M universitat WS 2024/2025 Last Week
™ innsbruck

® applicative functors and applicative style parsers
® monad transformers

® exercise on lexicographic path order (LPO)
® LPO is parametrized by precedence p: ¥ — N

Si =Lpo t
f(s1,...,8n) =LPO t (s00)
si =rLpo ti s =rLpo tit1 s >LPO tn
s = f(Sl, ey 8i—1,8i,Si41y. . ,Sn) >LPO]‘.(817 ey 51'71,t¢,ti+1, e ,tn) (e
. P(f)>plg) s+rrots 8 =1PO tn (o)
Advanced Functional Programming , ¢ =J(.) =zro gl tn) ,
® task: find precedence such that ¢ > po r for all rules of a TRS or fail
Week 9 — System Programming, Exceptions ® task is NP-complete, positive answer ensures termination of TRS
® input: String
¢ L ® using ARI parser: [Rule]
René Thiemann ® using LPO encoder: String (SMT encoding)
Department of Computer Science
RT (DCS @ UIBK) Week 9 2/31

Current Situation
e given TRS, we obtain some SMT-Lib encoding such as
(set-logic QF_LIA)
(declare-fun x1 () Int)
(assert (and (<=1 x1) (<= x1 4)))

(assert (= x7 (or (and (> x5 x2) x6) x4)))
(assert x7)

(assert (> x1 x5))

(check-sat)

System Programming

an SMT solver takes this as input, and either reports unsatisfiability or provides a model,
i.e., concrete numbers and Boolean values for each xi

® obvious question: how to invoke SMT solver from Haskell program?
® solution: use System.Process
® upcoming: a glimpse of system programming with Haskell, focussed on this application

RT (DCS @ UIBK) Week 9 3/31 RT (DCS @ UIBK) Week 9 4/31

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Communication via Files

® meta algorithm

1. write SMT encoding into file.smt2 (writeFile)
2. invoke SMT solver on file.smt2 to produce answer.txt (createProcess)
3. read answer from file answer.txt (readFile)
4. obtain sat/unsat from answer (==)
5. in case a model was found, extract precedence from answer (Parsec)
6. delete file.smt2 and answer.txt (removeFile)
® details

® as SMT solver we propose Z3 (https://github.com/Z3Prover/z3)
® concrete problem 1: understand lazy 1/O
® concrete problem 2: how to choose filenames, where should files be stored
® concrete problem 3: how to invoke external processes

RT (DCS @ UIBK) Week 9 5/31

Concrete Problem 1: Understand Lazy 1/0

commFilel trs = do
answer <- readFile answerFile
removeFile answerFile
answer

® in Haskell 1/0 is lazy
® answer <- readFile answerFile immediately returns after its invocation
without reading the full file
® advantage of lazy I/O:
do s <- readFile "input.txt"
writeFile "output.txt" (map toUpper s)
convert (large) file to upper-string with constant memory consumption
® disadvantage: code might crash because of lazy |/O; consider variant
do originalContent <- readFile "foo.txt"
writeFile "foo.txt" "overwrite the content"
return $ take 20 originalContent

-— *** Exception: foo.txt: withFile: resource busy (file is locked)

® solution: fine-grained control with Handles, force evaluation

RT (DCS @ UIBK) Week 9

7/31

First Version of File Communication

commFilel trs = do

let smtFile = "file.smt2"

let enc = snd $ lpoTrsEncoder trs
writeFile smtFile enc

let answerFile = "answer.txt"

-- later: invoke "z3 -smt2 file.smt2 > answer.txt", now simulate by
writeFile answerFile $ "sat\n" ++ concat (replicate 100000 "ab\n")

answer <- readFile answerFile

removeFile answerFile

removeFile smtFile

let (firstLine, rest) = lines answer

result <- if firstLine == "sat"
then return $ Just $§ "parse " ++ show (length rest) ++ " lines"
else return Nothing

return result

RT (DCS @ UIBK) Week 9

Handles

® in Haskell one can perform I/O via handles

® several |/O operations are actually done via handles

putStrLn String -> I0 () -- print to stdout
hPutStrLn Handle -> String -> () -- print to handle
getLine I0 String -- read from stdin
hGetLine Handle -> I0 String -- read from handle

stdin, stdout, stderr Handle

getlLine = hGetLine stdin

® stdin, stdout, stderr are handles for text input and output,

but one can also get handles in other ways (open file, open network connection, ...

