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Last Week

• lazy I/O, file access via handles

• spawning external processes

• communication via (temporary) files

• communication via pipes with interactive processes
• exception handling

• throw everywhere, catch in IO-monad
• force evaluation, so that try and catch have an effect
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Parallelism and Concurrency

• parallelism
• aim: speed up some computation by using multiplicity of computational hardware

(multicore CPU, GPU, multiprocessor machine, . . . )
• effect of using multiple cores is visible in execution time, but not on result
• example: parallel sorting algorithm, parallel matrix-multiplication algorithm, . . .

• concurrency
• program structuring technique with multiple threads of control
• threads are executed at the same time (interleaved or on multicore systems)
• effects of interleaving are visible
• example: webserver has separate thread for user interface, and spawns separate threads for

each download
• example: termination prover for TRSs tries several termination techniques in parallel threads

and takes result of first successful technique

• Haskell offers support for both parallelism and threads
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Introduction to Parallelism
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Parallelism in Haskell

• for understanding parallelism in Haskell it is crucial to understand Haskell’s lazy
evaluation strategy

• situation is very similar to exception handling

• both try and parallel evaluation should somehow enforce evaluation within the try-block,
or within the parallel execution block

• bad example with try:
let p = try (return (f x, f y)) in p

this code will not evaluate f x and f y within the try-block due to lazy evaluation

• bad example with parallelism:
let p = runEval (rpar (f x, f y)) in p

this code will not evaluate f x and f y in parallel due to lazy evaluation

• last week: use DeepSeq to enforce full evaluation to normal form

• upcoming: more fine-grained control how to evaluate expressions
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Inspecting Evaluation with :sprint

• recall
• by default, evaluation of expressions is only trigged on demand
• using seq, one can enforce evaluation to WHNF (outermost constructor)
• using force of DeepSeq, one can enforce evaluation to full normal form

• with ghci command :sprint expr one can observe current evaluation status
• example

ghci> let xs = map (+1) [1 .. 10 :: Int]

ghci> :sprint xs

xs = _ -- _ represents a thunk: not yet evaluated

ghci> seq xs () -- or: null xs

() -- or: False

ghci> :sprint xs

_ : _

ghci> length xs ghci> seq (force xs) () -- or: sum xs

10 () -- or: 65

ghci> :sprint xs ghci> :sprint xs

xs = [_,_,_,_,_,_,_,_,_,_] xs = [2,3,4,5,6,7,8,9,10,11]
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Parallelism via Control.Parallel.Strategies

• this module lets user design a strategy how to evaluate expressions
data Eval a -- not revealed

instance Monad Eval

runEval :: Eval a -> a

rpar :: a -> Eval a

rseq :: a -> Eval a

• parallelism is expressed via Eval monad
• rpar creates parallelism

• rpar expr says that expr should be evaluated, perhaps in parallel
• argument to rpar should be a thunk (otherwise, no work needs to be done)

• rseq enforces sequential evaluation: wait until argument is evaluated

• both rpar and rseq refer to WHNF in evaluation

• the r in rpar and rseq refers to rewrite to WNHF (in parallel or sequential)
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Examples

• we assume that f is some costly operation
runEval $ do { a <- rpar (f x); b <- rpar (f y); return (a, b) } (1)

runEval $ do { a <- rpar (f x); b <- rseq (f y); return (a, b) } (2)

runEval $ do { a <- rpar (f x); b <- rpar (f y); (3)

rseq a; rseq b; return (a, b) }

• in (1), the return happens immediately; remaining program continues evaluation while
f x and f y are evaluated in parallel

• in (2), the return happens after f y has been evaluated to WHNF; evaluation of f x

and f y happen in parallel, and evaluation of f x continues in parallel after return

• in (3), the evaluation of f x and f y are in parallel; however, the return is only executed
after both f x and f y are evaluated to WHNF
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Running the Examples
• we test the previous example with f = fib, x = 37, y = 35

mainFib n = do

let test = [test1, test2, test3] !! (read n - 1)

t0 <- getCurrentTime

r <- evaluate (runEval test)

printTimeSince t0 -- return time

print r

printTimeSince t0 -- full evaluation time

• running parallel programs requires
• compilation with -threaded flag
• execution with +RTS -Nn -RTS where n is maximal number of cores
• example: run test 1 with at most 2 cores via cabal:
cabal run Demo10 -- fib 1 +RTS -N2 -RTS

