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Last Week

lazy 1/0, file access via handles

spawning external processes

communication via (temporary) files
communication via pipes with interactive processes

exception handling

® throw everywhere, catch in I0-monad
® force evaluation, so that try and catch have an effect
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Parallelism and Concurrency

® parallelism
® aim: speed up some computation by using multiplicity of computational hardware
(multicore CPU, GPU, multiprocessor machine, ...)
® effect of using multiple cores is visible in execution time, but not on result
® example: parallel sorting algorithm, parallel matrix-multiplication algorithm, ...

® concurrency
® program structuring technique with multiple threads of control
® threads are executed at the same time (interleaved or on multicore systems)
e effects of interleaving are visible
® example: webserver has separate thread for user interface, and spawns separate threads for

each download
® example: termination prover for TRSs tries several termination techniques in parallel threads
and takes result of first successful technique

e Haskell offers support for both parallelism and threads

RT (DCS @ UIBK) Week 10 3/30


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Introduction to Parallelism
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Parallelism in Haskell

for understanding parallelism in Haskell it is crucial to understand Haskell's lazy
evaluation strategy

situation is very similar to exception handling

both try and parallel evaluation should somehow enforce evaluation within the try-block,
or within the parallel execution block

bad example with try:

let p = try (return (f x, f y)) in p

this code will not evaluate £ x and £ y within the try-block due to lazy evaluation

bad example with parallelism:

let p = runEval (rpar (f x, f y)) in p

this code will not evaluate f x and £ y in parallel due to lazy evaluation

last week: use DeepSeq to enforce full evaluation to normal form

upcoming: more fine-grained control how to evaluate expressions
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Inspecting Evaluation with :sprint

® recall

® by default, evaluation of expressions is only trigged on demand

® using seq, one can enforce evaluation to WHNF (outermost constructor)

® using force of DeepSeq, one can enforce evaluation to full normal form
® with ghci command :sprint expr one can observe current evaluation status
® example

ghci> let xs = map (+1) [1 .. 10 :: Int]
ghci> :sprint xs

Xs = _ -- _ represents a thunk: not yet evaluated
ghci> seq xs () -- or: null xs
O -- or: False

ghci> :sprint xs

ghci> length xs ghci> seq (force xs) () -- or: sum xs

10 O -- or: 65
ghci> :sprint xs ghci> :sprint xs
Xs = [—J—’—’—’—’—’—’—!—’—] Xs = [2’3’4’5’6’7’8’9’10511]
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Parallelism via Control.Parallel.Strategies

this module lets user design a strategy how to evaluate expressions
data Eval a -- not revealed

instance Monad Eval

runEval :: Eval a -> a
rpar :: a -> Eval a
rseq :: a -> Eval a

parallelism is expressed via Eval monad
rpar creates parallelism

® rpar expr says that expr should be evaluated, perhaps in parallel
® argument to rpar should be a thunk (otherwise, no work needs to be done)

rseq enforces sequential evaluation: wait until argument is evaluated
both rpar and rseq refer to WHNF in evaluation

the r in rpar and rseq refers to rewrite to WNHF (in parallel or sequential)
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Examples

® we assume that f is some costly operation
runEval $ do { a <~ rpar (f x); b <= rpar (f y); return (a, b) } (1)
runEval $ do { a <- rpar (f x); b <- rseq (f y); return (a, b) } (2)
runEval $ do { a <- rpar (f x); b <= rpar (f y); (3)
rseq a; rseq b; return (a, b) }
® in (1), the return happens immediately; remaining program continues evaluation while
f x and £ y are evaluated in parallel

® in (2), the return happens after £ y has been evaluated to WHNF; evaluation of £ x
and £ y happen in parallel, and evaluation of £ x continues in parallel after return

® in (3), the evaluation of £ x and £ y are in parallel; however, the return is only executed
after both £ x and £ y are evaluated to WHNF
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Running the Examples

® we test the previous example with f = fib, x = 37,y = 35
mainFib n = do
let test = [testl, test2, test3] !! (read n - 1)
t0 <- getCurrentTime
r <- evaluate (runEval test)

printTimeSince tO —-- return time
print r
printTimeSince tO —-- full evaluation time

® running parallel programs requires
® compilation with —threaded flag
® execution with +RTS -Nn -RTS where n is maximal number of cores
® example: run test 1 with at most 2 cores via cabal:
cabal run Demol0 -- fib 1 +RTS -N2 -RTS