® common operations

h <- openFile fileName mode -- open file in ReadMode, WriteMode,
hClose h —-- close handle
hFlush h -- flush buffered output

RT (DCS @ UIBK) Week 9

)

6/31

8/31

https://github.com/Z3Prover/z3
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Things to Know About Handles

® reading from a handle is done lazily

® s <- hGetContents h and other read commands produce lazy strings: Convenience Method for Doing Fi|e_|/0
only when s is accessed, it is actually read from the handle .))) o))
® as soon as hClose h is invoked on some handle of an input stream, e for the pattern "open a file — read/write something — close a file" there is special support
further read accesses result in exceptions by some higher order function
e example: the returned value is accessed after closing the handle withFile :: FilePath -> IOMode -> (Handle -> I0 r) -> I0 r
do h <- openFile "foo.txt" ReadMode ® yithFile f m a will open the file to get a handle h, execute action a h, and then close h
s <- hCGetContents h ® closing h file will be ensured, even if a h throws an exception
hClose h ® example from previous slide in convenient form
return $ take 20 s

withFile "foo.txt" ReadMode (\h -> do

-- **x*x Exception: foo.txt: ... delayed read on closed handle s <- hCetContents h
® solution: enforce full evaluation of return value, e.g., via ($!!) from DeepSeq package return $!! take 20 s)
s <- hGetContents h
result <- return $!! take 20 s -- first 20 chars will be read
hClose h

return result

RT (DCS @ UIBK) Week 9 9/31 RT (DCS @ UIBK) Week 9 10/31
Concrete Problem 2: Filenames Second Version of File Communication
commFilel trs = do let smtFile = "file.smt2" commFile2 trs = _
teFil tFil >> > Fil tFil withSystemTempFile "file.smt2" (\ smtFile hf ->

writeriie smiiite enc e remoYe 1he smbhite withSystemTempFile "answer.txt" (\ answerFile ha -> do

® issue 1: file.smt2 might already exist in filesystem and accidently gets overwritten let enc = snd $ lpoTrsEncoder trs

® issue 2: program is not thread-safe hPutStrLn hf enc

® running two instances of commFilel in parallel will result in problems hFlush hf

® solution: ask operating system for temporary file, given template name of type String —— TODO: invoke "z3 -smt2 smtFile > answerFile", or simulate by

openTempFile :: FilePath -> String -> I0 (FilePath, Handle) hPutStrln ha $ "sat\n" ++ concat (replicate 100000 "abln')
withTempFile :: FilePath -> String -> (FilePath -> Handle -> I0 a) -> I0 a hSeek ha AbsoluteSeek O
emptyTempFile :: FilePath -> String -> I0 FilePath -- not opened
... —— variants which write in default temp-directory of 0S answer <- hGetContents ha
® FilePath is directory where temporary file should be created let (firstLine : rest) = lines answer
® template name is expanded, e.g. "file.smt2" might turn to "file4Xa54.smt2" result <- if firstLine == "sat"
® generated filename and handle are made accessible then return $!! Just $ "parse " ++ show (length rest) ++ " lines"
® temporary files are opened in ReadWriteMode else return Nothing
L]

the withTemp. .. variants additionally take care of deleting the temp-file after invocation return result))

RT (DCS @ UIBK) Week 9 11/31 RT (DCS @ UIBK) Week 9 12/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Concrete Problem 3: Creation of External Processes Final Version of File Communication

® Haskell offers the following main function to invoke external processes commFile3 trs = withSystemTempFile "file.smt2" (\ smtFile hf -> do
answerFile <- emptySystemTempFile "answer.txt" -- do not immediately open
createProcess :: CreateProcess ->
I0 (Maybe Handle, Maybe Handle, Maybe Handle, ProcessHandle) let enc = snd $ lpoTrsEncoder trs
® CreateProcess is a record datatype with 15 fields to configure what process should be hPutStrLn hf $ enc ++ "(exit)\n" -- tell z3 to terminate after search
called in which way hClose hf -- flush and release write-lock on smtFile

® one usually uses one of the following functions and overwrites specified entries
let cpConfig = shell $§ "z3 -smt2 " ++ smtFile ++ " > " ++ answerFile

proc :: Filel?ath -> [String] -> CreateProcess (_,_,_,ph) <- createProcess cpConfig —— start z3
shell :: String -> CreateProcess _ <- waitForProcess ph -- and wait until it has finished

