M universitat WS 2024/2025
™ innsbruck

Advanced Functional Programming

Week 7 — Parsing in General, Parsec

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Week

® evaluation of monadic code heavily depends on underlying monad

® example 1: difference in strictness of ;
® example 2: in some monads consecutive ; might result in nested loops

® combining multiple State-monads using datatypes with record syntax
® combination of monads using the RWS-monad
® example application: Tseitin

® error monads, MonadFail and irrefutable patterns

RT (DCS @ UIBK) Week 7 2/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing in General

RT (DCS @ UIBK) Week 7 3/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Towards Parsing of Context Free Languages

® |languages can be described by formal grammars

® most basic version: context free grammars (CFG)
e G=(V,X,R,S) is a CFG where
® V is a finite set of non-terminal symbols
® 3 is a finite set of terminal symbols
® R is a finite set of rules of the foom A — w with A € V and w € (V U X)*
® S is the starting symbol

® in examples we often just indicate the rules of a grammar;

moreover we write A — wy | wy | ... to indicate rules A — wy, A — wo, ...
® example: G={S — (S)|S+S|N, N—DN|D, D—0]|---]9}
implicit V = {S, N, D}
implicit ¥ = {0,...,9,+,(,)}
D generates digits

[]

[]

® N generates natural numbers

® S generates arithmetic expressions involving numbers, additions, and parenthesis

RT (DCS @ UIBK) Week 7 4/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Context Free Languages and Syntax Trees

e given a CFG G = (V,X, R, S) a syntax tree t of G has all of the following properties
® the root of t is .S
® for every subtree u of ¢ with root A € V there is a rule A — w € R such that u has |w|
many subtrees and the roots of these subtrees are exactly w
® every subtree u of ¢ with root @ € X is a leaf
® a syntax tree produces the word that is obtained when traversing the terminal symbols
from left to right

* L(G) C ¥* is the language of the grammar;
it consists of those words that are produced by the set of all syntax trees of G

® alanguage L' is context free if there is some CFG G such that L' = L(G)

RT (DCS @ UIBK) Week 7 5/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Syntax Tree

e consider G={S = (S)|S+S|N, N—DN|D, D—0]---|9} from before
* the following syntax tree proves 01 + (2 + 3) € L(G)
J
TN
st 5
(AT
% s)
7N\ YA N
b &Y s t+ 5
l [[[
N %
: [
b D
| !
< 3

RT (DCS @ UIBK) Week 7 6/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Ambiguity

® consider G={S = (S)|S+S|N, N—=DN|D, D—=0]|---|9} from before

e there is only 1 syntax tree that produces 01 + (2 + 3),
but in general there might be several syntax trees for the same word

® example: there are two syntax trees for 1 +2 + 3

S s\
1 -
5/+\5 ’5+ 5
PZRN 7y
/|V [Sff [[
V4 N D
A S S
D I
U B AN
2 3 1 2

e if there are multiple syntax trees for some word, then G is ambiguous

® another example of ambiguity: if b then if ¢ then x++ else y++

RT (DCS @ UIBK) Week 7

7/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Some Facts About CFGs

e given w and CFG G, the question w € L(G) is decidable in cubic time (CYK algorithm)

® sometimes ambiguous CFGs can be transformed into language-equivalent non-ambiguous
CFGs
® example grammar G from before is equivalent to the following non-ambiguous grammar G’
® (' copies rules for N and D from G
® G'alsohasrules {S—T+S|T, T—(S)|N}
e given CFGs G and G’, it is undecidable whether L(G) = L(G’)

e given CFG G, it is undecidable whether G is ambiguous
® there are inherently ambiguous context free languages where no non-ambiguous CFG
exists
o I/ ={a™b"c™d™ | n,m > 0} U {a™b™c™d"™ | n,m > 0} is context free
® if L(G) = L' and n > 0 then the word a™b™c"d"™ has at least two syntax trees in G
e further literature: Hopcraft, Ullman: Introduction to Automata Theory, Languages and
Computation

RT (DCS @ UIBK) Week 7 8/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Equivalence of G and G’

