
WS 2024/2025

Advanced Functional Programming
Week 12 – Profiling, Efficient Data Structures

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Week

• channels
• more high level interface for a concurrent data-structure;

implementing double ended linked lists using MVars

• asynchronous actions
• perform IO-actions asynchronously
• wait on tasks to complete
• various versions of async-library

• asynchronous exceptions
• cancellation of tasks
• bracket-construct (or with...-construct) to safely close files, kill external processes, etc.,

even in case of asynchronous exceptions

RT (DCS @ UIBK) Week 12 2/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Profiling

RT (DCS @ UIBK) Week 12 3/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Profiling

• profiling is a method for analyzing runtime behavior

• aim: get detailed statistics about time and space usage to facilitate performance tuning
• workflow of profiling

1. identify cost centers, i.e., functions for which data should be reported
2. run program in profiling mode
3. inspect generated profiling statistics and identify hot-spots
4. study hot-spots and try to optimize these parts
5. go back to step 2

RT (DCS @ UIBK) Week 12 4/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Step 1: Annotate Cost Centers in Haskell

• two ways of annotations
• manual annotation

• use annotation {-# SCC "name" #-} in front of some expression
(SCC = Set Cost Center)

• resource consumption of running this expression will then be added to the profiling statistics,
tagged with "name"

• automatic annotation
• adds cost centers for a selection of functions
• automatic annotation is triggered via ghc-flags or cabal-flags

RT (DCS @ UIBK) Week 12 5/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Step 2: Run Program in Profiling Mode in Haskell

• in Haskell, profiling has to be activated both at compile-time and at run-time
• compile-time

• ghc: use ghc-options -prof (and on demand -fprof-late or other options for automatic
annotations)

• cabal: use cabal-options --enable-profiling and further options for automatic
annotations

• run-time
• add runtime system parameter -p
• obtain executable.prof file that contains profiling statistics

RT (DCS @ UIBK) Week 12 6/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Steps 1 and 2

• take solution of Exercises of week 11 (concurrent termination prover via LPO)

• run via cabal with profiling enabled

cabal run Exercise11 --enable-profiling --profiling-detail late --

lpo 5 ariTRSs.txt

+RTS -p

• detail-level (automatic cost centers): default, none, exported-functions,
all-functions, toplevel-functions, late

• observations
• activation of profiling is easy, in particular with automatic cost center annotations
• warning: profiling code may change optimization phase of ghc, so the behavior of profiled

code might be different from original code
• use all-functions and toplevel-functions with care
• late inserts profiling code after optimization and therefore is recommended automatic mode

(requires ghc ≥ 9.4.1)
• disadvantage of late: names of functions after optimization are used

RT (DCS @ UIBK) Week 12 7/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Step 3 – Investigate Profiling Statistics
• after execution inspect file Exercise11.prof, (some lines and columns deleted)

COST CENTRE SRC %time %alloc

$fOrdTerm_$ccompare Demo09_Parser_ARI.hs:6:56-58 72.6 0.0

$fOrdTerm Demo09_Parser_ARI.hs:6:56-58 18.7 0.0

$wlpoEncoder <no location info> 1.7 13.5

COST CENTRE SRC entries %time %alloc %time %alloc

MAIN <built-in> 0 0.3 0.1 100.0 100.0

main Exercise11.hs:230:1-4 1 0.0 0.0 99.7 99.9

lpoSolver1 <no location info> 566 0.0 0.0 50.1 48.5

$wrunSmtSolver <no location info> 566 0.6 0.3 50.1 48.5

$wlpoEncoder <no location info> 646839 0.9 6.7 47.7 10.2

$wgo15 <no location info> 10118272 0.3 0.0 30.4 0.0

ccompare Demo09_Parser_ARI.hs:6:56-58 452806139 23.8 0.0 30.1 0.0

wsgo15 <no location info> 5580206 0.3 2.0 16.2 2.0

ccompare Demo09_Parser_ARI.hs:6:56-58 238906955 12.6 0.0 15.9 0.0

reverseLpoSolver1 <no location info> 566 0.0 0.0 49.3 48.4

RT (DCS @ UIBK) Week 12 8/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Steps 3 and 4 – Identify Hot-Spots and Analyse