® ProcessHandle is a handle to control the new process
answer <- readFile answerFile

waitForProcess :: ProcessHandle -> IO ExitCode let result = head (lines answer) == "sat" -- no precedence extraction
terminateProcess :: ProcessHandle -> I0 ()
i i i i removeFile answerFile -- cleanup
® Maybe Handle provide access to stdin, stdout, stderr of the new process, which might
also be setup via CreateProcess return result) -- result: does LPO exist for this TRS
RT (DCS @ UIBK) Week 9 13/31 RT (DCS @ UIBK) Week 9 14/31

Limits of Current Workflow Towards a More Complex Workflow

® sjtuation: two parties (Haskell HS, z3 solver), both accessing shared resources
P () & ® in order to communicate with external processes, instead of files one can use pipes

® simple communication via files
® during process creation, one can setup communication channels via pipes

® HS writes smtFile and spawns solver
® solver reads smtFile do let cpConfig = (proc "z3" ["-in"]1){
® solver writes answerFile and terminates std_out = CreatePipe,
® HS reads answerFile std_in = CreatePipe }
¢ HS prints result and terminates (Just hSmtIn, Just hSmtOut, _, pHandle) <- createProcess cpConfig
® [imitation: cannot model more complex scenarios, e.g., where HS issues commands to
solver that depend on previous answers of solver ® command line argument -in tells z3 to take input from stdin
® HS: solve these constraints ® overwriting cpConfig {std_in = CreatePipe} tells createProcess, that Haskell
® solver: “sat” program wants to have a handle to stdin of the spawned process, implemented by a pipe
® HS (after reading “sat”): give me the value of 21 and x5 ® hPutStrLn hSmtIn "hello" will send "hello\n" to new process
® solver: 1 =5, x5 = True ® rule of thumb: after issuing a command to the solver, one should invoke hFlush hSmtIn to
® HS: solve other constraints ensure that all buffers will be written
® solver: “unsat” ® similarly, everything that the spawned process writes to stdout can be read via hSmtOut
® HS does not ask for values after reading “unsat” (query might even crash the solver) ® question: how much should be read from the solver? depends on protocol!
[]

RT (DCS @ UIBK) Week 9 15/31 RT (DCS @ UIBK) Week 9 16/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Communication with an Interactive Program such as z3

® after issuing the (check-sat) command, z3 will answer with "sat\n" or "unsat\n"
® if the answer was "sat\n", one can issue a z3-command such as (get-value (x1 x5))

® afterwards, z3 will answer with " ((x1 2) (x5 7))"
(string might contain additional whitespace, including several newlines)

® task 1: write a parser for these kinds of answers, e.g., using Parsec

® task 2: invoke the parser

® problem 1: how long should we read from hSmtOut?
® obvious: until final closing ")" has been read
® but to detect this final closing ")”, we need to run the parser

® problem 2: runParser (or parse) expects a String as input, not a Handle

® solution: use lazy 1/0
® just pretend that one can read and get access to the full string that z3 will write to stdout

during its invocation, by invoking hGetContents hSmtOut

® stop consuming input after final closing ")"

RT (DCS @ UIBK) Week 9 17/31

Full LPO-Solver

lpoSolver :: TRS -> I0 (Maybe LPO)
lpoSolver trs = do
let (precMap, smtString) = first M.tolList $ lpoTrsEncoder trs
let cpConfig = (proc "z3" ["-in"]){ std_out = CreatePipe, std_in = CreatePipe }
(Just hSmtIn, Just hSmtOut, _, pHandle) <- createProcess cpConfig -- start z3
hPutStrLn hSmtIn smtString >> hFlush hSmtlIn -- command: detect sat
satStatus <- hGetLine hSmtOut -- read sat/unsat line
answer <- if satStatus /= "sat" then return Nothing else
if null precMap then return $ Just $ LPO_with_Precedence []
else do hPutStrLn hSmtIn $ smtRequestValues (map snd precMap)
hFlush hSmtIn
parsedModel <- M.fromList <$> smtAnswerFromHandle hSmtOut
return $ Just $ LPO_with_Precedence $
map (\ (f, xi) -> (f, parsedModel M.! show xi)) precMap

-- special case

hPutStrLn hSmtIn "(exit)" -- final cleanup: soft
hClose hSmtOut >> hClose hSmtIn
terminateProcess pHandle -- or hard termination

return $ answer -- eventually return result

RT (DCS @ UIBK) Week 9 19/31

Parsing with Lazy 1/0
® Haskell is surprisingly simple, but tricky
smtAnswerParser Parser [(String, Integer)]
smtAnswerParser = Exercise
-- h might be hSmtOut
smtAnswerFromHandle Handle -> I0 [(String, Integer)]
smtAnswerFromHandle h = do
input <- hGetContents h
case parse smtAnswerParser "" input of
Left e -> error $ show e
Right res -> return res

