
WS 2024/2025

Advanced Functional Programming
Week 7 – Parsing in General, Parsec

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Week

• evaluation of monadic code heavily depends on underlying monad
• example 1: difference in strictness of ;
• example 2: in some monads consecutive ; might result in nested loops

• combining multiple State-monads using datatypes with record syntax

• combination of monads using the RWS-monad

• example application: Tseitin

• error monads, MonadFail and irrefutable patterns

RT (DCS @ UIBK) Week 7 2/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing in General

RT (DCS @ UIBK) Week 7 3/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Towards Parsing of Context Free Languages

• languages can be described by formal grammars

• most basic version: context free grammars (CFG)
• G = (V,Σ, R, S) is a CFG where

• V is a finite set of non-terminal symbols
• Σ is a finite set of terminal symbols
• R is a finite set of rules of the form A → w with A ∈ V and w ∈ (V ∪ Σ)∗

• S is the starting symbol

• in examples we often just indicate the rules of a grammar;
moreover we write A → w1 | w2 | . . . to indicate rules A → w1, A → w2, . . .

• example: G = {S → (S) | S + S | N, N → DN | D, D → 0 | · · · | 9}
• implicit V = {S,N,D}
• implicit Σ = {0, . . . , 9,+, (,)}
• D generates digits
• N generates natural numbers
• S generates arithmetic expressions involving numbers, additions, and parenthesis

RT (DCS @ UIBK) Week 7 4/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Context Free Languages and Syntax Trees

• given a CFG G = (V,Σ, R, S) a syntax tree t of G has all of the following properties
• the root of t is S
• for every subtree u of t with root A ∈ V there is a rule A → w ∈ R such that u has |w|

many subtrees and the roots of these subtrees are exactly w
• every subtree u of t with root a ∈ Σ is a leaf

• a syntax tree produces the word that is obtained when traversing the terminal symbols
from left to right

• L(G) ⊆ Σ∗ is the language of the grammar;
it consists of those words that are produced by the set of all syntax trees of G

• a language L′ is context free if there is some CFG G such that L′ = L(G)

RT (DCS @ UIBK) Week 7 5/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Syntax Tree
• consider G = {S → (S) | S + S | N, N → DN | D, D → 0 | · · · | 9} from before

• the following syntax tree proves 01 + (2 + 3) ∈ L(G)

RT (DCS @ UIBK) Week 7 6/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ambiguity

• consider G = {S → (S) | S + S | N, N → DN | D, D → 0 | · · · | 9} from before

• there is only 1 syntax tree that produces 01 + (2 + 3),
but in general there might be several syntax trees for the same word

• example: there are two syntax trees for 1 + 2 + 3

• if there are multiple syntax trees for some word, then G is ambiguous

• another example of ambiguity: if b then if c then x++ else y++

RT (DCS @ UIBK) Week 7 7/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Some Facts About CFGs

• given w and CFG G, the question w ∈ L(G) is decidable in cubic time (CYK algorithm)
• sometimes ambiguous CFGs can be transformed into language-equivalent non-ambiguous
CFGs

• example grammar G from before is equivalent to the following non-ambiguous grammar G′

• G′ copies rules for N and D from G
• G′ also has rules {S → T + S | T, T → (S) | N}

• given CFGs G and G′, it is undecidable whether L(G) = L(G′)

• given CFG G, it is undecidable whether G is ambiguous
• there are inherently ambiguous context free languages where no non-ambiguous CFG
exists

• L′ = {anbncmdm | n,m > 0} ∪ {anbmcmdn | n,m > 0} is context free
• if L(G) = L′ and n > 0 then the word anbncndn has at least two syntax trees in G

• further literature: Hopcraft, Ullman: Introduction to Automata Theory, Languages and
Computation

RT (DCS @ UIBK) Week 7 8/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Equivalence of G and G′

