

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

► Automata and Logic is elective module 1 in master program Computer Science

- ▶ Automata and Logic is elective module 1 in master program Computer Science
- ▶ master students must select 3 out of 6 elective modules

- ▶ Automata and Logic is elective module 1 in master program Computer Science
- master students must select 3 out of 6 elective modules:
 - 1 Automata and Logic
 - 2 Constraint Solving
 - Cryptography
 - High-Performance Computing
 - **Optimisation and Numerical Computation**
 - Signal Processing and Algorithmic Geometry

WS 2024

- Automata and Logic is elective module 1 in master program Computer Science
- master students must select 3 out of 6 elective modules:
 - Automata and Logic
 - ② Constraint Solving (offered in 2025S)
 - 3 Cryptography
 - 4 High-Performance Computing
 - ⑤ Optimisation and Numerical Computation
 - Signal Processing and Algorithmic Geometry

- Automata and Logic is elective module 1 in master program Computer Science
- ▶ master students must select 3 out of 6 elective modules:
 - Automata and Logic
 - ② Constraint Solving (offered in 2025S)
 - 3 Cryptography
 - 4 High-Performance Computing
 - ⑤ Optimisation and Numerical Computation
 - Signal Processing and Algorithmic Geometry
- other master modules with theory content (Logic and Learning specialization):
 - Program and Resource Analysis (WM 8)
 - Tree Automata (WM 9)

- Automata and Logic is elective module 1 in master program Computer Science
- master students must select 3 out of 6 elective modules:
 - 1 Automata and Logic
 - ② Constraint Solving (offered in 2025S)
 - 3 Cryptography
 - 4 High-Performance Computing
 - Optimisation and Numerical Computation
 - Signal Processing and Algorithmic Geometry
- other master modules with theory content (Logic and Learning specialization):
 - Program and Resource Analysis (WM 8)
 - Tree Automata (WM 9)
 - Semantics of Programming Languages (WM 7)

- Ouantum Computing (WM 8)
- Research Seminar (WM 9)

Outline

1. Introduction

Organisation Contents

- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

VO is streamed and recorded

► LVA 703302 (VO 2) + 703303 (PS 2)

universität innsbruck

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws24/al

WS 2024

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws24/al
- online registration for VO required

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws24/al
- online registration for VO required
- ► OLAT links for VO and PS

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws24/al
- online registration for VO required
- ▶ OLAT links for VO and PS

Time and Place

VO Monday 8:15-10:00 HSB 9 (AM)

PS Friday 8:15-10:00 SR 12 (JN)

Important Information ► LVA 703302 (VO 2) + 703303 (PS 2)

- ▶ http://cl-informatik.uibk.ac.at/teaching/ws24/al online registration for VO required
- OLAT links for VO and PS

Time and Place

VO Monday 8:15-10:00 HSB 9 (AM)

PS Friday 8:15-10:00 SR 12 (JN)

Consultation Hours

Aart Middeldorp 3M07 Wednesday 11:30 - 13:00 Johannes Niederhauser 9:00-10:303M03 Thursday

WS 2024

07 10 & 11 10 11 11 & 15 11 week 11 16 12 & 10 01 week 1 week 6 week 2 14.10 week 7 18.11 & 22.11 week 12 13.01 & 17.01 21 10 & 25 10 week 8 25.11 & 29.11 week 3 week 13 20.01 & 24.01 week 4 28.10 week 9 02.12 & 06.12 week 14 27.01 04.11 & 08.11 09.12 & 13.12

universität

Schedule

week 5

week 10

week 1

week 2

21 10 & 25 10 25 11 & 29 11 20 01 & 24 01 week 3 week 8 week 13 week 4 28 10 week 9 02.12 & 06.12 week 14 27.01 (first exam) week 5 04 11 & 08 11 week 10 09.12 & 13.12

11 11 & 15 11

18.11 & 22.11

Grading - Vorlesung

first exam on January 27

universität innsbruck

WS 2024

07 10 & 11 10

14.10

week 6

week 7

16.12 & 10.01

13.01 & 17.01

week 11

week 12

week I	07.10 & 11.10	week 6	11.11 & 15.11	week 11	16.12 & 10.01
week 2	14.10	week 7	18.11 & 22.11	week 12	13.01 & 17.01
week 3	21.10 & 25.10	week 8	25.11 & 29.11	week 13	20.01 & 24.01
week 4	28.10	week 9	02.12 & 06.12	week 14	27.01 (first exam)
week 5	04.11 & 08.11	week 10	09.12 & 13.12		

Grading - Vorlesung

first exam on January 27

07 10 6 11 10

registration starts 5 weeks and ends 2 weeks before exam

week 1	07.10 & 11.10	week 6	11.11 & 15.11	week 11	16.12 & 10.01
week 2	14.10	week 7	18.11 & 22.11	week 12	13.01 & 17.01
week 3	21.10 & 25.10	week 8	25.11 & 29.11	week 13	20.01 & 24.01
week 4	28.10	week 9	02.12 & 06.12	week 14	27.01 (first exam)
week 5	04.11 & 08.11	week 10	09.12 & 13.12		

