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Last Week

• context free grammars
• parser combinators, example: Parsec library

• several primitives to read a single char, e.g., char, anyOf, noneOf, space, satisfy, eof
• combinators to combine parsers, e.g., many, many1, sepBy, endBy
• p1 <|> p2 and try p1 are used for non-determinism and back-tracking

• if p1 succeeds, then p1 <|> p2 and try p1 succeed
• if p1 fails after consuming some input, then p1 <|> p2 fails
• if p1 fails without consuming input, then p1 <|> p2 tries p2
• if p1 fails then try p1 fails and does not consume input

(backtrack to original position in input stream)
• try p1 <|> p2 tries p2 whenever p1 fails
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Details on Backtracking during Parsing
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Simple ARI Parser (Demo08 Parser ARI Do Blocks)

lexeme p = do

a <- p

spaces

return a

identChar = noneOf " \t\n();:"

identifier = lexeme $ many1 identChar

term = variable <|> funapp

variable = do

i <- identifier

return $ Var i

charS c = do

_ <- lexeme (char c)

return ()

funapp = do

charS '('

f <- identifier

ts <- many term

charS ')'

return $ Fun f ts

rule = do

try $ do

charS '('

exactlyS "rule"

l <- term

r <- term

charS ')'

return (l,r)

exactlyS s = lexeme $ try $ do

_ <- string s

notFollowedBy identChar <?> "..." ++ s
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Explanations

• lexeme
• lexeme p has the same behavior as p, except that trailing white space is removed
• invariant: all parsers remove trailing white space
• advantage: later parsers can always assume that there is no leading white space
• only exception: the main parser has to once remove leading white space

• charS is just a version of char that strips trailing white space and does not return the
resulting character

• in the rule parser, try is used to backtrack to the beginning, if the initial part is not of
shape ( ∗rule where rule cannot be extended into a longer identifier

• to ensure the latter we use exactlyS, which basically is using string "rule" followed
by the combinator notFollowedBy; this combinator usage enforces that no identifier
character is present after "rule"

• "rule a" is accepted by exactlyS "rule", and one jumps to the beginning of "a"
• "rules a" is not accepted by exactlyS "rule", and one jumps back to the beginning of

the text, complaining about "...rule"
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When to Use Try

• with try and <|> one can easily write inefficient parsers

• try gives rise to backtracking, and this can become expensive

• example: detect cases of (ab)∗ ∪ {a, b}∗c
pQuadratic = try (string "ab" >> pQuadratic)

<|> (eof >> return "(ab)^*")

<|> (many (oneOf "ab") >> string "c" >> return "end in c")

• solution: close try-blocks, as soon as the applicable rule has been determined

• equivalent parser with linear runtime where only the first try has been changed
pLinear = (try (string "ab") >> pLinear)

<|> (eof >> return "(ab)^*")

<|> (many (oneOf "ab") >> string "c" >> return "end in c")

• reason for linear time is the behavior of <|>
• whenever p1 in p1 <|> p2 consumes at least one character, then p2 is not tried
• consequently, if input starts with "ab", then other alternatives are not tried in pLinear
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Example: Small Try-Blocks in ARI Parser

• have a look at the rule parser again
rule = do

try $ do

charS '('

exactlyS "rule"

l <- term

r <- term

charS ')'

return (l,r)

• try is closed after keyword "rule" has been detected
• hence, after reading (rule the applied parser is fixed

• one can define similar parsers p1,...,pn, for each function symbol in a TRS
• hence, choice [p1,...,pn] will quickly select the correct parser for
(fNameI t1 ... tk), namely after reading (fNameI , without major backtracking
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Applicative Functors
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Applicative Functors, Applicative Style
• have a look at an excerpt of a previous parser
parse1 = many (oneOf "ab") >> string "c" >> return "end in c"

• here, >> is used do write the parser more succinctly

• alternative without >>

parse2 = do

_ <- many (oneOf "ab")

_ <- string "c"

return "end in c"

• observation: we often invoke several parsers, but only some of them contribute to the
parsed result

• >> is only one possible way to combine results: throw away result of left parser

• aim: more flexible combinations
• solution: use

• applicative functors
• applicative style
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Applicative Functors, Difference to Functors

• known: monads have more structure than functors

• applicative functors are between monads and functors
class Functor f => Applicative f where

(<*>) :: f (a -> b) -> f a -> f b

pure :: a -> f a

• applicative functors are stronger than Functors: it is possible to lift n-ary functions to a
sequence of n elements of an applicative functor, which is not possible with ordinary
functors