G={S=(9)|S+S|N, N=DN|D, D—=0]|--]9}
G'={S—T+S|T, T—(S)|N, N=DN|D, D—0|---|9}

® equivalence is proved in two steps

by A

we write L (A) for the language produced by CFG G where the start symbol is replaced

® Le(S)ULg(T) C Lg(S): by induction on the size of the syntax tree
® Le(S) C Le/(S): by induction on the following size of the syntax tree ¢ where
size(S — S1 +S2) =1+ size(S1) + 2 - size(S2), and the size of all other trees is 1

RT (DCS @ UIBK)

if t uses S — N € G at the root, then S — N € G’ is also possible

if ¢ uses S — (S1) € G at the root, then we can simulate it by S — T — (S1) € G’ and then
apply the IH for the tree with root S;

if t uses S — S1 + S2 € G at the root and Sy is continued by S1 — N € G, then we simulate
it by S — T+ S2 —+ N+ S2 € G’ and apply the IH for the tree with root So

if t uses S — S1 + S2 € G at the root and S, is continued by S; — (S3) € G, then we
simulate it by S — T + S2 — (S3) +S2 € G’ and apply IHs for Sz and S;

if t uses S — S1 + S2 € G at the root and Sy is continued by S1 — S3 + S4 € G, then we
rotate the tree to S — S3 + S5 where S5 — S4 + S2, and apply the IH

Week 7 9/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing of CFGs

® general task: given a CFG and some input word w

® return the unique syntax tree that generates w
® or report that this is not possible (none or more than one syntax trees)

® problems and challenges

® efficiency: general case has at least cubic complexity, but one wants to have linear algorithm;
often: traverse the input from left to right exactly once
® more expressive forms of grammars are welcome: transforming G to G’ for getting
non-ambiguity is tedious and not very readable
® Backus-Naur-Form (BNF) is more concise than CFG
® use grammars such as G and specify priorities and left/right associativity of operators
® full syntax tree is often too verbose
® dropS—(S)and S =T in G
® collapse N subtrees to a single number
® in general: provide not only grammar specification, but also result specification

® detailed and helpful error reporting

RT (DCS @ UIBK) Week 7 10/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Approaches to Getting a Parser

® use parser generators (in Haskell: happy)
® disadvantage

® might require to specify grammars in specific shape (LL(1), LALR(1))
® error reporting requires technical knowledge (resolve shift-reduce conflict, ...)

fixed feature set

® advantages

static checks on grammar
guaranteed linear time
take care of user error messages in generated parser

® use parser combinators (in Haskell: Parsec)
® disadvantages

less automation
might become inefficient, no static checks

® advantages

RT (DCS @ UIBK)

no formal specification of an input grammar required: the code is the spec

many building blocks that simplify the task of writing a parser and reading it

full flexibility of the programming language (arbitrary features)

adjustment of parsing possible on the fly, e.g., when reading new infix-operator from user

easy to control generated output
Week 7

11/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing in Phases: Lexical Analysis

e parsing can be performed in two phases: lexical analysis (lexing, tokenization) and parsing
e |exical analysis is often done using regular languages

® purpose of tokenization: simplify latter parsing phase
® examples
® simplify G={G={S—(S)|S+S|N, N—=DN|D, D—0]|---|9}to
G'={S = (9)| S+ S | number} where tokenization converts list of digits into single
number token (with integer stored inside)
® tokenization can remove all comments and can take care of whitespace
® tokenization can identify keywords and distinguish then from standard names
® example: tokenizer might convert string

"if someBool then foo else 832"
into token list
[KeywIf, Name "someBool", KeywThen, Name "foo", KeywElse, Number 832]

® tool examples: flex does lexical analysis and bison does parsing

RT (DCS @ UIBK) Week 7 12/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsec

RT (DCS @ UIBK) Week 7 13/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsec
® Parsec is a Haskell library for parsing based on parser combinators
® it can be used both to write single phase parsers, but also supports many phase parsing
® Parsec has been used in other projects, e.g., to write parsers for CSV, JSON and bibtex
® documentation: https://hackage.haskell.org/package/parsec