• execution times

n = 1: 0.0s, 0.47s (1) 0.19s, 0.47s (2) 0.47s, 0.47s (3)

n = 2: 0.0s, 0.30s (1) 0.19s, 0.30s (2) 0.30s, 0.30s (3)
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Parallelization of Quicksort

• consider sequential quicksort (without randomization)
qsortSeq (x : xs) = let

(low, high) = partition (< x) xs

sLow = qsortSeq low

sHigh = qsortSeq high

in sLow ++ [x] ++ sHigh

qsortSeq [] = []

• integrate parallelization: evaluate both recursive invocations in parallel
• setup for evaluating effect of parallelization

• read list of 5 million random numbers from file (generated by Demo10 numbers 5000000)
• force that reading is fully completed by using force from DeepSeq

(so reading from file and parsing is done purely sequentially)
• start timing
• run sorting algorithm and print length of sorted list
• stop timinig
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Setup in Haskell

sortAlgs :: [(String, [Int] -> [Int])]

sortFile :: FilePath

mainSort :: String -> IO ()

mainSort algName = do

case lookup algName sortAlgs of

Nothing -> error $ "unknown sorting algorithm"

Just sortAlg -> do

input <- lines <$> readFile sortFile

let numbers = force $ map read input

putStrLn $ "We have " ++ show (length numbers) ++ " elements to sort."

start <- getCurrentTime

let sorted = sortAlg numbers

putStrLn $ "Sorted all " ++ show (length sorted) ++ " elements."

end <- getCurrentTime

putStrLn $ show (end `diffUTCTime` start) ++ " elapsed."
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Parallelized Version of Quicksort – Try 1

• code of parallel quicksort, version 1

qsortPar1 (x : xs) = let

(low, high) = partition (< x) xs

in runEval $ do

sLow <- rpar $ qsortPar1 low

sHigh <- rpar $ qsortPar1 high

rseq $ sLow

rseq $ sHigh

return $ sLow ++ [x] ++ sHigh

qsortPar1 [] = []

• time sequential: 8.39 seconds

• time parallel (-N1): 8.77 seconds

• time parallel (-N2): 5.89 seconds

• time parallel (-N4): 5.20 seconds
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Observations
• minimal overhead in making algorithm parallel

• no I/O required
• no explicit creation of threads, etc.
• no explicit synchronization, communication, etc.
• no detection of finalized computations

• debugging of parallel code can done by running it sequentially (not: runtime analysis)
• remark: Haskell gives no guarantee on how parallelization is executed

• quicksort on test input invokes rpar a million times
• spawning a thread for each of this invocations would be far too expensive (overhead of

thread creation)
• instead the argument to rpar is called a spark
• sparks are cheap to create and are stored in a pool
• whenever there is a spare core available, it starts to evaluate some sparks
• overhead of spark handling is small:

8.39 seconds (sequential algorithm) vs. 8.77 seconds (parallel algorithm with 1 core)

• algorithm is not optimal, since parallelization stops after evaluation to WHNF, i.e., after
first element of recursive calls has been determined
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Parallelized Version of Quicksort – Try 2

• code of parallel quicksort, version 2
spine (_ : xs) = spine xs

spine [] = ()

... runEval $ do

sLow <- rpar $ qsortPar2 low

sHigh <- rpar $ qsortPar2 high

rseq $ spine sLow

rseq $ spine sHigh

return $ sLow ++ [x] ++ sHigh

• only difference, use spine to force evaluation of list structure

• effect: both recursive calls are fully evaluated in parallel

• time parallel (-N1) shows overhead of spine: 9.45 seconds

• time parallel (-N4) shows improved parallelization: 4.88 seconds

• note: using force instead of spine would slow down the computation,
since force also ensures that all list arguments are fully evaluated
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Parallelized Version of Quicksort – Version 3
• although overhead of sparks is small, there is some overhead

• in particular it does not pay off to run quicksort in parallel when recursion reaches small
lists

• problem of granularity: divide work into reasonable chunks that are solved in parallel
• too large chunks: several cores might become idle
• too small chunks: overhead for each spark becomes more significant