® remarks

® one needs to ensure that the parser immediately stops after reading the final closing)"
® for simplicity we assumed that we are only interested in integer values, but not in Booleans

RT (DCS @ UIBK) Week 9 18/31

Remarks

® special treatment for empty list is required, since z3 does not like to be asked for an
empty list of values

® we first give z3 the chance to terminate itself via command " (exit)",
afterwards we use the harder terminateProcess method (SIGTERM signal, i.e., kill)
(there are also variants to send a SIGKILL signal, i.e., kill -9)

® the design is not optimal, as the communication and the special treatment of empty list
is implemented inside 1poSolver

® problem: implementation needs to be repeated for every other z3-based search algorithm
® solution: exercise

RT (DCS @ UIBK) Week 9 20/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RT (DCS @ UIBK)

Exceptions

Week 9

Exceptions

RT (DCS @ UIBK)

exception handling is supported by several programming languages, including Haskell

exceptions can be thrown by any function via one of these functions

error String -> a
throw Exception e => e -> a
throwI0 Exception e => e -> 10 a

whether some function evaluation may result in an exception is not visible from its type
error and throw are imprecise exceptions
® pure value (throw ex + error "fail") :: Int may result in either of the exceptions
® use throwIO for precise exceptions, e.g. throwI0 ex >> error "fail" will result in ex
exception handling can be done for errors that occur several layers down the call stack
in Haskell, exceptions can only be catched within |/O-monad

® reason: unspecified evaluation order, e.g., consider problem
let x = error "fail" in f (g x) (h x)
where both g and h are allowed to perform exception handling

no special syntax for exception handling; instead: use functions

Week 9

How to Handle Errors

e distinguish two kind of errors
® errors under control of programmer
® how to handle parsing error?
® how to handle division-by-zero when evaluating user provided expression?
® how to handle invocation of function if input is invalid?
® errors not under our control
® all kind of 1/O errors: network, file not found, no write permission, external process crashes,

® runtime errors that arise when invoking custom functions

® handling the former can be done using Maybe, MonadError, etc,;
has been discussed thoroughly

® both kinds of errors can be handled via exceptions

21/31 RT (DCS @ UIBK) Week 9 22/31

Try
in this part we are looking at try of Control.Exception, and not the try of Parsec!
try Exception e => I0 a -> I0 (Either e a)

® try action returns Right x if action results in x without raising an exception

® try action returns Left e if action results in an exception of type e

one often has to choose a concrete type e for e by a type annotation

choosing e = SomeException catches all exceptions, since SomeException is the root
of all exception types; usually, you should not catch all exceptions!

consider the following code
badNumber, goodNumber
badNumber = 5 “div™ 0O
goodNumber = 5 “div™ 1

Int

tryBad, tryGood :: I0 (Either SomeException ())
tryBad = try (putStrLn $ show badNumber)
tryGood = try (putStrLn $ show goodNumber)

-- catch any exception
-- Left divide by zero
-- 5, Right ()

® neither tryBad nor tryGood result in an exception

23/31 RT (DCS @ UIBK) Week 9 24/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Try and Laziness

® consider the following code (e = SomeException omitted)
tryReturnBad = try (return badNumber) >>= (\ x -> putStrLn $ show x)

® execution results in: Right *** Exception: divide by zero
® reason is lazy evaluation
® return badNumber does not throw an exception, since evaluation of badNumber is not
enforced at this point
® hence, try (return badNumber) is equivalent to return $ Right badNumber

® x is then bound to Right badNumber
® putStrLn $ show x starts to print, where

® first the string "Right " is produced
® then badNumber is evaluated and an exception occurs
® solution: use evaluate :: a -> I0 a instead of return to force evaluation to WHNF
tryEvaluateBad = try (evaluate badNumber) >>= (putStrLn . show)
results in Left divide by zero where exception has been catched

e if WHNF is not enough for use-case, then replace evaluate by methods from DeepSeq
module, e.g., ($!1)

RT (DCS @ UIBK) Week 9 25/31

Catching Exceptions with Multiple Handlers
® use-case: deal with exception, choose handler depending on exception type
® obvious idea: nested catch-applications
f = expr “catch® \ (ex :: ArithException) -> handleArith ex
“catch™ \ (ex :: IOException) -> handlelO ex
® problem besides inefficiency

® if first exception handler handleArith raises an I0Exception, then this is caught by the
second handler
® aim: select one exception handler depending on raised exception

