

Automata and Logic

WS 2024/2025

LVA 703026 + 703027

Week 8

November 29, 2024

Solved exercises must be marked and solutions (as a single PDF file) uploaded in OLAT. The (strict) deadline is 7 am on November 29.

Exercises

 $\langle 2 \rangle$ 1. Let $U_1, U_2, U_3 \subseteq \Sigma^*$. Determine whether the following equalities hold. Explain your answers.

- (a) $(U_1 \cup U_2) \cdot U_3^{\omega} = (U_1 \cdot U_3^{\omega}) \cup (U_2 \cdot U_3^{\omega})$
- (b) $U_1 \cdot (U_2 \cup U_3)^{\omega} = (U_1 \cdot U_2^{\omega}) \cup (U_1 \cdot U_3^{\omega})$
- (c) $(U_1^* \cup U_2^*)^{\omega} = (U_1 \cup U_2)^{\omega}$
- (d) $(U_1^* \cdot U_2^*)^{\omega} = (U_1 \cdot U_2)^{\omega}$
- $\langle 3 \rangle$
- 2. Give Büchi automata accepting the following ω-regular sets. Which of these are accepted by a DBA?
 (a) {ab, ba}^ω
 - (b) $\{x \in \{a, b, c\}^{\omega} \mid x \text{ does not contain the substring } ab\}$
 - (c) $\{x \in \{a, b, c\}^{\omega} \mid \text{there are at least two } b$'s between each two successive a's in $x\}$
- (2) 3. Consider the following NBAs over $\Sigma = \{a, b\}$:

$$M_1: \longrightarrow \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{b}_{a} \underbrace{3}_{a} \underbrace{M_2:} \longrightarrow \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{b}_{a} \underbrace{3}_{a} \underbrace{M_2:} \xrightarrow{a} \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{2}_{a} \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{1}_{a} \underbrace{1}_{a$$

(a) For each of the following sets give an infinite string that is contained in it:

 $L(M_1) - L(M_2)$ $L(M_2) - L(M_1)$ $L(M_1) \cap L(M_2)$

(b) Apply the product construction from slide 26 to obtain an NBA M such that $L(M) = L(M_1) \cap L(M_2)$.

- (2) 4. Prove or disprove the following statement: For every Büchi automaton M there exists a Büchi automaton M' such that L(M) = L(M') and M' has a single accepting state.
- $\langle 1 \rangle$ 5. Show that it is decidable whether $L(M) = \emptyset$ for a given Büchi automaton M.

Bonus Exercise

 $\langle 5 \rangle$ 6. Show that there is a singleton set $A \subseteq \Sigma^{\omega}$ which is not ω -regular.