® alternatives to obtain parsers in Haskell that are not (further) discussed in this course

® use parser generator such as Happy

use alternative parser combinator library such as Attoparsec
use advanced fork of Parsec such as Megaparsec

don't use any library, e.g., for parsing raw PGM files

® parser combinators: assemble complex parsers from simpler ones via combinators

RT (DCS @ UIBK) Week 7 14/31

https://hackage.haskell.org/package/parsec
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Important Types in Parsec

® type Parsec s u a =

® Parsec s uis an instance of MonadFail
® s is the type of input stream, e.g., ByteString, String, [Token], ...
® u is the user state type

® Parsec has its own state, e.g., to keep track of position in input
® u can be used as an additional state that is under user control
® initially: choose no user state, sou = ()

® ais return type upon successful parsing, e.g. Int, String, Expr, AbstractSyntaxTree
® type Parser = Parsec String () parsing from a string without user state

® type GenParser tok u = Parsec [tok] u parsing from a token list with user state u

® data ParseError type to encapsulate error, instance of Show

® type SourceName = String
® running a parser, where s needs to be stream type

parse :: Parsec s () a -> SourceName -> s -> Either ParseError a

RT (DCS @ UIBK) Week 7 15/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Example: Parsing CSV Files

CSV = comma separated values

heavily used for importing and exporting data of spread sheets
CSV file is ASCII file

® each line represents one row in table, and must be terminated by end-of-line
e each line consists of cells that are separated by commas (,)
® special treatment for cells whose content contains comma

example content of CSV file

name,matrikel number,skz,email
max m.,123456,521,max@uibk.at
nina n.,654321,921,nina@uibk.at
junior,,,junior@school.at

we will develop several versions of parsers for CSV, first ignoring cells with comma

note: input to parse is String, getting file content must be done separately

RT (DCS @ UIBK) Week 7 16/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Version (Demo07 Parser CSV_V1)

csv :: Parser [[String]]
csv = do
result <- many line
eof >> return result

line :: Parser [String]
line = do

result <- cells

eol >> return result

cells :: Parser [String]
cells = do
firstC <- cellContent
nextC <- remainingCells
return $ firstC : nextC

RT (DCS @ UIBK)

remainingCells :: Parser [String]
remainingCells =

(char ',' >> cells)

<|> return []

cellContent :: Parser String
cellContent = many (noneOf ",\n")

eol :: Parser ()
eol = char '\n' >> return ()

parseCSV :: String —>

Either ParseError [[String]]
parseCSV input =

parse csv "(unknown)" input

Week 7 17/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Explanations

® many :: GenParser tok u a -> GenParser tok u [al

® many p applies p iteratively, until it fails

® many p always succeeds, results are stored and returned as list
® cof :: Show tok => GenParser tok u ()

® successful, if and only if the input stream has been fully consumed
® none0f :: [Char] -> GenParser Char u Char

® noneOf f reads the next character from the input
® successful, if and only this character is not among the forbidden characters £
® on failure, no character is consumed

® char :: Char -> GenParser Char u Char
® similar to none0f, except that one provides exactly the character that is expected

(<I>) :: Parsec s u a -> Parsec s u a -> Parsec s u a
® pl <[> p2 first tries pl
® if p1 is successful, then the result of p1 is returned
® otherwise, p2 is executed and that result is returned
® p1 should not consume input if it fails (will be discussed later); hint:

parse ((many (noneOf "ab") >> char 'a') <|> char 'c') "file" "ceeeb" fails
RT (DCS @ UIBK) Week 7 18/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Invocations

® parseCSV "Hello,Parsec\n"
Right [["Hello","Parsec"]]
® parseCSV "a,,b\n\nc,d\n"
nght [[Hall nn ||bll] [" ||] [llc" ||dll]]
® parseCSV "Hello,Parsec"
Left "(unknown)" (line 1, column 13):
unexpected end of input
expecting "," or "\n"
e first examples illustrate correct behavior on sample CSV strings
® |ast example shows that we get useful error messages by using existing framework
RT (DCS @ UIBK) Week 7