• G = {S → (S) | S + S | N, N → DN | D, D → 0 | · · · | 9}
• G′ = {S → T + S | T, T → (S) | N, N → DN | D, D → 0 | · · · | 9}
• equivalence is proved in two steps
• we write LG(A) for the language produced by CFG G where the start symbol is replaced

by A
• LG′(S) ∪ LG′(T) ⊆ LG(S): by induction on the size of the syntax tree
• LG(S) ⊆ LG′(S): by induction on the following size of the syntax tree t where

size(S → S1 + S2) = 1 + size(S1) + 2 · size(S2), and the size of all other trees is 1
• if t uses S → N ∈ G at the root, then S → N ∈ G′ is also possible
• if t uses S → (S1) ∈ G at the root, then we can simulate it by S → T → (S1) ∈ G′ and then

apply the IH for the tree with root S1

• if t uses S → S1 + S2 ∈ G at the root and S1 is continued by S1 → N ∈ G, then we simulate
it by S → T + S2 → N + S2 ∈ G′ and apply the IH for the tree with root S2

• if t uses S → S1 + S2 ∈ G at the root and S1 is continued by S1 → (S3) ∈ G, then we
simulate it by S → T + S2 → (S3) + S2 ∈ G′ and apply IHs for S2 and S3

• if t uses S → S1 + S2 ∈ G at the root and S1 is continued by S1 → S3 + S4 ∈ G, then we
rotate the tree to S → S3 + S5 where S5 → S4 + S2, and apply the IH

RT (DCS @ UIBK) Week 7 9/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing of CFGs

• general task: given a CFG and some input word w
• return the unique syntax tree that generates w
• or report that this is not possible (none or more than one syntax trees)

• problems and challenges
• efficiency: general case has at least cubic complexity, but one wants to have linear algorithm;

often: traverse the input from left to right exactly once
• more expressive forms of grammars are welcome: transforming G to G′ for getting

non-ambiguity is tedious and not very readable
• Backus-Naur-Form (BNF) is more concise than CFG
• use grammars such as G and specify priorities and left/right associativity of operators

• full syntax tree is often too verbose
• drop S → (S) and S → T in G′

• collapse N subtrees to a single number
• in general: provide not only grammar specification, but also result specification

• detailed and helpful error reporting

RT (DCS @ UIBK) Week 7 10/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Approaches to Getting a Parser
• use parser generators (in Haskell: happy)

• disadvantage
• might require to specify grammars in specific shape (LL(1), LALR(1))
• error reporting requires technical knowledge (resolve shift-reduce conflict, . . .)
• fixed feature set

• advantages
• static checks on grammar
• guaranteed linear time
• take care of user error messages in generated parser

• use parser combinators (in Haskell: Parsec)
• disadvantages

• less automation
• might become inefficient, no static checks

• advantages
• no formal specification of an input grammar required: the code is the spec
• many building blocks that simplify the task of writing a parser and reading it
• full flexibility of the programming language (arbitrary features)
• adjustment of parsing possible on the fly, e.g., when reading new infix-operator from user
• easy to control generated output

RT (DCS @ UIBK) Week 7 11/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing in Phases: Lexical Analysis

• parsing can be performed in two phases: lexical analysis (lexing, tokenization) and parsing

• lexical analysis is often done using regular languages

• purpose of tokenization: simplify latter parsing phase
• examples

• simplify G = {G = {S → (S) | S + S | N, N → DN | D, D → 0 | · · · | 9} to
G′ = {S → (S) | S + S | number} where tokenization converts list of digits into single
number token (with integer stored inside)

• tokenization can remove all comments and can take care of whitespace
• tokenization can identify keywords and distinguish then from standard names
• example: tokenizer might convert string

"if someBool then foo else 832"

into token list

[KeywIf, Name "someBool", KeywThen, Name "foo", KeywElse, Number 832]

• tool examples: flex does lexical analysis and bison does parsing

RT (DCS @ UIBK) Week 7 12/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsec

RT (DCS @ UIBK) Week 7 13/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsec

• Parsec is a Haskell library for parsing based on parser combinators

• it can be used both to write single phase parsers, but also supports many phase parsing

• Parsec has been used in other projects, e.g., to write parsers for CSV, JSON and bibtex

• documentation: https://hackage.haskell.org/package/parsec
• alternatives to obtain parsers in Haskell that are not (further) discussed in this course

