
WS 2024/2025

Advanced Functional Programming
Week 9 – System Programming, Exceptions

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Week

• applicative functors and applicative style parsers

• monad transformers
• exercise on lexicographic path order (LPO)

• LPO is parametrized by precedence p : Σ → N

• si ⪰LPO t

f(s1, . . . , sn) ≻LPO t
(sub)

• si ≻LPO ti s ≻LPO ti+1 . . . s ≻LPO tn
s = f(s1, . . . , si−1, si, si+1, . . . , sn) ≻LPO f(s1, . . . , si−1, ti, ti+1, . . . , tn)

(lex)

• p(f) > p(g) s ≻LPO t1 . . . s ≻LPO tn
s = f(. . .) ≻LPO g(t1, . . . , tn)

(prec)

• task: find precedence such that ℓ ≻LPO r for all rules of a TRS or fail
• task is NP-complete, positive answer ensures termination of TRS
• input: String
• using ARI parser: [Rule]
• using LPO encoder: String (SMT encoding)

RT (DCS @ UIBK) Week 9 2/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

System Programming

RT (DCS @ UIBK) Week 9 3/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Current Situation

• given TRS, we obtain some SMT-Lib encoding such as

(set-logic QF_LIA)

(declare-fun x1 () Int)

(assert (and (<= 1 x1) (<= x1 4)))

...

(assert (= x7 (or (and (> x5 x2) x6) x4)))

(assert x7)

(assert (> x1 x5))

(check-sat)

• an SMT solver takes this as input, and either reports unsatisfiability or provides a model,
i.e., concrete numbers and Boolean values for each xi

• obvious question: how to invoke SMT solver from Haskell program?

• solution: use System.Process

• upcoming: a glimpse of system programming with Haskell, focussed on this application

RT (DCS @ UIBK) Week 9 4/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Communication via Files

• meta algorithm

1. write SMT encoding into file.smt2 (writeFile)
2. invoke SMT solver on file.smt2 to produce answer.txt (createProcess)
3. read answer from file answer.txt (readFile)
4. obtain sat/unsat from answer (==)
5. in case a model was found, extract precedence from answer (Parsec)
6. delete file.smt2 and answer.txt (removeFile)

• details
• as SMT solver we propose Z3 (https://github.com/Z3Prover/z3)
• concrete problem 1: understand lazy I/O
• concrete problem 2: how to choose filenames, where should files be stored
• concrete problem 3: how to invoke external processes

RT (DCS @ UIBK) Week 9 5/31

https://github.com/Z3Prover/z3
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Version of File Communication

commFile1 trs = do

let smtFile = "file.smt2"

let enc = snd $ lpoTrsEncoder trs

writeFile smtFile enc

let answerFile = "answer.txt"

-- later: invoke "z3 -smt2 file.smt2 > answer.txt", now simulate by

writeFile answerFile $ "sat\n" ++ concat (replicate 100000 "ab\n")

answer <- readFile answerFile

removeFile answerFile

removeFile smtFile

let (firstLine, rest) = lines answer

result <- if firstLine == "sat"

then return $ Just $ "parse " ++ show (length rest) ++ " lines"

else return Nothing

return result

RT (DCS @ UIBK) Week 9 6/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Concrete Problem 1: Understand Lazy I/O

commFile1 trs = do

answer <- readFile answerFile

removeFile answerFile

... answer ...

• in Haskell I/O is lazy
• answer <- readFile answerFile immediately returns after its invocation

without reading the full file
• advantage of lazy I/O:
do s <- readFile "input.txt"

writeFile "output.txt" (map toUpper s)

convert (large) file to upper-string with constant memory consumption
• disadvantage: code might crash because of lazy I/O; consider variant
do originalContent <- readFile "foo.txt"

writeFile "foo.txt" "overwrite the content"

return $ take 20 originalContent

-- *** Exception: foo.txt: withFile: resource busy (file is locked)

• solution: fine-grained control with Handles, force evaluation

RT (DCS @ UIBK) Week 9 7/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Handles
• in Haskell one can perform I/O via handles

• several I/O operations are actually done via handles
putStrLn :: String -> IO () -- print to stdout

hPutStrLn :: Handle -> String -> () -- print to handle

getLine :: IO String -- read from stdin

hGetLine :: Handle -> IO String -- read from handle

...

stdin, stdout, stderr :: Handle

getLine = hGetLine stdin

...

• stdin, stdout, stderr are handles for text input and output,
but one can also get handles in other ways (open file, open network connection, . . .)