• explanations
• the first list of cost centers are rankings of overall functions that cause the costs
• the second list of cost centers is a tree like view
• the obscure names are a result of late, use toplevel-functions or manual cost center

annotations for improved readibility
• the first time/alloc columns are costs that are caused by the current cost center
• the second time/alloc columns are accumulated costs

• important: external costs do not occur in the data, e.g., cost of running SMT solver
• analysis of hot-spots

• comparison of terms is the most costly operation
• it is used for lookups in the dictionary to perform memoization in the LPO encoder
• consequence: improve lookups (use integer-index or hash-maps or . . . , cf. exercise)

RT (DCS @ UIBK) Week 12 9/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Another Example: Computation of Mean

• computing the mean of a list of doubles, main function computes mean [1..d]

main = ... -- read d via getArgs and print "mean [1..d]"

mean1 :: [Double] -> Double

mean1 xs = ({-# SCC "sum" #-} sum xs)

/ fromIntegral ({-# SCC "len" #-} length xs)

• running the demo (1 = select mean1 function, 1e8 is value of d) with statistics

cabal run Demo12 -- 1 1e8 +RTS -s

• result: observe high memory consumption of 5.7 GB

• use profiling to trace memory usage over time via flag -hc

cabal run Demo12 --enable-profiling --profiling-detail none

-- 1 1e8 +RTS -p -hc

• inspect generated data of file Demo12.hp via

hp2ps Demo12.hp && ps2pdf Demo12.ps && open Demo12.pdf

RT (DCS @ UIBK) Week 12 10/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Demo12.hp – mean1

• obtain graph
Demo12 1 1e8 +RTS -p -hc 6,371,804,550 bytes x seconds Thu Dec 19 14:55 2024

seconds0.0 0.5 1.0 1.5 2.0 2.5 3.0

by
te

s

0M

500M

1,000M

1,500M

2,000M

2,500M

3,000M

MAIN

• code analysis
• generated list [1..d] is completely constructed in memory
• problem: list elements are generated one-by-one for summation,

and list needs to be kept for computing its length
• interpretation of graph: once the length computation starts, memory can be freed again

RT (DCS @ UIBK) Week 12 11/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Solution: Compute Length and Sum in One Go

• optimized code for mean computation
mean2 :: [Double] -> Double

mean2 xs = let (s, l) = foldl' step (0, 0) xs in s / fromIntegral l

where

step :: (Double, Integer) -> Double -> (Double, Integer)

step (s, l) x = let

s' = s + x

l' = l + 1

in s' `seq` l' `seq` (s', l')
• use strict fold (foldl') and seq to avoid generation of thunk in accumulator,

e.g., 0 + x1 + x2 + x3 + ...

• both +RTS -s and +RTS -hc -p confirm improved memory usage
(runtime is improved, too: less time required for garbage collection)

RT (DCS @ UIBK) Week 12 12/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Demo12.hp – mean2

Demo12 2 1e8 +RTS -p -hc 118,769 bytes x seconds Thu Dec 19 15:12 2024

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

by
te

s

0k

5k

10k

15k

20k

25k

30k

35k

40k

45k

50k

(251)GHC.Conc.Signal.CAF

(231)GHC.IO.Encoding.CAF

MAIN

(220)GHC.IO.Handle.FD.CAF

(143)SYSTEM

RT (DCS @ UIBK) Week 12 13/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Efficient Data Structures

RT (DCS @ UIBK) Week 12 14/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Choice of Data Structures

• efficiency is often obtained by choosing suitable data structures
• we consider two interesting scenarios

• use mutable data structures within purely functional code
• an example of a data structure designed for purely functional programming

RT (DCS @ UIBK) Week 12 15/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Mutable State: Control.Monad.ST

• the monad ST s abstracts some type variable s, the state

• unlike the known State s monad, there is no way to access the full state (getState) or
setting it (putState)

