (conjunction, disjunction, negation, variables)
• first, label each non-variable subformula by some fresh propositional variable
• second, encode that fresh propositional variables have correct values by using small CNFs
• finally, demand that fresh propositional variable at root evaluates to true
• result: obtain equi-satisfiable CNF of linear size

• requirements on state monad
• encode (fresh) variables as integers (convention in standard Dimacs format for CNFs)
• state has to store a single number for next fresh variable
• moreover, original variables need to be mapped to integers, too;

so, state needs a map from original variables to integer variables

RT (DCS @ UIBK) Week 6 12/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tseitin Transformation in Haskell – Datatypes

data Formula a =

Conj [Formula a]

| Disj [Formula a]

| Neg (Formula a)

| Var a

deriving Show

type CnfVar = Integer -- negative sign = negated variable

type VarMap a = M.Map a CnfVar

type Clause = [CnfVar]

data TseitinState a = TseitinState {

lastUsedCnfVar :: CnfVar,

varMap :: M.Map a CnfVar

}

RT (DCS @ UIBK) Week 6 13/30

Tseitin Transformation in Haskell – Auxiliary Functions

nextCnfVar :: MonadState (TseitinState a) m => m CnfVar

nextCnfVar = do

x <- gets lastUsedCnfVar -- access state via record selector

let fresh = x + 1

modify (\ s -> s { lastUsedCnfVar = fresh }) -- modify via record update

return fresh

lookupVar :: (Ord a, MonadState (TseitinState a) m) => a -> m CnfVar

lookupVar x = do

vmap <- gets varMap

case M.lookup x vmap of

Just i -> return i

Nothing -> do

i <- nextCnfVar

modify (\ s -> s { varMap = M.insert x i vmap })

return i

RT (DCS @ UIBK) Week 6 14/30

Two Observations

• adding more elements to TseitinState will neither require changes to lookupVar nor
to nextCnfVar

• reason: both functions use record syntax, and this syntax does not change when adding
more elements to TseitinState

• the class constraints are not of standard shape
• nextCnfVar :: MonadState (TseitinState a) m => m CnfVar expresses that we need

a monad state with a specific type as state (TseitinState a)
• such a type-class constraint is not allowed w.r.t. the Haskell 2010 standard
• consequence: activate GHC extension {-# FlexibleContexts #-}

RT (DCS @ UIBK) Week 6 15/30

Tseitin Transformation in Haskell – Main Algorithm

addClause :: MonadWriter [Clause] m => Clause -> m ()

addClause c = tell [c]

tseitinMain ::

(Ord a, MonadState (TseitinState a) m, MonadWriter [Clause] m) =>

Formula a -> m CnfVar

tseitinMain (Var x) = lookupVar x

tseitinMain (Disj fs) = do

fis <- mapM tseitinMain fs

j <- nextCnfVar

addClause $ - j : fis -- CNF encoding of j -> (\/ fis)

mapM_ (\ fi -> addClause [j, - fi]) fis -- CNF encoding of (\/ fis) -> j

return j

-- Conj and Neg: similar to Disj

RT (DCS @ UIBK) Week 6 16/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://downloads.haskell.org/ghc/9.0.1/docs/html/users_guide/exts/flexible_contexts.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Remarks and Final Version
• MonadWriter is another type of monad, that allows users to produce output via
tell :: MonadWriter w m => w -> m (); collect output after running monad

• resulting algorithm tseitinMain is very close to text book;
all the tedious implementation details are delegated to the monad

• wrapper around tseitinMain just needs to find a monad that satisfies all of the
monadic class constraints

• one possibility: RWS, the reader-writer-state monad

tseitin :: Ord a => Formula a -> ([Clause], Integer, M.Map a CnfVar)

tseitin f =

let initS = TseitinState {lastUsedCnfVar = 0, varMap = M.empty}

in case runRWS (tseitinMain f) () initS of

(fIndex, finalState, clauses) ->

let allClauses = [fIndex] : clauses

nrVariables = lastUsedCnfVar finalState

mapping = varMap finalState

in (allClauses, nrVariables, mapping)
RT (DCS @ UIBK) Week 6 17/30

Final Remarks

• RWS combines reader-, writer- and state-monad

• state monad has been discussed thoroughly
• reader monad (Control.Monad.Reader)

• monad stores common read-only environment
• ask :: MonadReader r m => m r
• environment is fixed when running monad