® execution times

n=1:0.0s, 0.47s (1) 0.19s, 0.47s (2) 0.47s, 0.47s
n=2: 0.0s, 0.30s (1) 0.19s, 0.30s (2) 0.30s, 0.30s
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Parallelization of Quicksort

e consider sequential quicksort (without randomization)
gsortSeq (x : xs) = let
(low, high) = partition (< x) xs
sLow = gsortSeq low
sHigh = gsortSeq high
in sLow ++ [x] ++ sHigh
gsortSeq [1 = []
® integrate parallelization: evaluate both recursive invocations in parallel
® setup for evaluating effect of parallelization
® read list of 5 million random numbers from file (generated by Demo10 numbers 5000000)
® force that reading is fully completed by using force from DeepSeq
(so reading from file and parsing is done purely sequentially)
® start timing
® run sorting algorithm and print length of sorted list
® stop timinig
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Setup in Haskell

sortAlgs :: [(String, [Int] -> [Int])]
sortFile :: FilePath

mainSort :: String -> I0 ()
mainSort algName = do
case lookup algName sortAlgs of
Nothing -> error $ "unknown sorting algorithm"
Just sortAlg -> do
input <- lines <$> readFile sortFile
let numbers = force $ map read input
putStrln $ "We have " ++ show (length numbers) ++ " elements to sort."
start <- getCurrentTime
let sorted = sortAlg numbers
putStrln $ "Sorted all " ++ show (length sorted) ++ " elements."
end <- getCurrentTime
putStrln $ show (end “diffUTCTime” start) ++ " elapsed."
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Parallelized Version of Quicksort — Try 1

® code of parallel quicksort, version 1
gsortParl (x : xs) = let
(low, high) = partition (< x) xs
in runEval $ do

sLow <- rpar $ gsortParl low
sHigh <- rpar $ gsortParl high
rseq $ sLow
rseq $ sHigh
return $ sLow ++ [x] ++ sHigh

gsortParl [] = []

® time sequential: 8.39 seconds
® time parallel (-N1): 8.77 seconds
® time parallel (-N2): 5.89 seconds
® time parallel (-N4): 5.20 seconds
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Observations

® minimal overhead in making algorithm parallel

no 1/O required

no explicit creation of threads, etc.

no explicit synchronization, communication, etc.
no detection of finalized computations

® debugging of parallel code can done by running it sequentially (not: runtime analysis)

e remark: Haskell gives no guarantee on how parallelization is executed

quicksort on test input invokes rpar a million times

spawning a thread for each of this invocations would be far too expensive (overhead of
thread creation)

instead the argument to rpar is called a spark

sparks are cheap to create and are stored in a pool

whenever there is a spare core available, it starts to evaluate some sparks

overhead of spark handling is small:

8.39 seconds (sequential algorithm) vs. 8.77 seconds (parallel algorithm with 1 core)

® algorithm is not optimal, since parallelization stops after evaluation to WHNF, i.e., after
first element of recursive calls has been determined
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Parallelized Version of Quicksort — Try 2

® code of parallel quicksort, version 2
spine (_ : xs) = spine xs
spine [1 = O
. runEval $ do
sLow <- rpar $ gsortPar2 low
sHigh <- rpar $ gsortPar2 high
rseq $ spine sLow
rseq $ spine sHigh
return $ sLow ++ [x] ++ sHigh
¢ only difference, use spine to force evaluation of list structure
e effect: both recursive calls are fully evaluated in parallel
® time parallel (-N1) shows overhead of spine: 9.45 seconds
® time parallel (-N4) shows improved parallelization: 4.88 seconds

® note: using force instead of spine would slow down the computation,
since force also ensures that all list arguments are fully evaluated
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Parallelized Version of Quicksort — Version 3
® although overhead of sparks is small, there is some overhead

® in particular it does not pay off to run quicksort in parallel when recursion reaches small
lists
® problem of granularity: divide work into reasonable chunks that are solved in parallel
® too large chunks: several cores might become idle
® too small chunks: overhead for each spark becomes more significant

e parallel quicksort version 3 uses simple depth limit to switch to sequential version
gsortPar3 = gsortPar3Main 10
gsortPar3Main d xs
| d == 0 = gsortSeq xs
gsortPar3Main d (x : xs) = let
(low, high) = partition (< x) xs
in runEval $ do
sLow <- rpar $ gsortPar3Main (d-1) low
sHigh <- rpar $ gsortPar3Main (d-1) high
rseq $ spine sLow ... 4.50 seconds
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Final Remarks on Parallelization