• instead, the state is just updated locally, e.g., by
• creating a new reference or some mutable array
• updating a reference, or some array content

• we have seen functionality like this already in IO, e.g., newIORef, writeIORef, etc.
• in contrast to IO, ST s can be used in purely functional code via runST

• runST :: (forall s. ST s a) -> a
• the universal quantifier ensures that no information of the state can leek into the a

RT (DCS @ UIBK) Week 12 16/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: STRef in pure Code

• although helloSTMain uses mutable state, the result of helloST is pure

helloSTMain :: Int -> ST s (String, Int)

helloSTMain y = do

s <- newSTRef "hello"

x <- newSTRef y

sVal <- readSTRef s

modifySTRef x (+ 7)

writeSTRef s (sVal ++ " world")

sFin <- readSTRef s

xFin <- readSTRef x

return (sFin, xFin)

helloST :: Int -> (String, Int)

helloST y = runST (helloSTMain y)

• clearly, this could also have been done using the State monad, but see next slide

RT (DCS @ UIBK) Week 12 17/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Fibonacci Numbers via Mutable Arrays
• although fibMain uses mutable arrays, the results of fib and fibArray are pure

-- "STArray s indexType elementType" are mutable arrays living in state s

fibMain :: Int -> ST s (STArray s Int Integer)

fibMain n = do

a <- newArray (0,n) 1 -- indices 0..n, array content initialized with 1

mapM_ (\ i -> do

x <- readArray a (i - 2)

y <- readArray a (i - 1)

writeArray a i (x + y)) [2..n]

return a

fibArray :: Int -> Array Int Integer -- Array: immutable pure arrays

fibArray n = runSTArray (fibMain n) -- runSTArray freezes array

fib :: Int -> Integer

fib n = runST (do

a <- fibMain n

readArray a n)

RT (DCS @ UIBK) Week 12 18/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Dedicated Functional Data Structures

• there are interesting data structures and algorithms targeting pure functional
programming

• non-destructible updates, i.e., immutable data
• advantage: copying of these data structures is O(1)

• examples
• finger trees (https://en.wikipedia.org/wiki/Finger_tree)
• priority queues (https://en.wikipedia.org/wiki/Brodal_queue)
• double ended queues (deques);

queue version of Okasaki will be introduced on next slides

RT (DCS @ UIBK) Week 12 19/29

https://en.wikipedia.org/wiki/Finger_tree
https://en.wikipedia.org/wiki/Brodal_queue
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A First Simple Queue Implementation

• implementation uses two lists to represent queue:
the beginning of the queue (b) and the end of the queue (e) in reverse order
data Queue1 a = Queue1 [a] [a] -- Queue1 b e

empty1 :: Queue1 a

empty1 = Queue1 [] []

insert1 :: a -> Queue1 a -> Queue1 a

insert1 x (Queue1 b e) = Queue1 b (x : e)

remove1 :: Queue1 a -> (a, Queue1 a)

remove1 (Queue1 (x : b) e) = (x, Queue1 b e)

remove1 (Queue1 [] []) = error "empty queue"

remove1 (Queue1 [] e) = remove1 (Queue1 (reverse e) [])

• execution costs: worst case O(n), amortized cost: O(1)

RT (DCS @ UIBK) Week 12 20/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tuning the Queue Implementation

• aim: get rid of expensive reverse operation

• main internal operation for queues: reverse e and append it to b

• idea: start with reverse and append operation early on and perform it partially, in order
to improve worst case complexity

• rot operation generalizes reverse and append
-- rot b e a = b ++ reverse e ++ a, assumes length e = length b + 1

rot :: [a] -> [a] -> [a] -> [a]

rot [] [x] a = x : a

rot (x : b) (y : e) a = x : rot b e (y : a)

• observation: with each step of rot, at least one element of resulting list is produced

• improved queue implementation is based on rot, it stores lengths of both lists and keeps
invariant: length e <= length b

• improved execution costs: worst case O(exercise(n)), amortized cost: O(1)