• writer monad (Control.Monad.Writer)
• monad stores produced output
• tell :: MonadWriter w m => w -> m ()
• produced output becomes accessible after running monad

• for further information, see Haskell documentation
• https://hackage.haskell.org/package/mtl/docs/Control-Monad-Reader.html
• https://hackage.haskell.org/package/mtl/docs/Control-Monad-Writer.html
• https://hackage.haskell.org/package/mtl/docs/Control-Monad-State.html
• https://hackage.haskell.org/package/mtl/docs/Control-Monad-RWS.html

RT (DCS @ UIBK) Week 6 18/30

Error Monads

RT (DCS @ UIBK) Week 6 19/30

Error Monads

• main purpose: encapsulate computations that may fail

• example applications: parsing, type checking, accessing dictionaries, . . .
• example monads

• Maybe
• instance: return = Just; Nothing >>= _ = Nothing; Just x >>= f = f x
• representing a failure: Nothing

• Either e (data Either e a = Left e | Right a)
• instance: return = Right; Left e >>= _ = Left e; Right x >>= f = f x
• representing a failure with explicit error: Left e

• IO a
• instance: built-in
• representing a failure with error message: error msg

• convention: all of these monads should treat their error-handling in the same monad,
e.g., do not use error in Maybe or Either e to indicate a failure

RT (DCS @ UIBK) Week 6 20/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://hackage.haskell.org/package/mtl/docs/Control-Monad-Reader.html
https://hackage.haskell.org/package/mtl/docs/Control-Monad-Writer.html
https://hackage.haskell.org/package/mtl/docs/Control-Monad-State.html
https://hackage.haskell.org/package/mtl/docs/Control-Monad-RWS.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Application: Find Carrier Billing Address

• scenario: given several maps, do a compositional lookup
• use name to find phone number
• use phone number to find mobile carrier
• use mobile carrier to find billing address

• setup in Haskell importing Data.Map as M
type PersonName = String

type PhoneNumber = String

type BillingAddress = String

data MobileCarrier = Honest_Bobs_Phone_Network | ... deriving (Eq, Ord)

findCarrierBillingAddress :: PersonName

-> M.Map PersonName PhoneNumber

-> M.Map PhoneNumber MobileCarrier

-> M.Map MobileCarrier BillingAddress

-> Maybe BillingAddress

RT (DCS @ UIBK) Week 6 21/30

Find Carrier Billing Address: Version 1

fCBAversion1 person phoneMap carrierMap addressMap =

case M.lookup person phoneMap of

Nothing -> Nothing

Just number ->

case M.lookup number carrierMap of

Nothing -> Nothing

Just carrier -> M.lookup carrier addressMap

• explicit case analysis, no use of monad operations

• this is the style of programming that we would like to avoid

RT (DCS @ UIBK) Week 6 22/30

Versions 2 and 3 use Maybe-monad and do-Notation

fCBAversion2 person phoneMap carrierMap addressMap = do

number <- M.lookup person phoneMap

carrier <- M.lookup number carrierMap

address <- M.lookup carrier addressMap

return address

fCBAversion3 person phoneMap carrierMap addressMap = do

number <- M.lookup person phoneMap

carrier <- M.lookup number carrierMap

M.lookup carrier addressMap

• much cleaner code

• version 2 is more canonically: every lookup is done in the same way

• optimization in version 3: last lookup can directly return final result

RT (DCS @ UIBK) Week 6 23/30

Versions 4 and 5: Point-free Versions

fCBAversion4 person phoneMap carrierMap addressMap =

lookup phoneMap person >>= lookup carrierMap >>= lookup addressMap

where lookup :: Ord k => M.Map k v -> k -> Maybe v

lookup = flip M.lookup

• point-free: intermediate results are not stored, but directly passed to next function

• requires shuffling of arguments of M.lookup so that search-key is last argument

• similar to nested function applications, which often start on rhs
idea: lookup addressMap $ lookup carrierMap $ lookup phoneMap person

• to allow composition in this order, use flipped version of (>>=)
(=<<) :: Monad m => (a -> m b) -> m a -> m b

fCBAversion5 person phoneMap carrierMap addressMap =

lookup addressMap =<< lookup carrierMap =<< lookup phoneMap person

RT (DCS @ UIBK) Week 6 24/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Do-Notation and Error-Monads

• idea of translations of do-blocks

do x <- m = m >>= \ x -> do block

block

do m = m >> do block

block

do let x = e = let x = e in do block

block

• what should be result of secondProblem (return "a") for

secondProblem m = do (_ : x : _) <- m

return x
• runtime exception complaining about incomplete pattern?
• Nothing, if the chosen monad is Maybe?
• Left ???, if the chosen monad is Either e?

