

Automata and Logic

WS 2024/2025

LVA 703026 + 703027

Week 4+5

November 8, 2024

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. Solutions for bonus exercises must be submitted separately. The (strict) deadline is 7 am on November 8.

Exercises

 $\langle 2 \rangle$ 1. Consider the following DFA *M*:

		a	b
\rightarrow	1F	3	5
	2F	8	7
	3	7	2
	4	6	2
	5	1	8
	6	2	3
	7	1	4
	8	5	1

- (a) Determine which states are accessible.
- (b) Compute the equivalence classes of the indistinguishability relation \approx .
- (c) Compute the minimum-state DFA for L(M).

2. Give WMSO formulas that define the following regular sets over $\Sigma = \{a, b, c\}$.

- (a) $\{abxc \mid x \in \Sigma^*\}$
- (b) $\Sigma^* L(a^*b^*c^*)$

 $\langle 3 \rangle$

 $\langle 2 \rangle$

- 3. Which of the following sets are regular and which are not? Provide justification.
 - (a) $A = \{0^m 1^n \mid m \neq n\}$
 - (b) $B = \{0^m 1^{m+n} \mid m \leq n\}$
 - (c) $C = \{0^m 1^n 2^k \mid m \neq n \text{ or } m \neq k\}$

 $\langle 1 \rangle$ 4. Consider the following DFA *M*:

Construct a WMSO formula φ such that $L(\varphi) = L(M)$.

- (2) 5. Consider the regular expression $\alpha = a(a+b)^*b$.
 - (a) Compute the minimum-state DFA M for $L(\alpha)$.
 - (b) Give a regular expression for each of the equivalence classes of the Myhill–Nerode relation \equiv_M of M.

Bonus Exercise

 $\langle \mathbf{5} \rangle$

- 6. (a) Let N be an NFA with n states such that $L(N) \neq \emptyset$. Prove that L(n) contains a string x with |x| < n.
 - (b) Construct a NFA N over $\Sigma = \{a\}$ with n states such that |x| > n for the shortest string $x \notin L(N)$.
 - (c) Give a construction for arbitrarily large NFAs showing that the length of the shortest rejected string can be exponential in the number of states.