Grading - Vorlesung

- first exam on January 27
 registration starts 5 weeks and ends 2 weeks before exam
- de-registration is possible until 10:00 on January 24

week 1 07 10 & 11 10 week 6 11 11 & 15 11 week 11 16 12 & 10 01 week 2 14.10 week 7 18.11 & 22.11 week 12 13.01 & 17.01 week 3 21 10 & 25 10 week 8 25 11 & 29 11 week 13 20 01 & 24 01 week 4 28 10 week 9 02 12 & 06 12 week 14 27.01 (first exam) week 5 04 11 & 08 11 week 10 09 12 & 13 12

Grading – Vorlesung

- first exam on January 27
 registration starts 5 weeks and ends 2 weeks before exam
- de-registration is possible until 10:00 on lanuary 24
- second exam on February 26

week 1

week 2 14.10 week 7 18.11 & 22.11 week 12 13.01 & 17.01 week 3 21 10 & 25 10 week 8 25 11 & 29 11 week 13 20 01 & 24 01 week 4 28 10 week 9 02 12 & 06 12 week 14 27.01 (first exam) week 5 04 11 & 08 11 week 10 09.12 & 13.12

11 11 & 15 11

week 11

16 12 & 10 01

Grading - Vorlesung

first exam on January 27 registration starts 5 weeks and ends 2 weeks before exam

week 6

- de-registration is possible until 10:00 on January 24
- second exam on February 26

07 10 & 11 10

third exam on September 25 (on demand)

score = min $(\frac{10}{13}(E+P)+B,100)$

score = min $(\frac{10}{13}(E+P)+B,100)$ *E*: points for solved exercises (at most 110)

score = min
$$(\frac{10}{13}(E+P)+B,100)$$

E: points for solved exercises (at most 110)

B: points for bonus exercises (at most 20)

score = min
$$(\frac{10}{13}(E+P)+B,100)$$
 E: points for solved exercises (at most 110)
B: points for bonus exercises (at most 20)

homework exercises are given on course web site

score = min
$$(\frac{10}{13}(E+P)+B,100)$$
 E: points for solved exercises (at most 110)
 B: points for bonus exercises (at most 20)

- homework exercises are given on course web site
- ▶ solved exercises must be marked and solutions must be uploaded (PDF) in OLAT

score = min
$$(\frac{10}{13}(E+P)+B,100)$$
 E: points for solved exercises (at most 110)
 B: points for bonus exercises (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday

score = min
$$(\frac{10}{13}(E+P)+B,100)$$
 E: points for solved exercises (at most 110)
 B: points for bonus exercises (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS

score = min
$$(\frac{10}{13}(E + P) + B, 100)$$

E: points for solved exercises (at most 110)

B: points for bonus exercises (at most 20)

P: points for presentations of solutions (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory

_A_M_

score = min
$$(\frac{10}{13}(E+P) + B, 100)$$

E: points for solved exercises (at most 110)

B: points for bonus exercises (at most 20)

P: points for presentations of solutions (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory
- ▶ 20 points for two presentations; additional presentations give bonus points

score = min
$$(\frac{10}{13}(E+P)+B,100)$$

E: points for solved exercises (at most 110)

B: points for bonus exercises (at most 20)

P: points for presentations of solutions (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory
- ▶ 20 points for two presentations; additional presentations give bonus points
- attendance is compulsory

score = min
$$(\frac{10}{13}(E+P) + B, 100)$$

E: points for solved exercises (at most 110)

B: points for bonus exercises (at most 20)

P: points for presentations of solutions (at most 20)

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory
- ▶ 20 points for two presentations; additional presentations give bonus points
- ▶ attendance is compulsory; unexcused absence is allowed twice (resulting in 0 points)

Organisation

score = min
$$\left(\frac{10}{13}(E+P) + B, 100\right)$$
 E: points for solved exercises (at most 110)

B: points for bonus exercises (at most 20)

P: points for presentations of solutions (at most 20)

grade:
$$[0,50) \to \textbf{5}$$
 $[50,63) \to \textbf{4}$ $[63,75) \to \textbf{3}$ $[75,88) \to \textbf{2}$ $[88,100] \to \textbf{1}$

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory
- > 20 points for two presentations; additional presentations give bonus points
- ▶ attendance is compulsory; unexcused absence is allowed twice (resulting in 0 points)

evaluation 2023W

Literature

Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997

Literature

Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997

- Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997
- Javier Esparza and Michael Blondin
 Automata Theory: An Algorithmic Approach
 MIT Press, 2023
- Christel Baier and Joost-Pieter Katoen Principles of Model Checking MIT Press, 2008

Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997

- Javier Esparza and Michael Blondin
 Automata Theory: An Algorithmic Approach
 MIT Press. 2023
- Christel Baier and Joost–Pieter Katoen Principles of Model Checking MIT Press. 2008
- additional resources will be linked from course website

Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997

Javier Esparza and Michael Blondin
 Automata Theory: An Algorithmic Approach
 MIT Press. 2023

 Christel Baier and Joost–Pieter Katoen Principles of Model Checking MIT Press. 2008

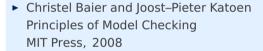
additional resources will be linked from course website

Online Material

access to slides and exercises is restricted to uibk.ac.at domain

Dexter C Kozen Automata and Computability Springer-Verlag, 1997

▶ Javier Esparza and Michael Blondin Automata Theory: An Algorithmic Approach MIT Press. 2023



additional resources will be linked from course website

Online Material

access to slides and exercises is restricted to uibk.ac.at domain

- Dexter C Kozen
 Automata and Computability
 Springer-Verlag, 1997
- Javier Esparza and Michael Blondin Automata Theory: An Algorithmic Approach MIT Press, 2023
- Christel Baier and Joost-Pieter Katoen Principles of Model Checking MIT Press, 2008
- additional resources will be linked from course website

- ▶ access to slides and exercises is restricted to uibk.ac.at domain
- solutions to selected exercises are available after they have been discussed in PS

Outline

1. Introduction

Organisation Contents

- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Contents

Automata

- ▶ (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata
- ▶ tree automata

Logic

- ► (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

Automata

- ► (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata
- ▶ tree automata

Logic

- ► (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

Automata

- ► (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata
- tree automata

Logic

- ► (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

Outline

1. Introduction

2. Basic Definitions

- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

▶ alphabet is finite set; its elements are called symbols or letters

- ▶ alphabet is finite set; its elements are called symbols or letters
- \triangleright string over alphabet Σ is finite sequence of elements of Σ

Examples

strings over $\Sigma = \{0, 1\}$: 0 0110

WS 2024

- ▶ alphabet is finite set; its elements are called symbols or letters
- lacktriangle string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x

Examples

strings over $\, \Sigma = \{ \, 0, 1 \} \colon \quad 0 \quad \, 0110 \,$

- alphabet is finite set; its elements are called symbols or letters
- string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- ightharpoonup empty string is unique string of length 0 and denoted by ϵ

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

- alphabet is finite set; its elements are called symbols or letters
- \blacktriangleright string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- \blacktriangleright empty string is unique string of length 0 and denoted by ϵ
- \triangleright Σ^* is set of all strings over Σ $(\emptyset^* = \{\epsilon\})$

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

- ▶ alphabet is finite set; its elements are called symbols or letters
- lacktriangle string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- \blacktriangleright empty string is unique string of length 0 and denoted by ϵ
- $lackbox{} \Sigma^*$ is set of all strings over Σ $\left(\varnothing^*=\{\epsilon\}\right)$
- ▶ language over Σ is subset of Σ^*

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

- ▶ alphabet is finite set; its elements are called symbols or letters
- lacktriangle string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- lacktriangle empty string is unique string of length 0 and denoted by ϵ
- $ightharpoonup \Sigma^*$ is set of all strings over Σ $(\varnothing^* = \{\epsilon\})$
- ▶ language over Σ is subset of Σ^*

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

languages over Σ :

ullet $\{\epsilon,0,1,00,01,10,11\}$ (all strings having at most two symbols)

- alphabet is finite set; its elements are called symbols or letters
- \triangleright string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- \blacktriangleright empty string is unique string of length 0 and denoted by ϵ
- $ightharpoonup \Sigma^*$ is set of all strings over Σ $(\emptyset^* = \{\epsilon\})$
- ▶ language over Σ is subset of Σ^*

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

languages over Σ :

- \triangleright { ϵ , 0, 1, 00, 01, 10, 11} (all strings having at most two symbols)
- \blacktriangleright {x | x is valid program in some machine language}

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

__A_M_

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

ightharpoonup x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

- ightharpoonup x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)
- ▶ x^n ($x \in \Sigma^*$, $n \in \mathbb{N}$):

$$x^0 = \epsilon$$
$$x^{n+1} = x^n x$$

▶ string concatenation $x, y \in \Sigma^*$ \Longrightarrow $xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

- ightharpoonup x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)
- ▶ x^n ($x \in \Sigma^*$, $n \in \mathbb{N}$):

$$x^0 = \epsilon$$
$$x^{n+1} = x^n x$$

▶ #a(x) $(a \in \Sigma, x \in \Sigma^*)$ denotes number of a's in x

for $A, B \subseteq \Sigma^*$

▶ union

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

for $A, B \subseteq \Sigma^*$

union

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- ▶ intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

for $A, B \subseteq \Sigma^*$

▶ union

 $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

▶ intersection

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

complement

 $\sim A = \Sigma^* - A = \{x \in \Sigma^* \mid x \notin A\}$

for $A, B \subseteq \Sigma^*$

▶ union

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- ▶ intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- ► complement $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$
- ▶ set concatenation $AB = \{xy \mid x \in A \text{ and } y \in B\}$