RT (DCS @ UIBK) Week 6 25/30

Do-Notation and Error-Monads Continued
• design choice: unmatched patterns in do-block must be resolved by failure type of monad

• consider program again

secondProblem m = do (_ : x : _) <- m

return x
• secondProblem (return "a" :: IO String) leads to runtime exception
• secondProblem (return "a" :: Maybe String) results in Nothing
• secondProblem (return "a" :: Either String String) leads to compile error

• note type of program: secondProblem :: MonadFail m => m [a] -> m a

• MonadFail extends Monad and contains a failure function
fail :: String -> m a

• IO and Maybe are instances of MonadFail

• Either e is not an instance of MonadFail: how to convert String to e?
• details

• https://hackage.haskell.org/package/base/docs/Control-Monad-Fail.html

• https://gitlab.haskell.org/haskell/prime/-/wikis/libraries/proposals/monad-fail

RT (DCS @ UIBK) Week 6 26/30

Do-Notation and Error-Monads Finalized
• reconsider transformation of do-blocks
-- if p always matches

do p <- m = m >>= (\ p -> do block)

block

-- if p might fail

do p <- m = m >>= (\ x -> case x of { p -> do block; _ -> fail msg})

block

• to prevent enforcement of MonadFail, one can indicate that a pattern will always match
• ~pat is the irrefutable pattern that always matches
• only if variable bindings in pat are used, then the matching substitution is computed and

runtime errors might occur

secondProblem2 :: Monad m => m [a] -> m a -- no restriction on monad m,

secondProblem2 m = do ~(_ : x : _) <- m -- secondProblem2 (return "a")

return x -- always results in error

f (x : ~(y : _)) = x || y -- f [True] = True, f [False] = error
RT (DCS @ UIBK) Week 6 27/30

Exercise Task 1 – Improve the Implementation of the Embedding Relation

(A) Improve the monadic implementation, so that there is no significant time difference
between all four presented variants, i.e., using IO or State with or without computation
of size.
To this end, think about how to make Boolean operations (disjunction, conjunction, all,
any) lazy in their monadic versions. In particular, the size of the final map should become
significantly smaller by your optimizations.

(B) Use the labeling of terms that has been developed in the exercise of the previous week.
Change the type of the dictionary so that labels are used as keys instead of the full terms.
What changes?

RT (DCS @ UIBK) Week 6 28/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://hackage.haskell.org/package/base/docs/Control-Monad-Fail.html
https://gitlab.haskell.org/haskell/prime/-/wikis/libraries/proposals/monad-fail
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercise Task 2 – Improve the Implementation of the Tseitin Transformation

The function tseitin runs in quadratic time, since the writer part of the currently used
monad RWS ... [Clause] ... uses lists in the output part, and each tell cl will append
a clause cl to the end of the output list. So standard lists are not a good choice as the
w-parameter for a writer in this application.

Note that w can be an arbitrary Monoid, cf. https:
//hackage.haskell.org/package/mtl/docs/Control-Monad-Writer-Lazy.html.
Figure out a better monoid, so that tseitin can be reformulated (without changing
tseitinMain) so that it runs in linear time. Either define your own instance of a monoid, or
use an existing one from a suitable library.
If possible, your changes should not influence the generated CNF. To be more precise, running
testInvocation should result in the same string, no matter whether you use tseitin from
Demo06_Tseitin_Monad_RWS or from Exercise06_Tseitin.

RT (DCS @ UIBK) Week 6 29/30

Literature

• Functional Programming with Overloading and Higher-Order Polymorphism, Mark P
Jones, Advanced School of Functional Programming, 1995.

• Real World Haskell, Chapters 14 and 15

RT (DCS @ UIBK) Week 6 30/30

https://hackage.haskell.org/package/mtl/docs/Control-Monad-Writer-Lazy.html
https://hackage.haskell.org/package/mtl/docs/Control-Monad-Writer-Lazy.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Evaluation of Monadic Code
	
	Example Application: Tseitin Transformation
	
	Error Monads