• n = 2
liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

liftA2 g x y = (pure g <*> x) <*> y
• note the partial application: pure g <*> x :: f (b -> c)
• since <*> associates to the left, one just writes pure g <*> x <*> y

• arbitrary n: pure g <*> x1 <*> x2 <*> ... <*> xn
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Applicative Functors: Laws

• laws
• pure id <*> v = v (identity)
• pure g <*> pure x = pure (g x) (homomorphism)
• pure (.) <*> u <*> v <*> w = u <*> (v <*> w) (composition)
• u <*> pure y = pure ($ y) <*> u (interchange)

• consequence: fmap g x = pure g <*> x

so fmap can be implemented via pure and <*>

• note the similarity and difference of type of fmap, <$> and <*>

(<$>), fmap :: (a -> b) -> f a -> f b

(<*>) :: f (a -> b) -> f a -> f b

• as we have seen, this small change is sufficient to allow arbitrary liftings of n-ary
functions into the applicative functor
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Towards Programming in Applicative Style

• we have already seen that sequences of <*> can combine results

• sometimes it is helpful to disregard some of the results, while still having the effect of the
functor

• therefore, there are several combinators, all with fixity declaration infixl 4

• in general, operators with a one sided arrow symbol > use only the result from that side

• all types with * assume Applicative f, all with $ assume Functor f

(<*>) :: f (a -> b) -> f a -> f b

(<*) :: f a -> f b -> f a

(*>) :: f a -> f b -> f b

(<$>) :: (a -> b) -> f a -> f b

(<$) :: a -> f b -> f a

• example implementations
(<$) = fmap . const

u (*>) v = (id <$ u) <*> v
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Programming in Applicative Style

• combine the combinators of previous slide for more succinct code

• once one gets familiar with these, this does not hinder readability

• example: live demo to switch from Demo08 Parser ARI Do Blocks to
Demo08 Parser ARI Applicative

• example explanation of function application parser:
funapp = Fun <$> (charS '(' *> identifier) <*> many term <* charS ')'

• charS '(' *> identifier consumes (fName
• since we are not interested in the open parenthesis, the result of the left parser is ignored by *>
• result of parser will be just fName

• Fun <$> (charS '(' *> identifier)
• parsing is identical, but result will now be Fun fName, a partially applied constructor

• Fun <$> (charS '(' *> identifier) <*> many term
• additionally, many terms ts are parsed and result will be the term Fun fName ts

• Fun <$> (charS '(' *> identifier) <*> many term <* charS ')'
• a closing parenthesis is parsed, but this has no impact on the result, since <* looks to the left
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Applicative Functors and Monads
• every Monad is an applicative functor
class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

(*>) :: f a -> f b -> f b

class Applicative m => Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return = pure

• monads are stronger than applicative functors
• (*>) = (>>), a1 <*> a2 = a1 >>= (\ f -> a2 >>= (\ x -> return (f x)))
• consider a computation involving n (monadic or functor) values

• for applicative functors, the computation of f <$> v1 <*> v2 <*> ... <*> vn is possible,
but each vi is computed independently, i.e., vi may not look into the results of v1,...,vi-1

• this is in contrast to monads, where this is possible:
do { x1 <- v1; x2 <- v2 x1; ... xn <- vn x1 ... (xn - 1);

return $ f x1 ... xn }

• example where monads are required: parser for terms can depend on parsed signature
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Applicative Functors and Monads (Continued)

• sometimes monad laws are too restrictive, if one just wants to have an applicative functor

• example: collect errors during computations

• monad laws enforce the following implementation of >>=, so that an error in the second
argument of >> is ignored, if first argument results in error
instance Monad (Either e) where

return = Right

Left e >>= _ = Left e -- Left e1 >> _ = Left e1

Right x >>= f = f x

• just requiring an applicative functor permits an implementation that collects errors
instance Monoid e => Applicative (Either e) where

pure = Right

Left e1 <*> Left e2 = Left (e1 <> e2) -- Left e1 *> Left e2

Right f <*> Right x = Right $ f x -- = Left $ e1 <> e2

Left e1 <*> _ = Left e1

_ <*> Left e2 = Left e2
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Monad Transformer
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Using Several Monads at Once: Monad Transformer
• sometimes, we would like to have the capabilities of several monads at once
• examples