® there is a lot more to explore, e.g., to have more control over parallelization via strategies
or via explicit forks of sparks and dataflow parallelism
® strategies in brief
® separate what is computed to how it is evaluated
® examples: in the timing code, replace line
let numbers = force $ map read input
by the following one to get a parallel map
let numbers = force $ (map read input “using ™ parList rseq)
® note that while sparks are cheap to create, beware on how data is distributed
® without the force in the definition of numbers, there might be dependent thunks in the
input list which are distributed over several cores and trigger a ping-pong effect:

evaluating parts of the input on one core has to ask an evaluation of another core, etc.
® result without force: sorting takes 19.41 seconds with 4 cores
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Introduction to Concurrency in Haskell
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Concurrency

e concurrent Haskell: facilities of Haskell for programming with multiple threads of control
® threads run independently concurrently

® execution in parallel on multiple cores,
® execution using time-slicing via some scheduling algorithm, or
® combined algorithm

threads may be put to sleep and waked up at any time

® by scheduling algorithm (Haskell runtime or OS)
® if some shared resource is occupied or is getting available

overhead of thread-creation, scheduling, etc. is small (lightweight threads),
but not as small as creating sparks in previous section
® viewpoint of concurrency in Haskell

® concurrency permits us to increase modularity, e.g. separate threads for different tasks
® Haskell provides simple, but versatile features for concurrency

® yuser can stay at low-level interface to tune performance
® user can program more high-level abstractions

® here: start with low-level interface, show how to advance to higher-level interfaces
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A First Concurrent Program

® start with: cabal run DemolO -- tdl +RTS -N2 -RTS
mainThreadDemol = do
hSetBuffering stdout NoBuffering
forkIO (replicateM_ 100000 (putChar 'a'))  -- ThreadId is ignored
replicateM_ 100000 (putChar 'b')
e buffering is turned off so that printing is immediate
® forkIO :: IO () -> IO ThreadId
forkIO a spawns a new thread that executes action a,
the current thread gets an identifier to the thread (similar to process handle)
® output is similar to bbbbbabababababababababababababababababaababababab. . .

® most of the time strict alternation of a and b
® reason: fairness when trying to access shared resource stdout
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A Second Example: Reminders

® start with: cabal run Demol10 td2
mainThreadDemo2 = do
s <- getLine
if s == "exit"
then return ()
else do
forkI0 $ setReminder s
mainThreadDemo?2

setReminder s = do
let t = read s :: Int
putStrln $§ "Reminder in " ++ show t ++ " seconds"
threadDelay $ 107(6 :: Int) * t
putStrln $ "Reminder of " ++ show t ++ " seconds is over! \BEL"

® threadDelay :: Int -> I0 () puts current thread to sleep (number of microseconds)
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Observations

® when typing "exit", the initial thread is done

e if this happens, the runtime system stops the complete program,
i.e., also all running reminder-threads are terminated

® hence, the starting thread has a special role

® termination of a spawned thread (any of the reminder-threads)
does not lead to termination of the complete program

® note: this effect does not show up when running mainThreadDemo2 within ghci
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Communication: MVars

® most basic primitive to communicate via threads is via some MVar

data MVar a -- not revealed
newEmptyMVar :: I0 (MVar a)

newMVar :: a -> I0 (MVar a)
takeMVar :: MVar a -> 10 a
putMVar :: MVar a => a -> 10 O

® an MVar a is similar to Maybe a:
it is a box that can store one value of type a or nothing

® the newXXX operations create an empty or full MVar

e the thread first waits (blocks) until there is a value in the MVar,
and then removes the value from the MVar and returns it

® similarly, putMVar waits until the MVar is empty and then stores a value in it
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Simple Communication Between Threads
® pass one value between two threads

comml = do
m <- newEmptyMVar
forkIO $ putMVar m 'x'
r <- takeMVar m
print r

scheduling does not matter: main thread waits until forked thread has filled m

® pass two values between two threads
comm2 = do
m <- newEmptyMVar
forkIO $ do { putMVar m 'x'; putMVar m 'y' }
r <- takeMVar m
print r
r <- takeMVar m
print r -- result: print 'x' and then 'y'

single MVar m is used as a channel: multiple writer, single reader
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Simple Communication Between Threads: Deadlocks