• common operations
h <- openFile fileName mode -- open file in ReadMode, WriteMode, ...

hClose h -- close handle

hFlush h -- flush buffered output
RT (DCS @ UIBK) Week 9 8/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Things to Know About Handles

• reading from a handle is done lazily
• s <- hGetContents h and other read commands produce lazy strings:

only when s is accessed, it is actually read from the handle
• as soon as hClose h is invoked on some handle of an input stream,

further read accesses result in exceptions

• example: the returned value is accessed after closing the handle
do h <- openFile "foo.txt" ReadMode

s <- hGetContents h

hClose h

return $ take 20 s

-- *** Exception: foo.txt: ... delayed read on closed handle

• solution: enforce full evaluation of return value, e.g., via ($!!) from DeepSeq package
s <- hGetContents h

result <- return $!! take 20 s -- first 20 chars will be read

hClose h

return result

RT (DCS @ UIBK) Week 9 9/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Convenience Method for Doing File-I/O

• for the pattern ”open a file – read/write something – close a file” there is special support
by some higher order function

withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r
• withFile f m a will open the file to get a handle h, execute action a h, and then close h
• closing h file will be ensured, even if a h throws an exception

• example from previous slide in convenient form

withFile "foo.txt" ReadMode (\h -> do

s <- hGetContents h

return $!! take 20 s)

RT (DCS @ UIBK) Week 9 10/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Concrete Problem 2: Filenames

commFile1 trs = do let smtFile = "file.smt2"

writeFile smtFile enc >> ... >> removeFile smtFile

• issue 1: file.smt2 might already exist in filesystem and accidently gets overwritten
• issue 2: program is not thread-safe

• running two instances of commFile1 in parallel will result in problems

• solution: ask operating system for temporary file, given template name of type String

openTempFile :: FilePath -> String -> IO (FilePath, Handle)

withTempFile :: FilePath -> String -> (FilePath -> Handle -> IO a) -> IO a

emptyTempFile :: FilePath -> String -> IO FilePath -- not opened

... -- variants which write in default temp-directory of OS

• FilePath is directory where temporary file should be created
• template name is expanded, e.g. ”file.smt2” might turn to ”file4Xa54.smt2”
• generated filename and handle are made accessible
• temporary files are opened in ReadWriteMode
• the withTemp... variants additionally take care of deleting the temp-file after invocation

RT (DCS @ UIBK) Week 9 11/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second Version of File Communication

commFile2 trs =

withSystemTempFile "file.smt2" (\ smtFile hf ->

withSystemTempFile "answer.txt" (\ answerFile ha -> do

let enc = snd $ lpoTrsEncoder trs

hPutStrLn hf enc

hFlush hf

-- TODO: invoke "z3 -smt2 smtFile > answerFile", or simulate by

hPutStrLn ha $ "sat\n" ++ concat (replicate 100000 "ab\n")

hSeek ha AbsoluteSeek 0

answer <- hGetContents ha

let (firstLine : rest) = lines answer

result <- if firstLine == "sat"

then return $!! Just $ "parse " ++ show (length rest) ++ " lines"

else return Nothing

return result))

RT (DCS @ UIBK) Week 9 12/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Concrete Problem 3: Creation of External Processes

• Haskell offers the following main function to invoke external processes

createProcess :: CreateProcess ->

IO (Maybe Handle, Maybe Handle, Maybe Handle, ProcessHandle)

• CreateProcess is a record datatype with 15 fields to configure what process should be
called in which way

• one usually uses one of the following functions and overwrites specified entries

proc :: FilePath -> [String] -> CreateProcess

shell :: String -> CreateProcess

• ProcessHandle is a handle to control the new process

waitForProcess :: ProcessHandle -> IO ExitCode

terminateProcess :: ProcessHandle -> IO ()

• Maybe Handle provide access to stdin, stdout, stderr of the new process, which might
also be setup via CreateProcess

RT (DCS @ UIBK) Week 9 13/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Final Version of File Communication

commFile3 trs = withSystemTempFile "file.smt2" (\ smtFile hf -> do

answerFile <- emptySystemTempFile "answer.txt" -- do not immediately open

let enc = snd $ lpoTrsEncoder trs

hPutStrLn hf $ enc ++ "(exit)\n" -- tell z3 to terminate after search

hClose hf -- flush and release write-lock on smtFile

let cpConfig = shell $ "z3 -smt2 " ++ smtFile ++ " > " ++ answerFile

(_,_,_,ph) <- createProcess cpConfig -- start z3

_ <- waitForProcess ph -- and wait until it has finished

answer <- readFile answerFile

let result = head (lines answer) == "sat" -- no precedence extraction

removeFile answerFile -- cleanup

return result) -- result: does LPO exist for this TRS

RT (DCS @ UIBK) Week 9 14/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Limits of Current Workflow