RT (DCS @ UIBK) Week 12 21/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

An Improved Implementation

data Queue2 a = Queue2 Int [a] Int [a]

empty2 :: Queue2 a

empty2 = Queue2 0 [] 0 []

insert2 :: a -> Queue2 a -> Queue2 a

insert2 x (Queue2 lb b le e) = makeQ2 lb b (le + 1) (x : e)

-- assumes le <= lb + 1

makeQ2 :: Int -> [a] -> Int -> [a] -> Queue2 a

makeQ2 lb b le e

| le <= lb = Queue2 lb b le e

| otherwise = Queue2 (lb + le) (rot b e []) 0 []

remove2 :: Queue2 a -> (a, Queue2 a)

remove2 (Queue2 _ [] _ _) = error "empty queue"

remove2 (Queue2 lxb (x : b) le e) = let newQ = makeQ2 (lxb - 1) b le e

in seq newQ (x, newQ)

RT (DCS @ UIBK) Week 12 22/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Worst Case Complexity

• the improved implementation does not have O(1) worst case complexity (see exercise)

• problem: although rot delivers one element per recursion step, there might be nested
rot occurrences

• solution: enforce that the rot-list is further evaluated on every insertion and removal
operation

• technique: create two shared copies where the second copy is used to trigger evaluation
of the spine of the list

• upcoming implementation of Okasaki has worst case complexity of O(1) for each queue
operation

• invariants for Queue3 b e b'
• b' is a sublist of b, used for triggering evaluation of b
• length e <= length b (as before)
• length b' = length b - length e

RT (DCS @ UIBK) Week 12 23/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Okasaki’s Real Time Implementation of Purely Functional Queues

data Queue3 a = Queue3 [a] [a] [a] -- Queue3 b e b', lb' = lb - le, le <= lb

empty3 :: Queue3 a

empty3 = Queue3 [] [] []

insert3 :: a -> Queue3 a -> Queue3 a

insert3 x (Queue3 b e b') = makeQ3 b (x : e) b'

remove3 :: Queue3 a -> (a, Queue3 a)

remove3 (Queue3 [] _ _) = error "empty queue"

remove3 (Queue3 (x : b) e b') = let

newQ = makeQ3 b e b'
in seq newQ (x, newQ)

makeQ3 :: [a] -> [a] -> [a] -> Queue3 a

makeQ3 b e (_ : b') = Queue3 b e b'
makeQ3 b e [] = let b' = rot b e [] in Queue3 b' [] b'

RT (DCS @ UIBK) Week 12 24/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Evaluation using Single Steps for Queue Operations

foldl (flip insert3) empty3 [1..10]

= foldl ... (Queue3 [] [] []) [1..10]

= foldl ... (insert3 1 (Queue3 [] [] [])) [2..10]

= foldl ... (makeQ3 [] [1] []) [2..10]

= foldl ... (Queue3 (rot [] [1] []) [] (rot [] [1] [])) [2..10]

= foldl ... (insert3 2 (Queue3 (rot [] [1] []) [] (rot [] [1] []))) [3..10]

= foldl ... (makeQ3 (rot [] [1] []) [2] (rot [] [1] [])) [3..10]

= foldl ... (makeQ3 [1] [2] [1]) [3..10]

= foldl ... (Queue3 [1] [2] []) [3..10]

= foldl ... (insert3 3 (Queue3 [1] [2] [])) [4..10]

= foldl ... (makeQ3 [1] [3,2] []) [4..10]

= foldl ... (Queue3 (rot [1] [3,2] []) [] (rot [1] [3,2] [])) [4..10]

= foldl ... (insert3 4 (Queue3 (rot [1] [3,2] []) [] (rot [1] [3,2] []))) [5..10]

= foldl ... (makeQ3 (rot [1] [3,2] []) [4] (rot [1] [3,2] [])) [5..10]

= foldl ... (makeQ3 (1 : rot [] [2] [3]) [4] (1 : rot [] [2] [3])) [5..10]