15/32

for $A, B \subseteq \Sigma^*$

- ▶ union
- ▶ intersection
- complement
- set concatenation
- ▶ powers A^n $(n \in \mathbb{N})$

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
 - $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$ $AB = \{xy \mid x \in A \text{ and } y \in B\}$
 - $A^0 = \{\epsilon\}$ $A^{n+1} = AA^n$

for $A, B \subseteq \Sigma^*$

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ union
- intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$ complement
- set concatenation $AB = \{xy \mid x \in A \text{ and } y \in B\}$
- $A^0 = \{\epsilon\}$ $A^{n+1} = AA^n$ ightharpoonup powers A^n $(n \in \mathbb{N})$
- asterate A* is union of all finite powers of A

$$A^* = \bigcup_{n \geqslant 0} A^n = \{x_1 x_2 \cdots x_n \mid n \geqslant 0 \text{ and } x_i \in A \text{ for all } 1 \leqslant i \leqslant n\}$$

for $A, B \subseteq \Sigma^*$

union

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

intersection

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

complement

- $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$
- set concatenation $AB = \{xy \mid x \in A \text{ and } y \in B\}$
- $A^0 = \{\epsilon\}$ $A^{n+1} = AA^n$ ightharpoonup powers A^n $(n \in \mathbb{N})$
- asterate A* is union of all finite powers of A

$$A^* = \bigcup_{n \geqslant 0} A^n = \{x_1 x_2 \cdots x_n \mid n \geqslant 0 \text{ and } x_i \in A \text{ for all } 1 \leqslant i \leqslant n\}$$

 $A^+ = AA^* = \bigcup A^n$

for $A, B \subseteq \Sigma^*$

union

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

intersection

- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- ► complement $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$
- ► set concatenation $AB = \{xy \mid x \in A \text{ and } y \in B\}$
- ightharpoonup powers A^n $(n \in \mathbb{N})$ $A^0 = \{\epsilon\}$ $A^{n+1} = AA^n$
- ► asterate A* is union of all finite powers of A

$$A^* = \bigcup_{n \geqslant 0} A^n = \{x_1 x_2 \cdots x_n \mid n \geqslant 0 \text{ and } x_i \in A \text{ for all } 1 \leqslant i \leqslant n\}$$

- $A^+ = AA^* = \bigcup_{n \geq 1} A^n$
- ▶ power set $2^A = \{Q \mid Q \subseteq A\}$

substrings of 011: 0, 1, 01, 11, 011

• substrings of 011: 0, 1, 01, 11, 011, ϵ

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^0 = \epsilon$

- lacksquare substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^1 = 011$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^2 = 011011$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- \blacktriangleright #1(011011011) = 6 #0(ϵ) = 0

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- \triangleright suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$

2 Basic Definitions

- lacksquare substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- \blacksquare #1(011011011) = 6 #0(ϵ) = 0
- $\qquad \qquad \blacktriangleright \ \{0,10,111\}\{1,11\} = \{01,101,1111,011,1011,11111\}$
- $\qquad \qquad \bullet \ \{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- \blacktriangleright #1(011011011) = 6 #0(ϵ) = 0
- $\blacktriangleright \{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\blacktriangleright \ \{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$

2 Basic Definitions

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- \blacktriangleright #1(011011011) = 6 #0(ϵ) = 0
- $\blacktriangleright \{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\qquad \qquad \blacktriangleright \ \{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- ightharpoonup prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- \blacksquare #1(011011011) = 6 #0(ϵ) = 0
- $\blacktriangleright \ \{0,10,111\}\{1,11\} = \{01,101,1111,011,1011,11111\}$
- $\blacktriangleright \ \{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$

- ightharpoonup substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- ightharpoonup suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- \blacksquare #1(011011011) = 6 #0(ϵ) = 0
- $\qquad \qquad \bullet \ \{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- \triangleright suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$
- \blacktriangleright {1,01}³ = {111,0111,1011,01011,1101,01101,10101,010101}
- $\{1,01\}^* = \{\epsilon,1,01,11,011,101,0101,111,0111,1011,01011,\ldots\}$

- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- \triangleright suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0, 10, 111\}\{1, 11\} = \{01, 101, 1111, 011, 1011, 11111\}$
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$
- $ightharpoonup \{1,01\}^3 = \{111,0111,1011,01011,1101,01101,10101,010101\}$
- $\{1,01\}^* = \{\epsilon,1,01,11,011,101,0101,111,0111,1011,01011,\ldots\}$
- $2^{\{1,01\}} = \{\varnothing, \{1\}, \{01\}, \{1,01\}\}$