19/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Towards Tuning the Parser: sepBy

® upcoming: write more concise parsers by using further combinators
® sepBy

® sepBy pl p2 takes a parser pl for elements of type a and a parser p2 for separators : :

Parsec s u a -> Parsec s u sep -> Parsec s u [a]

® first pl is invoked to parse the first element
® if this first invocation fails, then [] is returned

® otherwise, alternating, a separator and a next element is parsed until no separator is
occurring any more, and the gathered elements are returned
® if during this process p1 fails, then also sepBy pl p2 fails

® examples for pSep = parse (sepBy (none0f ",c") (char ',')) "unk"

RT (DCS @ UIBK)

pSep
pSep
pSep
pSep
pSep
pSep

"b" succeeds and returns "b"

"ba" succeeds and returns "b"

"c" succeeds and returns ""

"b,a,d,e" succeeds and returns "bade"
"b,a," fails

"b,a,c" fails

Week 7

sep

20/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Towards Tuning the Parser: endBy

® endBy is similar to sepBy

® same type, takes element parser and separator parser
iteratively parses p1 and p2 in sequence, until p1 fails

® all gathered elements will be returned
® if during this process p2 fails, then also endBy pl p2 fails
® examples for pEnd = parse (sepBy (none0Of ".c") (char '.')) "unk"
® pEnd "b" fails
® pEnd "bb" fails
® pEnd "b." succeeds and returns "b"
® pEnd "b.." succeeds and returns "b"
® pEnd "b.b" fails
® pEnd "c" succeeds and returns ""
® pEnd "b.a.d.e." succeeds and returns "bade"

RT (DCS @ UIBK)

Week 7

21/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A More Concise Parser

csv = endBy line eol
eol = char '\n'
line = sepBy cell (char ',')

cell = many (noneOf ",\n")

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csv "(unknown)" input

e parser definition can be read as specification of CSV

® no formal grammar required

RT (DCS @ UIBK) Week 7 22/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extending the Parsing of EOL

currently: eol = char 'n'

problem: depending on OS, end-of-line might also be "\n\r"

extended primitive of char: string :: String -> GenParser Char u String
try 1: eol = string "\n" <|> string "\n\r"

® problem: parse (eol >> eof) "(unknown)" "\n\r" fails
® reason: only "\n" is consumed

try 2: eol = string "\n\r" <[> string "\n"

® problem: parse (eol >> eof) "(unknown)" "\n" fails
® reason: "\n" is consumed while trying parser string "\n\r"

lookahead task: peek at the upcoming symbol(s) without consuming them
Parsec’s mechanism for lookahead will be explained on next slides

solution without this mechanism
eol = char '\n' >> (char '\r' <|> return '\n') >> return ()

RT (DCS @ UIBK) Week 7 23/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Try

® situation: parser might fail, but still consume some input

® running string "Hello" on input "Hellas is a name for Greece"
will lead to failing state with the remaining input "as is a name for Greece"
® solution: try :: GenParser tok u a -> GenParser tok u a

® if p succeeds, then try p succeeds
® if p fails, then try p fails, but the parsing state is modified in such a way as if p did not
consume any input at all
® consequence: try (string "Hello") either succeeds or does not modify the input
e usually try is used on left-hand sides of <[>
® there are exceptions, since some functions might use <[> internally
® improved parser for end of line
eol = (try (string "\n\r")
<|> try (string "\r\n")
<|> string "\n" -- for single char parsers, try has no effect
<|> string "\r") >> return ()

RT (DCS @ UIBK) Week 7 24/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Error Handling: fail

® situation: parser can accept multiple line endings
® parseCSV "linel\r\nline2\nline3\n\rline4\rline5\n"
Right [["1linel"],["line2"],["1ine3"],["1line4"], ["line5"]]
® error message are not optimal: too low level
® parseCSV "linel"
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting ",", "\n\r", "\r\n", "\n" or "\r"
® since Parsec s u is an instance of MonadFail we may use fail "message"
eol = (try (string "\n\r")
<|> try (string "\r\n")
<|> string "\n"
<|> string "\r"
<|> fail "Couldn't find EOL") >> return ()