= foldl ... (Queue3 (1 : rot [] [2] [3]) [4] (rot [] [2] [3])) [5..10]

RT (DCS @ UIBK) Week 12 25/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Evaluation Continued

• from now on only show intermediate steps, but not single steps

foldl (flip insert3) empty3 [1..10]

= ... (Queue3 (1 : rot [] [2] [3]) [4] (rot [] [2] [3])) [5..10]

= ... (Queue3 [1,2,3] [5,4] [3]) [6..10]

= ... (Queue3 [1,2,3] [6,5,4] []) [7..10]

= ... (Queue3 (rot [1,2,3] [7,6,5,4] []) [] (rot [1,2,3] [7,6,5,4] [])) [8..10]

= ... (Queue3 (1 : rot [2,3] [6,5,4] [7]) [8] (rot [2,3] [6,5,4] [7])) [9..10]

= ... (Queue3 (1 : 2 : rot [3] [5,4] [6,7]) [9,8] (rot [3] [5,4] [6,7])) [10]

= ... (Queue3 (1 : 2 : 3 : rot [] [4] [5,6,7]) [10,9,8] (rot [] [4] [5,6,7])) []

= Queue3 (1 : 2 : 3 : rot [] [4] [5,6,7]) [10,9,8] (rot [] [4] [5,6,7])

RT (DCS @ UIBK) Week 12 26/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Final Remarks on Purely Functional Queues

• Okasaki’s implementation heavily relies upon sharing and lazy evaluation

• using ideas of Okasaki’s queue implementation can be used to obtain a worst-case O(1)
implementation of double ended queues (deques)
(with push and pop operations at both ends)

• there are alternative purely functional deque implementations with O(1) worst case
behavior that do not depend on lazy evaluation, but have a more complex
implementation (Kaplan, Tarjan: Purely functional, real-time deques with catenation)

RT (DCS @ UIBK) Week 12 27/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Exercises

1. Consider the simple queue implementation. The amortized complexity is O(1). This
implies that n consecutive operations have cost O(n).
However, this statement is only true, if always the same queue is used and the queue is
not copied. Write a Haskell program that performs O(n) many queue operations
(insertion, removal, and queue-copying), and requires Θ(n2) time.
Use cabal repl Exercise12 and test using :set +s within ghci. Reason: Full
compilation might optimize and tune your code so that a quadratic behavior in ghci
might not be visible after compilation.

2. Study the improved implementation Queue2. Perform an evaluation of iterated insertion
in the style of Slides 25 and 26 for Queue2 to identify a pattern in the evaluation.
Afterwards derive a lower bound on the worst case complexity of remove2 after a
sequence of n many insertions.

3. Improve the implementation of the LPO-encoding. Via profiling it was figured out that
the lookup via term keys is expensive. To this end, introduce term indices for the lookup,
and use mutable arrays of type STArray for storing the memoized results.
Perform profiling before and after your modification and briefly report on the results.

RT (DCS @ UIBK) Week 12 28/29

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

• Real World Haskell, Chapter 25

• https:

//downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html

• https://hackage.haskell.org/package/base/docs/Control-Monad-ST.html

• https://hackage.haskell.org/package/base/docs/Data-STRef.html

• https://hackage.haskell.org/package/array/docs/Data-Array-ST.html

• https://hackage.haskell.org/package/array/docs/Data-Array-MArray.html

• Chris Okasaki, Simple and Efficient Purely Functional Queues and Deques. J. Funct.
Program. 5(4): 583-592 (1995)

RT (DCS @ UIBK) Week 12 29/29

https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
https://hackage.haskell.org/package/base/docs/Control-Monad-ST.html
https://hackage.haskell.org/package/base/docs/Data-STRef.html
https://hackage.haskell.org/package/array/docs/Data-Array-ST.html
https://hackage.haskell.org/package/array/docs/Data-Array-MArray.html
https://doi.org/10.1017/S0956796800001489
https://doi.org/10.1017/S0956796800001489
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Profiling
	
	Efficient Data Structures