• situation: two parties (Haskell HS, z3 solver), both accessing shared resources
• simple communication via files

• HS writes smtFile and spawns solver
• solver reads smtFile
• solver writes answerFile and terminates
• HS reads answerFile
• HS prints result and terminates

• limitation: cannot model more complex scenarios, e.g., where HS issues commands to
solver that depend on previous answers of solver

• HS: solve these constraints
• solver: “sat”
• HS (after reading “sat”): give me the value of x1 and x5

• solver: x1 = 5, x5 = True
• HS: solve other constraints
• solver: “unsat”
• HS does not ask for values after reading “unsat” (query might even crash the solver)
• . . .

RT (DCS @ UIBK) Week 9 15/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Towards a More Complex Workflow

• in order to communicate with external processes, instead of files one can use pipes
• during process creation, one can setup communication channels via pipes

do let cpConfig = (proc "z3" ["-in"]){

std_out = CreatePipe,

std_in = CreatePipe }

(Just hSmtIn, Just hSmtOut, _, pHandle) <- createProcess cpConfig

• command line argument -in tells z3 to take input from stdin
• overwriting cpConfig {std_in = CreatePipe} tells createProcess, that Haskell

program wants to have a handle to stdin of the spawned process, implemented by a pipe
• hPutStrLn hSmtIn "hello" will send "hello\n" to new process
• rule of thumb: after issuing a command to the solver, one should invoke hFlush hSmtIn to

ensure that all buffers will be written
• similarly, everything that the spawned process writes to stdout can be read via hSmtOut
• question: how much should be read from the solver? depends on protocol!

RT (DCS @ UIBK) Week 9 16/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Communication with an Interactive Program such as z3

• after issuing the (check-sat) command, z3 will answer with "sat\n" or "unsat\n"

• if the answer was "sat\n", one can issue a z3-command such as (get-value (x1 x5))

• afterwards, z3 will answer with "((x1 2)(x5 7))"

(string might contain additional whitespace, including several newlines)

• task 1: write a parser for these kinds of answers, e.g., using Parsec
• task 2: invoke the parser

• problem 1: how long should we read from hSmtOut?
• obvious: until final closing ”)” has been read
• but to detect this final closing ”)”, we need to run the parser

• problem 2: runParser (or parse) expects a String as input, not a Handle
• solution: use lazy I/O

• just pretend that one can read and get access to the full string that z3 will write to stdout
during its invocation, by invoking hGetContents hSmtOut

• stop consuming input after final closing ”)”

RT (DCS @ UIBK) Week 9 17/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Parsing with Lazy I/O

• Haskell is surprisingly simple, but tricky
smtAnswerParser :: Parser [(String, Integer)]

smtAnswerParser = ... Exercise ...

-- h might be hSmtOut

smtAnswerFromHandle :: Handle -> IO [(String, Integer)]

smtAnswerFromHandle h = do

input <- hGetContents h

case parse smtAnswerParser "" input of

Left e -> error $ show e

Right res -> return res

• remarks
• one needs to ensure that the parser immediately stops after reading the final closing ”)”
• for simplicity we assumed that we are only interested in integer values, but not in Booleans

RT (DCS @ UIBK) Week 9 18/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Full LPO-Solver

lpoSolver :: TRS -> IO (Maybe LPO)

lpoSolver trs = do

let (precMap, smtString) = first M.toList $ lpoTrsEncoder trs

let cpConfig = (proc "z3" ["-in"]){ std_out = CreatePipe, std_in = CreatePipe }

(Just hSmtIn, Just hSmtOut, _, pHandle) <- createProcess cpConfig -- start z3

hPutStrLn hSmtIn smtString >> hFlush hSmtIn -- command: detect sat

satStatus <- hGetLine hSmtOut -- read sat/unsat line

answer <- if satStatus /= "sat" then return Nothing else

if null precMap then return $ Just $ LPO_with_Precedence [] -- special case

else do hPutStrLn hSmtIn $ smtRequestValues (map snd precMap)

hFlush hSmtIn

parsedModel <- M.fromList <$> smtAnswerFromHandle hSmtOut

return $ Just $ LPO_with_Precedence $

map (\ (f, xi) -> (f, parsedModel M.! show xi)) precMap

hPutStrLn hSmtIn "(exit)" -- final cleanup: soft

hClose hSmtOut >> hClose hSmtIn

terminateProcess pHandle -- or hard termination

return $ answer -- eventually return result

RT (DCS @ UIBK) Week 9 19/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Remarks