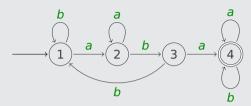
2 Basic Definitions

Some Useful Properties

- $ightharpoonup \{\epsilon\}A = A\{\epsilon\} = A$
- $\triangleright \varnothing A = A\varnothing = \varnothing$
- $ightharpoonup \sim (A \cup B) = (\sim A) \cap (\sim B)$
- $ightharpoonup \sim (A \cap B) = (\sim A) \cup (\sim B)$
- $ightharpoonup A^{m+n} = A^m A^n$
- $A^*A^* = A^*$
- $A^{**} = A^*$
- $A^* = \{\epsilon\} \cup AA^* = \{\epsilon\} \cup A^*A$
- $\triangleright \varnothing^* = \{\epsilon\}$

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading



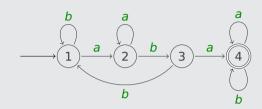
▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① Q: finite set of states

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- 1) Q: finite set of states
 - **2** Σ: input alphabet

WS 2024

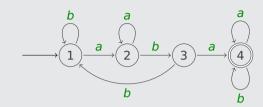
DFA $M = (Q, \Sigma, \delta, s, F)$



- $Q = \{1, 2, 3, 4\}$
- **2** $\Sigma = \{a, b\}$

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① Q: finite set of states
 - **2** Σ: input alphabet
 - 3) $\delta: O \times \Sigma \to O$: transition function

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



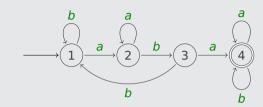
A.M

WS 2024

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- ① O: finite set of states
 - ② Σ : input alphabet
 - **3** $\delta: Q \times \Sigma \to Q$: transition function

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- ① O: finite set of states
 - $2 \Sigma :$ input alphabet
 - **3** $\delta: Q \times \Sigma \to Q$: transition function
 - $\textbf{4)} \quad s \in Q:$ start state
 - (5) $F \subseteq Q$: final (accept) states

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

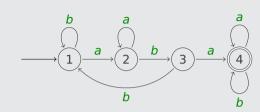


1
$$Q = \{1, 2, 3, 4\}$$
 $\delta \mid a \mid b$

2
$$\Sigma = \{a, b\}$$
 1 2 1 3 3 3 3 3

5
$$F = \{4\}$$

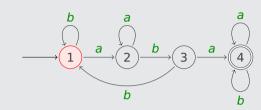
DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B$
1 2 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



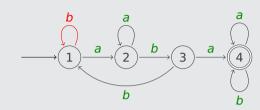
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$

6
$$F = \{4\}$$

19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

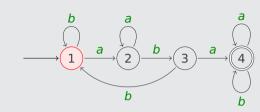


1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$

babaa

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

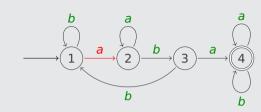
2 $\Sigma = \{a, b\}$
3 $A = b$

WS 2024

6
$$F = \{4\}$$

0 s = 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

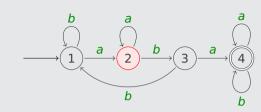


1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\Delta = \{a, b\}$

b a b a a

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

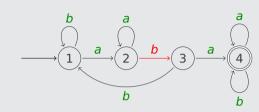
2 $\Sigma = \{a, b\}$
3 $\Delta = \{a, b\}$

WS 2024

5
$$F = \{4\}$$

0 s = 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

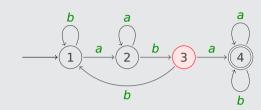
2 $\Sigma = \{a, b\}$
3 $A = b$

lecture 1

4
$$s = 1$$
 3 4 **4 5** $F = \{4\}$

_A_M_ 19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



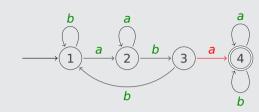
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

$$3 \quad \delta \colon Q \times \Sigma \to Q \qquad \qquad 2 \quad 2 \quad 3$$

WS 2024

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

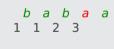


1
$$Q = \{1, 2, 3, 4\}$$
 $\delta \mid a \mid b$

$$\begin{array}{c|cccc} \mathbf{\mathcal{Q}} & \boldsymbol{\Sigma} = \{a,b\} & & \overline{1} & 2 & 1 \\ \hline \mathbf{\mathcal{S}} & \boldsymbol{\delta} \colon \boldsymbol{\mathcal{Q}} \times \boldsymbol{\Sigma} \to \boldsymbol{\mathcal{Q}} & & 2 & 2 & 3 \\ \end{array}$$

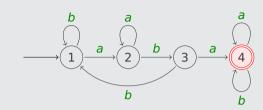
$$\bullet$$
 $s = 1$ \bullet \bullet \bullet

5
$$F = \{4\}$$



WS 2024

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\Delta = \{a, b\}$

WS 2024

lecture 1

Automata and Logic

6
$$F = \{4\}$$

0 s = 1

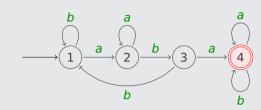
DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

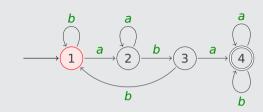


1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = \{a, b\}$

5
$$F = \{4\}$$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



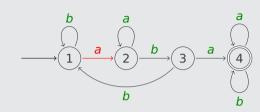
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$