® consider situation where all threads wait on change of some MVar
comm3 = do
m <- newEmptyMVar
n <- newEmptyMVar
forkIO $ do { s <- takeMVar m; putMVar n (s + 1) }
r <- takeMVar n
putMVar m (42 :: Int)
print r
® such a situation is called a deadlock and should be avoided
® invoking comm3 in ghci
® deadlock looks like a non-terminating computation
® abort with CTRL-C

e standalone-program (cabal run DemolO comm3)

® described deadlock w.r.t. MVars results in runtime exception
® can be used for debugging
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Usages of MVar

® MVars are quite basic, but also versatile
® use case 1: one-place channel

® pass messages around threads
® [imitation: one message at a time

® use case 2: container for shared mutable state (exercise, task 3)

® choose a in MVar a as some normal immutable data
® thread can take a (and acquire a lock), and then write back the modified a
® ifa = (), then MVar is just used as lock

e use case 3: building block for larger concurrent data structures (next lecture)
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Use Case 1: Example Application of a Logger

develop concurrent logging service

for simplicity, we log to stdout, but it could be a file, a database, etc.

logging is service in a larger application, which can be programmed independently

closely related applications: fire-and-forget writing services to a shared resource, e.g.,

printer spooler

we implement logger with the following capabilities

initLogger :: I0 Logger

logMessage :: Logger -> String -> I0 ()

logStop :: Logger -> I0 ()

logStop is required so that logger can log all pending log-messages before stopping
® ending main thread without invoking logStop would result in killing the logger
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The Logger

initLogger = do newtype Logger = Logger (MVar LogCommand)
m <- newEmptyMVar
let 1 = Logger m data LogCommand =
forkI0 (logger 1) Message String | Stop (MVar ())
return 1
logMessage (Logger m) s =
logger :: Logger -> I0 () putMvar m (Message s)
logger (Logger m) = loop where
loop = do logStop (Logger m) = do
cmd <- takeMVar m s <- newEmptyMVar
case cmd of putMvVar m (Stop s)
Message msg —-> do takeMVar s
putStrLn msg
loop

Stop s -> do
putStrLn "logger: stop"
putMvar s QO
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Remarks on Logger

e datatypes reveal that logger is basically a single MVar that stores log commands

® application for logger can result in arbitrary sequence of log messages
message s 1 = "message " ++ show i ++ " of " ++ s

mainLogger = do
1 <- initLlogger
forkIO $ mapM_ (logMessage 1 . message "fork 1") [1..100]
forkIO $ mapM_ (logMessage 1 . message "fork 2") [1..100]
mapM_ (logMessage 1 . message "main thread") [1..100]
logStop 1
® depending on scheduler, not all 100 log-messages of the forked messages will materialize
® because logger can store only single message at a time, logger might become bottleneck

® fairness of MVar and other blocking operations:
if some thread requests a resource and this resource is getting available infinitely often,
then the thread will eventually get access to that resource
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Exercises

® Task 1
® the implementation of the quicksort wrapper currently has a significant sequential phase,
namely: input <- lines <$> readFile sortFile
® figure out whether this part can be made more efficient by using parallelism; to this end,
implement and evaluate some of the following ideas
® reading the file is still done sequentially, but 1lines is re-implemented in a parallel way
® both reading and splitting the input into lines is done in parallel

® Task 2
® instead of performing parallelization with quicksort, an alternative is to split the list into n
sublists (where n is the number of cores), each sublist is sorted in parallel using sequential
quicksort, and then the merge-operation of mergesort is applied
® implement and evaluate this idea

® Task 3
® we consider the task to create a concurrent dictionary, based on a standard immutable
dictionary implementation
® the aim is to gain efficiency by releasing MVar-locks early on
® the exercise will illustrate the effect of lazy evaluation in concurrency

® further details: see Haskell source
RT (DCS @ UIBK) Week 10 29/30


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

e Simon Marlow, Parallel and Concurrent Programming in Haskell, 2013, O'Reilly,
Chapters 2 and 7

® Real World Haskell, Chapter 24

® https://hackage.haskell.org/package/parallel/docs/
Control-Parallel-Strategies.html

® https://hackage.haskell.org/package/base/docs/Control-Concurrent.html
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