• use several states; solution: combine all states into one record datatype
• use writer and state; solution: use RWS monad
• use state and error; solution: write dedicated monad (PGM parser monad)

• last example is tedious
• better solution: use monad transformer

• monad transformer takes a monad as input, and then adds another effect
• example: take Maybe as input monad, and then add capabilities of State on top of it
• monad transformers are all indicated by suffix T
• newtype StateT s m a = ...

this is the monad transformer to add State features
• type State s = StateT s Identity

the State monad is just the StateT monad transformer where one plugs in the Identity
monad

• newtype Identity a = Identity { runIdentity :: a } is the trivial monad

• most monads that have been presented are part of MTL, the monad transformer library
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Review Definition of Known Monads Again

• most monads are actually defined via their corresponding monad transformers

• data ParsecT s u m a = ...

type Parsec s u = ParsecT s u Identity

• newtype RWST r w s m a = ...

type RWS r w s = RWST r w s Identity

• newtype StateT s m a = ...

type State s = StateT s Identity

• . . . ; notable exception: for IO there is no IOT monad transformer
• with monad transformers we can easily combine multiple effects

• RWST r w s Maybe combines RWS with Maybe error monad
• RWST r w s IO combines RWS with IO monad
• StateT st (ParsecT s u m) is monad transformer that adds State and Parsec features
• Identity can always be used to terminate a stack of monad transformers, e.g.,
MT1 s (MT2 r (... MTn u Identity))

• because of mentioned restriction, IO must always be at the inside
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Example: Just using IO Monad

• write function to list all subdirectories with number of entries per directory

listDirectory :: FilePath -> IO [String]

listDirectory d = filter notDots <$> getDirectoryContents d

where notDots p = not $ p `elem` [".", ".."]

countEntries1 :: FilePath -> IO [(FilePath, Int)]

countEntries1 path = do

contents <- listDirectory path

rest <- flip mapM contents $ \name -> do

let newName = path </> name

isDir <- doesDirectoryExist newName

if isDir

then countEntries1 newName

else return []

return $ (path, length contents) : concat rest
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Example: Collect Output in Writer Monad via WriterT

countEntries2Main :: FilePath -> WriterT [(FilePath, Int)] IO ()

countEntries2Main path = do

contents <- liftIO . listDirectory $ path

tell [(path, length contents)]

flip mapM_ contents $ \name -> do

let newName = path </> name

isDir <- liftIO . doesDirectoryExist $ newName

when isDir $ countEntries2Main newName

countEntries2 :: FilePath -> IO [(FilePath, Int)]

countEntries2 = fmap snd . runWriterT . countEntries2Main
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Explanations

• countEntriesMain :: ... -> WriterT [(FilePath, Int)] IO ()
• since the outer type is WriterT, the result type is an instance of MonadWriter [...]
• therefore, tell :: [...] -> WriterT [...] m () is available

• liftIO :: MonadIO m => IO a -> m a lifts IO-actions to a corresponding monad
• IO is a trivial instance of MonadIO where liftIO = id
• there also is an instance (Monoid w, MonadIO m) => MonadIO (WriterT w m);

this tells us that being an MonadIO instance is preserved by WriterT w

• when :: Applicative f => Bool -> f () -> f () is if-then without else:
when p s = if p then s else pure ()

• runWriterT :: WriterT w m a -> m (a, w)
• run the WriterT monad transformer
• result will be in original monad m
• output of writer will be made available in second component of result
• similar to runWriter :: Writer w a -> (a, w)

• overall: availability of both MonadWriter and IO;
run runWriterT to convert WriterT w m a into m (a,w), i.e., eliminate WriterT
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Design of MTL

• several abstract classes, e.g., MonadWriter, MonadReader, MonadState, MonadIO,. . .

• several monad transformers, e.g., WriterT, ReaderT, StateT, . . .
• n× n instance declarations

• (Monoid w, Monad m) => MonadWriter w (WriterT w m) MonadWriter instance
• (Monoid w, MonadIO m) => MonadIO (WriterT w m) preserve MonadIO
• (Monoid w, MonadState s m) => MonadState s (WriterT w m) preserve MonadState
• . . .
• Monad m => MonadReader r (ReaderT r m) MonadReader instance
• MonadIO m => MonadIO (ReaderT r m) preserve MonadIO
• MonadState s m => MonadState s (ReaderT r m) preserve MonadState
• . . .