• use parser generator such as Happy
• use alternative parser combinator library such as Attoparsec
• use advanced fork of Parsec such as Megaparsec
• don’t use any library, e.g., for parsing raw PGM files

• parser combinators: assemble complex parsers from simpler ones via combinators

RT (DCS @ UIBK) Week 7 14/31

https://hackage.haskell.org/package/parsec
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Important Types in Parsec

• type Parsec s u a = ...
• Parsec s u is an instance of MonadFail
• s is the type of input stream, e.g., ByteString, String, [Token], . . .
• u is the user state type

• Parsec has its own state, e.g., to keep track of position in input
• u can be used as an additional state that is under user control
• initially: choose no user state, so u = ()

• a is return type upon successful parsing, e.g. Int, String, Expr, AbstractSyntaxTree

• type Parser = Parsec String () parsing from a string without user state

• type GenParser tok u = Parsec [tok] u parsing from a token list with user state u

• data ParseError = ... type to encapsulate error, instance of Show

• type SourceName = String

• running a parser, where s needs to be stream type

parse :: Parsec s () a -> SourceName -> s -> Either ParseError a

RT (DCS @ UIBK) Week 7 15/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Example: Parsing CSV Files

• CSV = comma separated values

• heavily used for importing and exporting data of spread sheets
• CSV file is ASCII file

• each line represents one row in table, and must be terminated by end-of-line
• each line consists of cells that are separated by commas (,)
• special treatment for cells whose content contains comma

• example content of CSV file

name,matrikel number,skz,email

max m.,123456,521,max@uibk.at

nina n.,654321,921,nina@uibk.at

junior,,,junior@school.at

• we will develop several versions of parsers for CSV, first ignoring cells with comma

• note: input to parse is String, getting file content must be done separately

RT (DCS @ UIBK) Week 7 16/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Version (Demo07 Parser CSV V1)

csv :: Parser [[String]]

csv = do

result <- many line

eof >> return result

line :: Parser [String]

line = do

result <- cells

eol >> return result

cells :: Parser [String]

cells = do

firstC <- cellContent

nextC <- remainingCells

return $ firstC : nextC

remainingCells :: Parser [String]

remainingCells =

(char ',' >> cells)

<|> return []

cellContent :: Parser String

cellContent = many (noneOf ",\n")

eol :: Parser ()

eol = char '\n' >> return ()

parseCSV :: String ->

Either ParseError [[String]]

parseCSV input =

parse csv "(unknown)" input

RT (DCS @ UIBK) Week 7 17/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Explanations
• many :: GenParser tok u a -> GenParser tok u [a]

• many p applies p iteratively, until it fails
• many p always succeeds, results are stored and returned as list

• eof :: Show tok => GenParser tok u ()
• successful, if and only if the input stream has been fully consumed

• noneOf :: [Char] -> GenParser Char u Char
• noneOf f reads the next character from the input
• successful, if and only this character is not among the forbidden characters f
• on failure, no character is consumed

• char :: Char -> GenParser Char u Char
• similar to noneOf, except that one provides exactly the character that is expected

• (<|>) :: Parsec s u a -> Parsec s u a -> Parsec s u a
• p1 <|> p2 first tries p1
• if p1 is successful, then the result of p1 is returned
• otherwise, p2 is executed and that result is returned
• p1 should not consume input if it fails (will be discussed later); hint:
parse ((many (noneOf "ab") >> char 'a') <|> char 'c') "file" "ceeeb" fails

RT (DCS @ UIBK) Week 7 18/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Invocations

• parseCSV "Hello,Parsec\n"

Right [["Hello","Parsec"]]

• parseCSV "a,,b\n\nc,d\n"

Right [["a","","b"],[""],["c","d"]]

• parseCSV "Hello,Parsec"

Left "(unknown)" (line 1, column 13):

unexpected end of input

expecting "," or "\n"

• first examples illustrate correct behavior on sample CSV strings

• last example shows that we get useful error messages by using existing framework

RT (DCS @ UIBK) Week 7 19/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Towards Tuning the Parser: sepBy