4
$$S = 1$$
 3 $A = 1$ **4** $A = 1$ **4** $A = 1$

lecture 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

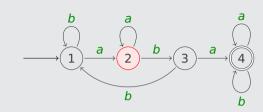
2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

$$3 \quad \delta \colon Q \times \Sigma \to Q \qquad \qquad 2 \quad | \quad 2 \quad | \quad 3 \quad |$$

4
$$S = 1$$
 5 $S = \{4\}$ **4** $A = \{4\}$

19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



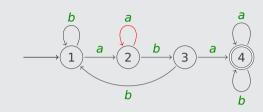
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A = b$

3
$$\delta: Q \times \Sigma \to Q$$
 2 2 3 4 1

$$F = \{4\}$$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



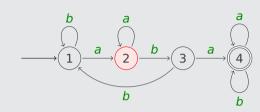
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

$$F = \{4\}$$

0 s = 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

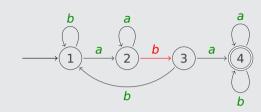


1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$

19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

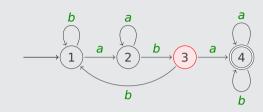
2 $\Sigma = \{a, b\}$
3 $A = b$

3
$$\delta: Q \times \Sigma \to Q$$
 2 2 3 4 1

$$F = \{4\}$$

WS 2024

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



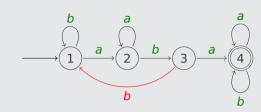
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

4
$$s = 1$$
6 $F = \{4\}$

5
$$F = \{4\}$$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



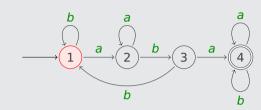
1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$

$$F = \{4\}$$

19/32

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$

$$3 \quad \delta \colon Q \times \Sigma \to Q \qquad \qquad 2 \qquad 2 \qquad 2 \qquad 3$$

$$F = \{4\}$$

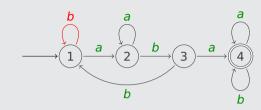
0 s = 1

5
$$F = \{4\}$$

19/32

lecture 1

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

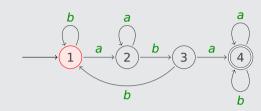


1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$ 1

4
$$s = 1$$
 3 4 3

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$
1 $A B B$

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① Q: finite set of states

 - ③ $\delta: Q \times \Sigma \rightarrow Q$: transition function

 - **5** $F \subseteq Q$: final (accept) states
- $lackbox{}\widehat{\delta}\colon Q imes oldsymbol{\Sigma}^* o Q$ is inductively defined by

$$\widehat{\delta}(q,\epsilon) = q$$

$$\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$$

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - (1) O: finite set of states
 - Σ : input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - **4** $s \in Q$: start state
 - **5** $F \subseteq Q$: final (accept) states
- $lackbr{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q,\epsilon) = q$$

$$\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$$

• string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$

WS 2024

- lacktriangledown deterministic finite automaton (DFA) is quintuple $M=(Q,\Sigma,\delta,s,F)$ with
 - ① *Q*: finite set of states
 - (2) Σ : input alphabet
 - 3 $\delta: Q \times \Sigma \rightarrow Q$: transition function

 - **5** $F \subseteq Q$: final (accept) states
- $lackbox{}\widehat{\delta}\colon Q imes \Sigma^* o Q$ is inductively defined by

$$\widehat{\delta}(q,\epsilon) = q$$

$$\widehat{\delta}(q, xa) = \delta(\widehat{\delta}(q, x), a)$$

- ▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$

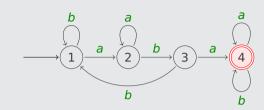
- deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- (1) O: finite set of states
 - **2** Σ: input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - **4**) $s \in O$: start state
 - (5) $F \subset O$: final (accept) states
- $lackbr{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

- ▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$
- ▶ language accepted by M: $L(M) = \{x \mid \widehat{\delta}(s,x) \in F\}$

 $\widehat{\delta}(q,\epsilon) = q$

 $\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$

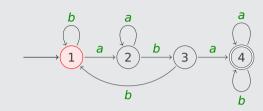
DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $\delta \begin{vmatrix} a & b \\ 1 & 2 & 1 \end{vmatrix}$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$
3 $A B B$

$$3 \quad \delta \colon Q \times \Sigma \to Q \qquad \qquad 2 \quad 2 \quad 3$$

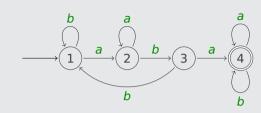
$$F = \{4\}$$

a = 1

$$F = \{4\}$$

WS 2024

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$

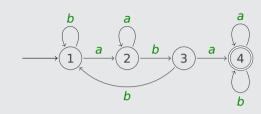
3 $\delta: Q \times \Sigma \rightarrow Q$