• parallel quicksort version 3 uses simple depth limit to switch to sequential version

qsortPar3 = qsortPar3Main 10

qsortPar3Main d xs

| d == 0 = qsortSeq xs

qsortPar3Main d (x : xs) = let

(low, high) = partition (< x) xs

in runEval $ do

sLow <- rpar $ qsortPar3Main (d-1) low

sHigh <- rpar $ qsortPar3Main (d-1) high

rseq $ spine sLow ... 4.50 seconds
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Final Remarks on Parallelization

• there is a lot more to explore, e.g., to have more control over parallelization via strategies
or via explicit forks of sparks and dataflow parallelism

• strategies in brief
• separate what is computed to how it is evaluated
• examples: in the timing code, replace line
let numbers = force $ map read input

by the following one to get a parallel map
let numbers = force $ (map read input `using` parList rseq)

• note that while sparks are cheap to create, beware on how data is distributed
• without the force in the definition of numbers, there might be dependent thunks in the

input list which are distributed over several cores and trigger a ping-pong effect:
evaluating parts of the input on one core has to ask an evaluation of another core, etc.

• result without force: sorting takes 19.41 seconds with 4 cores
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Introduction to Concurrency in Haskell
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Concurrency

• concurrent Haskell: facilities of Haskell for programming with multiple threads of control
• threads run independently concurrently

• execution in parallel on multiple cores,
• execution using time-slicing via some scheduling algorithm, or
• combined algorithm

• threads may be put to sleep and waked up at any time
• by scheduling algorithm (Haskell runtime or OS)
• if some shared resource is occupied or is getting available

• overhead of thread-creation, scheduling, etc. is small (lightweight threads),
but not as small as creating sparks in previous section

• viewpoint of concurrency in Haskell
• concurrency permits us to increase modularity, e.g. separate threads for different tasks
• Haskell provides simple, but versatile features for concurrency

• user can stay at low-level interface to tune performance
• user can program more high-level abstractions

• here: start with low-level interface, show how to advance to higher-level interfaces
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A First Concurrent Program

• start with: cabal run Demo10 -- td1 +RTS -N2 -RTS

mainThreadDemo1 = do

hSetBuffering stdout NoBuffering

forkIO (replicateM_ 100000 (putChar 'a')) -- ThreadId is ignored

replicateM_ 100000 (putChar 'b')
• buffering is turned off so that printing is immediate

• forkIO :: IO () -> IO ThreadId

forkIO a spawns a new thread that executes action a,
the current thread gets an identifier to the thread (similar to process handle)

• output is similar to bbbbbabababababababababababababababababaababababab...
• most of the time strict alternation of a and b
• reason: fairness when trying to access shared resource stdout
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A Second Example: Reminders

• start with: cabal run Demo10 td2

mainThreadDemo2 = do

s <- getLine

if s == "exit"

then return ()

else do

forkIO $ setReminder s

mainThreadDemo2

setReminder s = do

let t = read s :: Int

putStrLn $ "Reminder in " ++ show t ++ " seconds"

threadDelay $ 10^(6 :: Int) * t

putStrLn $ "Reminder of " ++ show t ++ " seconds is over! \BEL"

• threadDelay :: Int -> IO () puts current thread to sleep (number of microseconds)
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Observations

• when typing "exit", the initial thread is done

• if this happens, the runtime system stops the complete program,
i.e., also all running reminder-threads are terminated

• hence, the starting thread has a special role
• termination of a spawned thread (any of the reminder-threads)

does not lead to termination of the complete program

• note: this effect does not show up when running mainThreadDemo2 within ghci
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Communication: MVars

• most basic primitive to communicate via threads is via some MVar

data MVar a -- not revealed

newEmptyMVar :: IO (MVar a)

newMVar :: a -> IO (MVar a)

takeMVar :: MVar a -> IO a

putMVar :: MVar a -> a -> IO ()

• an MVar a is similar to Maybe a:
it is a box that can store one value of type a or nothing

• the newXXX operations create an empty or full MVar

• the thread first waits (blocks) until there is a value in the MVar,
and then removes the value from the MVar and returns it

• similarly, putMVar waits until the MVar is empty and then stores a value in it
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Simple Communication Between Threads
• pass one value between two threads

comm1 = do

m <- newEmptyMVar

forkIO $ putMVar m 'x'
r <- takeMVar m

print r

scheduling does not matter: main thread waits until forked thread has filled m

• pass two values between two threads

comm2 = do

m <- newEmptyMVar

forkIO $ do { putMVar m 'x'; putMVar m 'y' }

r <- takeMVar m

print r

r <- takeMVar m

print r -- result: print 'x' and then 'y'
single MVar m is used as a channel: multiple writer, single reader
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Simple Communication Between Threads: Deadlocks