• special treatment for empty list is required, since z3 does not like to be asked for an
empty list of values

• we first give z3 the chance to terminate itself via command "(exit)",
afterwards we use the harder terminateProcess method (SIGTERM signal, i.e., kill)
(there are also variants to send a SIGKILL signal, i.e., kill -9)

• the design is not optimal, as the communication and the special treatment of empty list
is implemented inside lpoSolver

• problem: implementation needs to be repeated for every other z3-based search algorithm
• solution: exercise

RT (DCS @ UIBK) Week 9 20/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exceptions

RT (DCS @ UIBK) Week 9 21/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to Handle Errors

• distinguish two kind of errors
• errors under control of programmer

• how to handle parsing error?
• how to handle division-by-zero when evaluating user provided expression?
• how to handle invocation of function if input is invalid?

• errors not under our control
• all kind of I/O errors: network, file not found, no write permission, external process crashes,

. . .
• runtime errors that arise when invoking custom functions

• handling the former can be done using Maybe, MonadError, etc.;
has been discussed thoroughly

• both kinds of errors can be handled via exceptions

RT (DCS @ UIBK) Week 9 22/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exceptions

• exception handling is supported by several programming languages, including Haskell

• exceptions can be thrown by any function via one of these functions
error :: String -> a

throw :: Exception e => e -> a

throwIO :: Exception e => e -> IO a

• whether some function evaluation may result in an exception is not visible from its type
• error and throw are imprecise exceptions

• pure value (throw ex + error "fail") :: Int may result in either of the exceptions
• use throwIO for precise exceptions, e.g. throwIO ex >> error "fail" will result in ex

• exception handling can be done for errors that occur several layers down the call stack
• in Haskell, exceptions can only be catched within I/O-monad

• reason: unspecified evaluation order, e.g., consider problem
let x = error "fail" in f (g x) (h x)

where both g and h are allowed to perform exception handling

• no special syntax for exception handling; instead: use functions

RT (DCS @ UIBK) Week 9 23/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Try
• in this part we are looking at try of Control.Exception, and not the try of Parsec!
• try :: Exception e => IO a -> IO (Either e a)

• try action returns Right x if action results in x without raising an exception
• try action returns Left e if action results in an exception of type e

• one often has to choose a concrete type e for e by a type annotation

• choosing e = SomeException catches all exceptions, since SomeException is the root
of all exception types; usually, you should not catch all exceptions!

• consider the following code
badNumber, goodNumber :: Int

badNumber = 5 `div` 0

goodNumber = 5 `div` 1

tryBad, tryGood :: IO (Either SomeException ()) -- catch any exception

tryBad = try (putStrLn $ show badNumber) -- Left divide by zero

tryGood = try (putStrLn $ show goodNumber) -- 5, Right ()

• neither tryBad nor tryGood result in an exception

RT (DCS @ UIBK) Week 9 24/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Try and Laziness

• consider the following code (e = SomeException omitted)
tryReturnBad = try (return badNumber) >>= (\ x -> putStrLn $ show x)

• execution results in: Right *** Exception: divide by zero

• reason is lazy evaluation
• return badNumber does not throw an exception, since evaluation of badNumber is not

enforced at this point
• hence, try (return badNumber) is equivalent to return $ Right badNumber
• x is then bound to Right badNumber
• putStrLn $ show x starts to print, where

• first the string "Right " is produced
• then badNumber is evaluated and an exception occurs

• solution: use evaluate :: a -> IO a instead of return to force evaluation to WHNF
tryEvaluateBad = try (evaluate badNumber) >>= (putStrLn . show)

results in Left divide by zero where exception has been catched

• if WHNF is not enough for use-case, then replace evaluate by methods from DeepSeq
module, e.g., ($!!)