6
$$F = \{4\}$$

0 s = 1

$$L(M) = \{x \mid$$

DFA
$$M = (Q, \Sigma, \delta, s, F)$$



1
$$Q = \{1, 2, 3, 4\}$$

2 $\Sigma = \{a, b\}$

4
$$S = 1$$
 5 $S = \{4\}$ **4** $A = \{4\}$

$$L(M) = \{x \mid x \text{ contains } aba \text{ as substring}\}$$

- deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
- (1) O: finite set of states
 - **2** Σ: input alphabet
 - (3) $\delta: O \times \Sigma \to O$: transition function
 - **4**) $s \in O$: start state
- **5** $F \subseteq Q$: final (accept) states $lackbr{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by
- $\widehat{\delta}(q,\epsilon) = q$

eccented by M if
$$\widehat{\delta}(s, \mathbf{v}) \in \mathbf{F}$$

- ▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$
- ▶ language accepted by M: $L(M) = \{x \mid \widehat{\delta}(s,x) \in F\}$
- ▶ set $A \subseteq \Sigma^*$ is regular if A = L(M) for some DFA M

WS 2024

 $\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading

Question

What is the language accepted by the DFA given by the following transition table?

Here the arrow indicates the start state and $\it F$ marks the final states.

- $\sim (\{a\}^*\{b\}\{a,b\}^*)$
- **c** the set of strings over $\{a,b\}$ containing exactly one b
- **D** the set of strings over $\{a,b\}$ that do not contain two or more b's

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Theorem

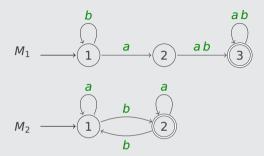
regular sets are effectively closed under intersection

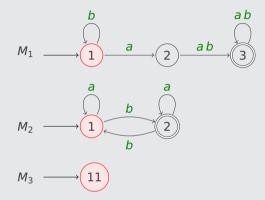
WS 2024

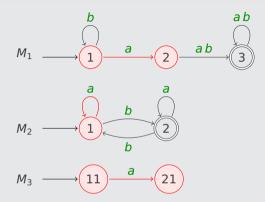
Theorem

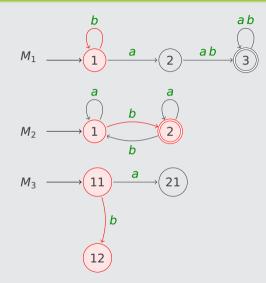
regular sets are effectively closed under intersection