• consider situation where all threads wait on change of some MVar

comm3 = do

m <- newEmptyMVar

n <- newEmptyMVar

forkIO $ do { s <- takeMVar m; putMVar n (s + 1) }

r <- takeMVar n

putMVar m (42 :: Int)

print r

• such a situation is called a deadlock and should be avoided
• invoking comm3 in ghci

• deadlock looks like a non-terminating computation
• abort with CTRL-C

• standalone-program (cabal run Demo10 comm3)
• described deadlock w.r.t. MVars results in runtime exception
• can be used for debugging
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Usages of MVar

• MVars are quite basic, but also versatile
• use case 1: one-place channel

• pass messages around threads
• limitation: one message at a time

• use case 2: container for shared mutable state (exercise, task 3)
• choose a in MVar a as some normal immutable data
• thread can take a (and acquire a lock), and then write back the modified a
• if a = (), then MVar is just used as lock

• use case 3: building block for larger concurrent data structures (next lecture)
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Use Case 1: Example Application of a Logger

• develop concurrent logging service

• for simplicity, we log to stdout, but it could be a file, a database, etc.

• logging is service in a larger application, which can be programmed independently

• closely related applications: fire-and-forget writing services to a shared resource, e.g.,
printer spooler

• we implement logger with the following capabilities

initLogger :: IO Logger

logMessage :: Logger -> String -> IO ()

logStop :: Logger -> IO ()

• logStop is required so that logger can log all pending log-messages before stopping
• ending main thread without invoking logStop would result in killing the logger
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The Logger

initLogger = do

m <- newEmptyMVar

let l = Logger m

forkIO (logger l)

return l

logger :: Logger -> IO ()

logger (Logger m) = loop where

loop = do

cmd <- takeMVar m

case cmd of

Message msg -> do

putStrLn msg

loop

Stop s -> do

putStrLn "logger: stop"

putMVar s ()

newtype Logger = Logger (MVar LogCommand)

data LogCommand =

Message String | Stop (MVar ())

logMessage (Logger m) s =

putMVar m (Message s)

logStop (Logger m) = do

s <- newEmptyMVar

putMVar m (Stop s)

takeMVar s
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Remarks on Logger

• datatypes reveal that logger is basically a single MVar that stores log commands

• application for logger can result in arbitrary sequence of log messages

message s i = "message " ++ show i ++ " of " ++ s

mainLogger = do

l <- initLogger

forkIO $ mapM_ (logMessage l . message "fork 1") [1..100]

forkIO $ mapM_ (logMessage l . message "fork 2") [1..100]

mapM_ (logMessage l . message "main thread") [1..100]

logStop l

• depending on scheduler, not all 100 log-messages of the forked messages will materialize

• because logger can store only single message at a time, logger might become bottleneck

• fairness of MVar and other blocking operations:
if some thread requests a resource and this resource is getting available infinitely often,
then the thread will eventually get access to that resource
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Exercises
• Task 1

• the implementation of the quicksort wrapper currently has a significant sequential phase,
namely: input <- lines <$> readFile sortFile

• figure out whether this part can be made more efficient by using parallelism; to this end,
implement and evaluate some of the following ideas

• reading the file is still done sequentially, but lines is re-implemented in a parallel way
• both reading and splitting the input into lines is done in parallel

• Task 2
• instead of performing parallelization with quicksort, an alternative is to split the list into n

sublists (where n is the number of cores), each sublist is sorted in parallel using sequential
quicksort, and then the merge-operation of mergesort is applied

• implement and evaluate this idea

• Task 3
• we consider the task to create a concurrent dictionary, based on a standard immutable

dictionary implementation
• the aim is to gain efficiency by releasing MVar-locks early on
• the exercise will illustrate the effect of lazy evaluation in concurrency
• further details: see Haskell source
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Literature

• Simon Marlow, Parallel and Concurrent Programming in Haskell, 2013, O’Reilly,
Chapters 2 and 7

• Real World Haskell, Chapter 24

• https://hackage.haskell.org/package/parallel/docs/

Control-Parallel-Strategies.html

• https://hackage.haskell.org/package/base/docs/Control-Concurrent.html
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