• in total
• allows flexible stacking of monad transformers:

choose those transformers that are required for application
• quite some effort to integrate new monad transformer:

full implementation requires connection to all other abstract classes
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Example for Stacking Monad Transformers

• example is an extension of the directory count example
• extension 1: user must specify maximal recursion depth
• extension 2: compute reached maximal recursion depth

• utilized monads
• MonadIO is required for directory access

• access via liftIO :: MonadIO m => IO a -> m a

• use MonadReader to pass configuration around; that configuration stores recursion limit
• access via ask :: MonadReader r m => m r

• use MonadState to store the maximally reached recursion depth
• access via get :: MonadState s m => m s and put :: MonadState s m => s -> m ()
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Stacking of Monad Transformers Example – Setup

data AppConfig = AppConfig {

cfgMaxDepth :: Int

} deriving (Show)

data AppState = AppState {

stDeepestReached :: Int

} deriving (Show)

type App = ReaderT AppConfig (StateT AppState IO)

runApp :: App a -> Int -> IO (a, AppState)

runApp app maxDepth =

let config = AppConfig maxDepth

state = AppState 0

in runStateT (runReaderT app config) state
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Stacking of Monad Transformers Example – App

countEntries3Main :: Int -> FilePath -> App [(FilePath, Int)]

countEntries3Main curDepth path = do

contents <- liftIO . listDirectory $ path

allowedDepth <- cfgMaxDepth <$> ask

rest <- flip mapM contents $ \name -> do

let newPath = path </> name

isDir <- liftIO $ doesDirectoryExist newPath

if isDir && curDepth < allowedDepth

then do

let newDepth = curDepth + 1

st <- get

when (stDeepestReached st < newDepth) $

put st { stDeepestReached = newDepth }

countEntries3Main newDepth newPath

else return []

return $ (path, length contents) : concat rest
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Final Steps

• wrapper for application that removes App type

countEntries3Main :: Int -> FilePath -> App [(FilePath, Int)]

runApp :: App a -> Int -> IO (a, AppState)

countEntries3 :: Int -> FilePath -> IO ([(FilePath, Int)], Int)

countEntries3 md fp =

second stDeepestReached <$> runApp (countEntries3Main 0 fp) md
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Limits of MTL
• when using MTL, one often can just use all features of the transformers in the stack
• there are two major exceptions

• a single transformer occurs multiple times, e.g., StateT Int (StateT String IO)
• what should be the type of get? return an Int or a String? how to access the other state?

• monads outside MTL are used, where no automatic instance forwarding is available
• example problem

class Monad m => MyMonad m where

myFun :: Int -> a -> m [a]

foo :: MyMonad m => a -> ReaderT Int m a

foo x = do

i <- ask

{- how to invoke "xs <- myFun i x" at this point? -}

return $ xs !! max i 5

• both problems can be solved by using
lift :: (MonadTrans t, Monad m) => m a -> t m a

• using lift, we get access to monad operations that are one level deeper in the stack
• most (or even all) monad transformers in MTL instantiate MonadTrans
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MonadTrans and lift :: (MonadTrans t, Monad m) => m a -> t m a

• second problem solved
class Monad m => MyMonad m where myFun :: Int -> a -> m [a]

foo :: MyMonad m => a -> ReaderT Int m a

foo x = do

i <- ask

xs <- lift $ myFun i x

return $ xs !! max i 5
• here, myFun i x :: m [a], so lift $ myFun i x :: ReaderT Int m [a]

• first problem solved
bar :: StateT Int (StateT String IO) ()

bar = do

(x :: Int) <- read <$> liftIO getLine

put x -- outer StateT

(s :: String) <- lift $ get -- inner StateT

liftIO $ putStrLn s
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Design Decision

• in second problem from previous slide, one has two alternatives
• solution via lift

• advantage: no instance declarations are required
• disadvantage: application code needs to insert lift

• solution by writing instance declarations
• disadvantage: a lot of boilerplate code has to be written (n× n problem)
• advantage: more comfort for the user – fewer manual liftings

• preferable solutions depends on number of required liftings
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Exercises

• Convince yourself that the order of monad transformers matters. Use two different
monad transformer stacks to run the following code, so that the result is different.
Provide the wrapper functions and explain the difference.

testApp :: (MonadError String m, MonadWriter [Bool] m) => m Int

testApp = do

tell [True]

throwError "bar"

return 5

• Use monad transformers to design an SMT encoding of the lexicographic path order;
details: see Exercise08*.hs
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Literature

• Real World Haskell, Chapters 16 and 18
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