® problem: error message is just added when using fail

RT (DCS @ UIBK) Week 7 25/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Error Handling: <?> (Demo07 Parser CSV_V2)

® error message are still not optimal
® parseCSV "linel"

Left "(unknown)" (line 1, column 6):

unexpected end of input

expecting u’n, "\Il\I'", "\I‘\Il", "\Il" or "\I‘"

Could not find EOL

® solution: (<?7>) :: Parsec s u a -> String -> Parsec s u a

® p <7?> msgis similar to p <|> fail msg

® difference: if p fails and does not consume input, then msg is used as high-level error message

eol = (try (string "\n\r") <[> try (string "\r\n")

<|> string "\n" <[> string "\r"
<?> "end of line") >> return ()
® parseCSV "linel"

Left "(unknown)" (line 1, column 6):

unexpected end of input
expecting "," or end of line

RT (DCS @ UIBK) Week 7

26/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extended Example: Full CSV

e CSV cells might also contain commas
® standard solution: put double quotation marks around cells
® next problem: how to handle double quotation marks
® standard solution: use double double quotation marks
® example CSV file
Ralph,'"chess, reading and swimming",18
John Michael "Ozzy" Osbourne,music,??

some, """easy"", nice exercise","hello

world"
® expected output of parseCSV on this input
Right [
["Ralph","chess, reading and swimming","18"],
["John Michael \"Ozzy\" Osbourne","music","?7"],
["some","\"easy\", nice exercise","hello\nworld"]

]

RT (DCS @ UIBK) Week 7 27/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extended Parser (Demo07 _Parser CSV_V3)

® only one change required in parser: the cell parser
® previous solution: cell = many (noneOf ",n"

® new, extended cell parser
cell = quotedCell <|> many (noneOf ",\n")

quotedCell =
do _ <- char '"!
content <- many quotedChar
<- char '"' <7> "missing closing quote at end of cell"

return content

quotedChar =
none0f " \ nn
<|> try (string "\"\"" >> return '"')

® note: try on rhs of <|>; usage required, since quotedChar is used inside many

RT (DCS @ UIBK) Week 7 28/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview of Primitives and Combinators

® space (or spaces): parse a (or many) white space

® char c: parse the single character c

® none0f bad: parse any character that is not forbidden

® one0f good: parse any allowed character

® string s: parse the given string s (beware of partial consumption)

® many p: apply p as often as possible

® manyl p: apply p as often as possible, but at least once

® between pOpen p pClose: applies all three parsers in sequence, returns result of p

® pl <[> p2: apply p1 first; if that fails, apply p2

® pl <7> msg: drop potential error of pl in pl <|> fail msg

® choice [pl,...,pn]l: sameaspl <|> ... <[> pn

® ecof: check whether input has completely been consumed

® try p: if p fails, restore the consumed input of p

® https://hackage.haskell.org/package/parsec/docs/Text-Parsec-Char.html
® https://hackage.haskell.org/package/parsec/docs/Text-Parsec-Combinator.html

RT (DCS @ UIBK) Week 7 29/31

https://hackage.haskell.org/package/parsec/docs/Text-Parsec-Char.html
https://hackage.haskell.org/package/parsec/docs/Text-Parsec-Combinator.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

® develop a parser for the ARI format
® see ExerciseOQ7.hs for further details

® see https://project-coco.uibk.ac.at/ARI/ and
https://project-coco.uibk.ac.at/ARI/trs.php for the format
® example

; Q@author some one

; @author another one

; Qorigin some location

; just a comment

(format TRS)

(fun + 2)

(fun 0 0)

(fun s 1)

(rule (+ x 0) x)

(rule (+ x (s D)) (s (+ x y)))

RT (DCS @ UIBK) Week 7 30/31

https://project-coco.uibk.ac.at/ARI/
https://project-coco.uibk.ac.at/ARI/trs.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature
® Real World Haskell, Chapter 16

RT (DCS @ UIBK) Week 7 31/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Parsing in General
	
	Parsec

