

Automata and Logic

WS 2024/2025

Week 7

November 22, 2024

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on November 22.

Exercises

- $\langle 2 \rangle$ 1. (a) Express $x \equiv y \pmod{k}$ for any k > 0 as Presburger arithmetic formula.
 - (b) Use MONA to get a minimal solution for $x \equiv y \pmod{3} \land y < x$. Note that you can use pconst(k) to get the set representation of the constant natural number k. Furthermore, it is convenient to use the pred keyword to define predicates.
- $\langle 2 \rangle$ 2. Construct an automaton A_{φ} such that $L(A_{\varphi}) = L(\varphi)$ for the Presburger formula $\varphi = \exists y.x = 3y + 1$. Check that your automaton indeed accepts the representations of 1, 4, 7 and rejects representations of 2 and 3.
- (3) 3. Adapt the construction on slide 21 such that A_{φ} accepts representations of solutions for a given *inequality* $a_1x_1 + \cdots + a_nx_n \leq b$. Illustrate your algorithm on the inequality $3x 2y \leq 1$.¹
- (3) 4. Prove the second part of the theorem on slide 21. I.e., show the following: A string x is accepted by the automaton A_{φ} if and only if \underline{x} is a solution for the equation $a_1x_1 + \cdots + a_nx_n = b$.

 $^{^{1}}$ Solutions obtained by implementation are welcome! In that case please submit code with sufficient documentation to execute and understand its functionality.