® solution via catches :: I0 a -> [Handler a] -> I0 a
f = expr “catches”
[Handler (\ (ex :: ArithException) -> handleArith ex),
Handler (\ (ex :: IOException) -> handlelO ex)]
® interesting datatype for handlers

® data Handler a = forall e . Exception e => Handler (e -> IO a)
® Handler a does not depend on e because of usage of forall
® hence, one can add exception handlers for different choices of e in the same list

RT (DCS @ UIBK) Week 9 27/31

Catching Exceptions

® use-case: deal with exception instead of returning Either-type
® most basic version: catch :: Exception e => I0 a -> (e -> I0 a) -> I0 a
® behavior of catch a h

® execute action a
® if execution throws an exception e, then h e is executed

® example application
tryToRead f = catch (readFile f) $ \e ->

do let err = show (e :: IOException)
hPutStr stderr ("Warning: Couldn't open " ++ f ++ ": " ++ err)
return ""

® I0Exception is root of all I/O exceptions
® hence, tryToRead catches |/O exceptions, but does not catch other exceptions, e.g., test
tryToRead $ "file" ++ show (1 “div™ 0)

RT (DCS @ UIBK) Week 9

Catching Exceptions with Predicates

® use-case: select which exceptions to handle based on a predicate
® catchJust :: Exception e =>
(e => Maybe b) -> I0 a -> (b -> I0 a) -> I0 a

® the function e -> Maybe b selects if an exception e should be treated
® if so (Just b), the handler is invoked, otherwise the exception will be left untouched

® examination of an I0Exception: consider module System.I0.Error
® type I0Error = I0Exception

® isPermissionError :: IOError -> Bool
® isDoesNotExistError :: IOError -> Bool
® iskEQOFError :: IOError -> Bool
° .
RT (DCS @ UIBK) Week 9

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User-Defined Exception Types Exercises

® creating an exception type is easy; example ® Task 1: Write a parser for the get-value answer of z3 in applicative style. You should also

data MyException = NegativeInput | TooLarge deriving (Show) generalize the parser in a way that it can deal with Booleans and (positive or negative)
integers.
instance Exception MyException — -- no methods required ® Task 2: Restructure the design of the SMT connection and 1poSolver so that all the

communication with z3 is encapsulated in the SMT module. Think of a suitable
interface, so that the SMT connection is easily reusable for other encoding tasks.

® Task 3: Integrate exception handling, e.g., there might be problems that createProcess
fails since z3 is not available, or z3 might crash or deliver unexpected answers which

| x > 30 = throw TooLarge cannot be parsed. The implementation should work as follows:
| otherwise = x “elem” [2,3,5,7,11,13,17,21,23,29]

easyPrimeTest, prime :: Integer -> Bool
easyPrimeTest x
| x < 0 = throw NegativeInput

® create a dedicated exception type for SMT related problems
® parse errors of z3's output or createProcess exceptions should be converted into suitable

prime x = catchJust SMT exceptions that contain a brief problem description (hint: use throw inside handler)
(\ myE -> case myE of { TooLarge -> Just (); _ -> Nothing }) ® write a wrapper around lpoSolver that catches SMT exceptions and returns one of three
(evaluate $ easyPrimeTest x) results without throwing an exception: YES(with precedence) or NO(not solvable by LPO)

(\ O -> error $ "TODD: run full prime test on " ++ show x) or MAYBE(problem description is printed to stderr)

RT (DCS @ UIBK) Week 9 29/31 RT (DCS @ UIBK) Week 9 30/31

Literature

® Real World Haskell, Chapters 7, 19 and 20

® Chapter 19 is partly outdated: describes no longer available Exception type, which was
changed into an Exception class
® Chapter 20 is partly outdated: uses deprecated System.Cmd and not System.Process

® https://hackage.haskell.org/package/base/docs/System-I0.html

® https://hackage.haskell.org/package/deepseq/docs/Control-DeepSeq.html
® https://hackage.haskell.org/package/temporary/docs/System-I0-Temp.html
® https://hackage.haskell.org/package/process/docs/System-Process.html

® https://hackage.haskell.org/package/base/docs/Control-Exception.html

RT (DCS @ UIBK) Week 9 31/31

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://hackage.haskell.org/package/base/docs/System-IO.html
https://hackage.haskell.org/package/deepseq/docs/Control-DeepSeq.html
https://hackage.haskell.org/package/temporary/docs/System-IO-Temp.html
https://hackage.haskell.org/package/process/docs/System-Process.html
https://hackage.haskell.org/package/base/docs/Control-Exception.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	System Programming
	
	Exceptions