• upcoming: write more concise parsers by using further combinators
• sepBy :: Parsec s u a -> Parsec s u sep -> Parsec s u [a]

• sepBy p1 p2 takes a parser p1 for elements of type a and a parser p2 for separators :: sep
• first p1 is invoked to parse the first element

• if this first invocation fails, then [] is returned

• otherwise, alternating, a separator and a next element is parsed until no separator is
occurring any more, and the gathered elements are returned

• if during this process p1 fails, then also sepBy p1 p2 fails

• examples for pSep = parse (sepBy (noneOf ",c") (char ',')) "unk"
• pSep "b" succeeds and returns "b"
• pSep "ba" succeeds and returns "b"
• pSep "c" succeeds and returns ""
• pSep "b,a,d,e" succeeds and returns "bade"
• pSep "b,a," fails
• pSep "b,a,c" fails

RT (DCS @ UIBK) Week 7 20/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Towards Tuning the Parser: endBy

• endBy is similar to sepBy
• same type, takes element parser and separator parser
• iteratively parses p1 and p2 in sequence, until p1 fails
• all gathered elements will be returned
• if during this process p2 fails, then also endBy p1 p2 fails

• examples for pEnd = parse (sepBy (noneOf ".c") (char '.')) "unk"
• pEnd "b" fails
• pEnd "bb" fails
• pEnd "b." succeeds and returns "b"
• pEnd "b.." succeeds and returns "b"
• pEnd "b.b" fails
• pEnd "c" succeeds and returns ""
• pEnd "b.a.d.e." succeeds and returns "bade"

RT (DCS @ UIBK) Week 7 21/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A More Concise Parser

csv = endBy line eol

eol = char '\n'

line = sepBy cell (char ',')
cell = many (noneOf ",\n")

parseCSV :: String -> Either ParseError [[String]]

parseCSV input = parse csv "(unknown)" input

• parser definition can be read as specification of CSV

• no formal grammar required

RT (DCS @ UIBK) Week 7 22/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extending the Parsing of EOL

• currently: eol = char 'n'
• problem: depending on OS, end-of-line might also be "\n\r"

• extended primitive of char: string :: String -> GenParser Char u String

• try 1: eol = string "\n" <|> string "\n\r"
• problem: parse (eol >> eof) "(unknown)" "\n\r" fails
• reason: only "\n" is consumed

• try 2: eol = string "\n\r" <|> string "\n"
• problem: parse (eol >> eof) "(unknown)" "\n" fails
• reason: "\n" is consumed while trying parser string "\n\r"

• lookahead task: peek at the upcoming symbol(s) without consuming them

• Parsec’s mechanism for lookahead will be explained on next slides

• solution without this mechanism
eol = char '\n' >> (char '\r' <|> return '\n') >> return ()

RT (DCS @ UIBK) Week 7 23/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Try

• situation: parser might fail, but still consume some input
• running string "Hello" on input "Hellas is a name for Greece"

will lead to failing state with the remaining input "as is a name for Greece"

• solution: try :: GenParser tok u a -> GenParser tok u a
• if p succeeds, then try p succeeds
• if p fails, then try p fails, but the parsing state is modified in such a way as if p did not

consume any input at all

• consequence: try (string "Hello") either succeeds or does not modify the input
• usually try is used on left-hand sides of <|>

• there are exceptions, since some functions might use <|> internally

• improved parser for end of line
eol = (try (string "\n\r")

<|> try (string "\r\n")

<|> string "\n" -- for single char parsers, try has no effect

<|> string "\r") >> return ()

RT (DCS @ UIBK) Week 7 24/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Error Handling: fail

• situation: parser can accept multiple line endings
• parseCSV "line1\r\nline2\nline3\n\rline4\rline5\n"

Right [["line1"],["line2"],["line3"],["line4"],["line5"]]

• error message are not optimal: too low level
• parseCSV "line1"

Left "(unknown)" (line 1, column 6):

unexpected end of input

expecting ",", "\n\r", "\r\n", "\n" or "\r"

• since Parsec s u is an instance of MonadFail we may use fail "message"

eol = (try (string "\n\r")