RT (DCS @ UIBK) Week 9 25/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Catching Exceptions

• use-case: deal with exception instead of returning Either-type

• most basic version: catch :: Exception e => IO a -> (e -> IO a) -> IO a

• behavior of catch a h
• execute action a
• if execution throws an exception e, then h e is executed

• example application

tryToRead f = catch (readFile f) $ \e ->

do let err = show (e :: IOException)

hPutStr stderr ("Warning: Couldn't open " ++ f ++ ": " ++ err)

return ""

• IOException is root of all I/O exceptions
• hence, tryToRead catches I/O exceptions, but does not catch other exceptions, e.g., test
tryToRead $ "file" ++ show (1 `div` 0)

RT (DCS @ UIBK) Week 9 26/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Catching Exceptions with Multiple Handlers

• use-case: deal with exception, choose handler depending on exception type

• obvious idea: nested catch-applications
f = expr `catch` \ (ex :: ArithException) -> handleArith ex

`catch` \ (ex :: IOException) -> handleIO ex

• problem besides inefficiency
• if first exception handler handleArith raises an IOException, then this is caught by the

second handler
• aim: select one exception handler depending on raised exception

• solution via catches :: IO a -> [Handler a] -> IO a
f = expr `catches`

[Handler (\ (ex :: ArithException) -> handleArith ex),

Handler (\ (ex :: IOException) -> handleIO ex)]

• interesting datatype for handlers
• data Handler a = forall e . Exception e => Handler (e -> IO a)
• Handler a does not depend on e because of usage of forall
• hence, one can add exception handlers for different choices of e in the same list

RT (DCS @ UIBK) Week 9 27/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Catching Exceptions with Predicates

• use-case: select which exceptions to handle based on a predicate

• catchJust :: Exception e =>
(e -> Maybe b) -> IO a -> (b -> IO a) -> IO a

• the function e -> Maybe b selects if an exception e should be treated
• if so (Just b), the handler is invoked, otherwise the exception will be left untouched

• examination of an IOException: consider module System.IO.Error
• type IOError = IOException
• isPermissionError :: IOError -> Bool
• isDoesNotExistError :: IOError -> Bool
• isEOFError :: IOError -> Bool
• . . .

RT (DCS @ UIBK) Week 9 28/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Exception Types

• creating an exception type is easy; example

data MyException = NegativeInput | TooLarge deriving (Show)

instance Exception MyException -- no methods required

easyPrimeTest, prime :: Integer -> Bool

easyPrimeTest x

| x < 0 = throw NegativeInput

| x > 30 = throw TooLarge

| otherwise = x `elem` [2,3,5,7,11,13,17,21,23,29]

prime x = catchJust

(\ myE -> case myE of { TooLarge -> Just (); _ -> Nothing })

(evaluate $ easyPrimeTest x)

(\ () -> error $ "TODO: run full prime test on " ++ show x)

RT (DCS @ UIBK) Week 9 29/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

• Task 1: Write a parser for the get-value answer of z3 in applicative style. You should also
generalize the parser in a way that it can deal with Booleans and (positive or negative)
integers.

• Task 2: Restructure the design of the SMT connection and lpoSolver so that all the
communication with z3 is encapsulated in the SMT module. Think of a suitable
interface, so that the SMT connection is easily reusable for other encoding tasks.

• Task 3: Integrate exception handling, e.g., there might be problems that createProcess
fails since z3 is not available, or z3 might crash or deliver unexpected answers which
cannot be parsed. The implementation should work as follows:

• create a dedicated exception type for SMT related problems
• parse errors of z3’s output or createProcess exceptions should be converted into suitable

SMT exceptions that contain a brief problem description (hint: use throw inside handler)
• write a wrapper around lpoSolver that catches SMT exceptions and returns one of three

results without throwing an exception: YES(with precedence) or NO(not solvable by LPO)
or MAYBE(problem description is printed to stderr)

RT (DCS @ UIBK) Week 9 30/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

• Real World Haskell, Chapters 7, 19 and 20
• Chapter 19 is partly outdated: describes no longer available Exception type, which was

changed into an Exception class
• Chapter 20 is partly outdated: uses deprecated System.Cmd and not System.Process

• https://hackage.haskell.org/package/base/docs/System-IO.html

• https://hackage.haskell.org/package/deepseq/docs/Control-DeepSeq.html

• https://hackage.haskell.org/package/temporary/docs/System-IO-Temp.html

• https://hackage.haskell.org/package/process/docs/System-Process.html

• https://hackage.haskell.org/package/base/docs/Control-Exception.html

RT (DCS @ UIBK) Week 9 31/31

https://hackage.haskell.org/package/base/docs/System-IO.html
https://hackage.haskell.org/package/deepseq/docs/Control-DeepSeq.html
https://hackage.haskell.org/package/temporary/docs/System-IO-Temp.html
https://hackage.haskell.org/package/process/docs/System-Process.html
https://hackage.haskell.org/package/base/docs/Control-Exception.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	System Programming
	
	Exceptions