<|> try (string "\r\n")

<|> string "\n"

<|> string "\r"

<|> fail "Couldn't find EOL") >> return ()

• problem: error message is just added when using fail

RT (DCS @ UIBK) Week 7 25/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Error Handling: <?> (Demo07 Parser CSV V2)

• error message are still not optimal
• parseCSV "line1"

Left "(unknown)" (line 1, column 6):

unexpected end of input

expecting ",", "\n\r", "\r\n", "\n" or "\r"

Could not find EOL

• solution: (<?>) :: Parsec s u a -> String -> Parsec s u a
• p <?> msg is similar to p <|> fail msg
• difference: if p fails and does not consume input, then msg is used as high-level error message

eol = (try (string "\n\r") <|> try (string "\r\n")

<|> string "\n" <|> string "\r"

<?> "end of line") >> return ()

• parseCSV "line1"

Left "(unknown)" (line 1, column 6):

unexpected end of input

expecting "," or end of line

RT (DCS @ UIBK) Week 7 26/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extended Example: Full CSV

• CSV cells might also contain commas

• standard solution: put double quotation marks around cells

• next problem: how to handle double quotation marks
• standard solution: use double double quotation marks

• example CSV file

Ralph,"chess, reading and swimming",18

John Michael "Ozzy" Osbourne,music,??

some,"""easy"", nice exercise","hello

world"

• expected output of parseCSV on this input
Right [

["Ralph","chess, reading and swimming","18"],

["John Michael \"Ozzy\" Osbourne","music","??"],

["some","\"easy\", nice exercise","hello\nworld"]

]

RT (DCS @ UIBK) Week 7 27/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extended Parser (Demo07 Parser CSV V3)

• only one change required in parser: the cell parser

• previous solution: cell = many (noneOf ",n")

• new, extended cell parser
cell = quotedCell <|> many (noneOf ",\n")

quotedCell =

do _ <- char '"'

content <- many quotedChar

_ <- char '"' <?> "missing closing quote at end of cell"

return content

quotedChar =

noneOf "\""

<|> try (string "\"\"" >> return '"')

• note: try on rhs of <|>; usage required, since quotedChar is used inside many

RT (DCS @ UIBK) Week 7 28/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview of Primitives and Combinators

• space (or spaces): parse a (or many) white space

• char c: parse the single character c

• noneOf bad: parse any character that is not forbidden

• oneOf good: parse any allowed character

• string s: parse the given string s (beware of partial consumption)

• many p: apply p as often as possible

• many1 p: apply p as often as possible, but at least once

• between pOpen p pClose: applies all three parsers in sequence, returns result of p

• p1 <|> p2: apply p1 first; if that fails, apply p2

• p1 <?> msg: drop potential error of p1 in p1 <|> fail msg

• choice [p1,...,pn]: same as p1 <|> ... <|> pn

• eof: check whether input has completely been consumed

• try p: if p fails, restore the consumed input of p

• https://hackage.haskell.org/package/parsec/docs/Text-Parsec-Char.html

• https://hackage.haskell.org/package/parsec/docs/Text-Parsec-Combinator.html

RT (DCS @ UIBK) Week 7 29/31

https://hackage.haskell.org/package/parsec/docs/Text-Parsec-Char.html
https://hackage.haskell.org/package/parsec/docs/Text-Parsec-Combinator.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

• develop a parser for the ARI format

• see Exercise07.hs for further details

• see https://project-coco.uibk.ac.at/ARI/ and
https://project-coco.uibk.ac.at/ARI/trs.php for the format

• example

; @author some one

; @author another one

; @origin some location

; just a comment

(format TRS)

(fun + 2)

(fun 0 0)

(fun s 1)

(rule (+ x 0) x)

(rule (+ x (s y)) (s (+ x y)))

RT (DCS @ UIBK) Week 7 30/31

https://project-coco.uibk.ac.at/ARI/
https://project-coco.uibk.ac.at/ARI/trs.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

• Real World Haskell, Chapter 16

RT (DCS @ UIBK) Week 7 31/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Parsing in General
	
	Parsec