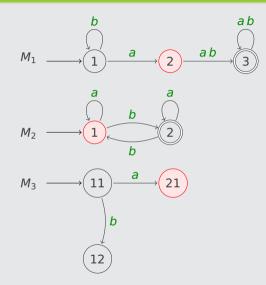
5. Closure Properties

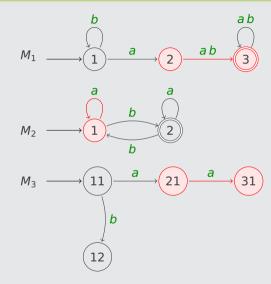


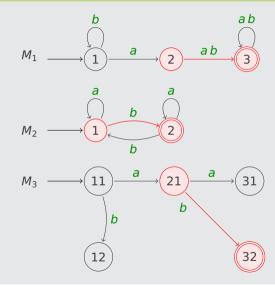




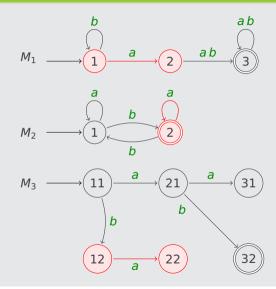


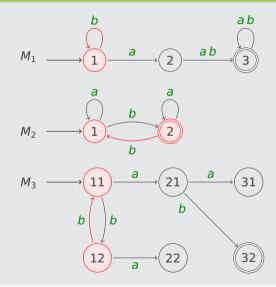


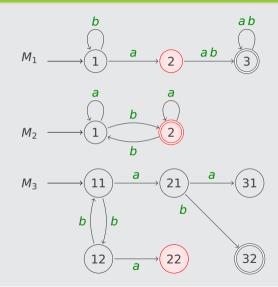


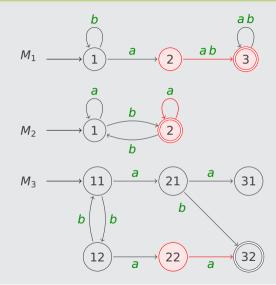


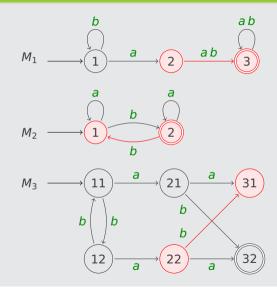


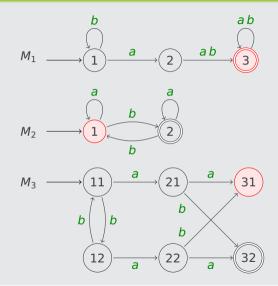


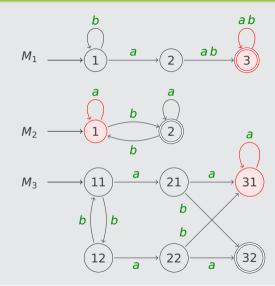


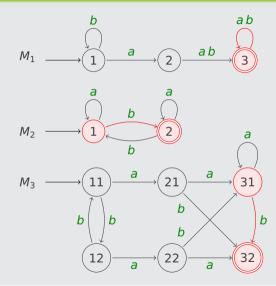


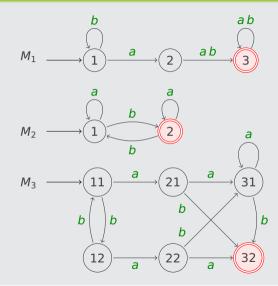


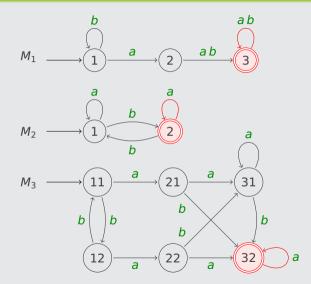


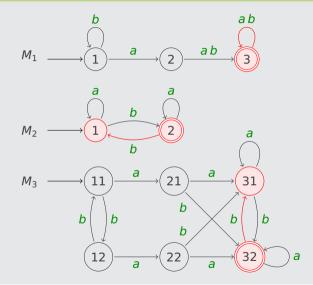


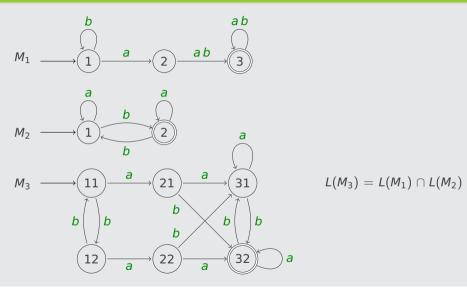












WS 2024

Automata and Logic

lecture 1

5. Closure Properties

regular sets are effectively closed under intersection

Proof

$$lacksquare$$
 $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$

$$B=L(M_2)$$
 for DFA $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$

WS 2024

regular sets are effectively closed under intersection

- ► $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- $B = L(M_2)$ for DFA $M_2 = (Q_2, Z_1, \sigma_2, \sigma_2, \sigma_2, \sigma_2)$ $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, S_3, F_3)$ with

regular sets are effectively closed under intersection

Proof

- ► $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- $lackbox{ A}\cap {\it B}={\it L}(M_3)$ for DFA $M_3=(Q_3,\Sigma,\delta_3,s_3,F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$

WS 2024

regular sets are effectively closed under intersection

Proof

- ► $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- ► $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - ② $F_3 = F_1 \times F_2$

5. Closure Properties

regular sets are effectively closed under intersection

- \blacktriangleright $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
- ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$

 - $\mathbf{3}$ $s_3 = (s_1, s_2)$

regular sets are effectively closed under intersection

- ightharpoonup $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$
 - $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- ▶ $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - ② $F_3 = F_1 \times F_2$
 - $\mathbf{3}$ $s_3 = (s_1, s_2)$

regular sets are effectively closed under intersection

- ► $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- ▶ $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$

 - 3 $s_3 = (s_1, s_2)$
- roof of claim: $\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$ for all $x \in \Sigma^*$ proof of claim: easy induction on |x| (on next slide)

regular sets are effectively closed under intersection

Proof (product construction)

- ► $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- ▶ $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
- roof of claim: $\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$ for all $x \in \Sigma^*$ proof of claim: easy induction on |x| (on next slide)

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall \, x \in \Sigma^*$$

▶ base case: |x| = 0

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall \, x \in \Sigma^*$$

▶ base case: |x| = 0 and thus $x = \epsilon$

WS 2024

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$$

▶ base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$$

• base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

▶ induction step: |x| > 0

claim:
$$\widehat{\delta_3}((p,q),x) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) \quad \forall x \in \Sigma^*$$

• base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

lacksquare induction step: |x|>0 and thus x=ya with |y|=|x|-1

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x)) \quad \forall x \in \Sigma^*$$

• base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta}_3((p,q),x)=(p,q)=(\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$$

• induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\widehat{\delta}_{3}((p,q),x) = \delta_{3}(\widehat{\delta}_{3}((p,q),y),a)$$

(definition of $\widehat{\delta}_3$)

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x)) \quad \forall x \in \Sigma^*$$

▶ base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

• induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\widehat{\delta_3}((p,q),x) = \delta_3(\widehat{\delta_3}((p,q),y),a)$$
$$= \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a)$$

(definition of $\widehat{\delta}_3$) (induction hypothesis)

WS 2024

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x)) \quad \forall x \in \Sigma^*$$

b base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

▶ induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\begin{split} \widehat{\delta_3}((p,q),x) &= \delta_3(\widehat{\delta_3}((p,q),y),a) \\ &= \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a) \\ &= (\delta_1(\widehat{\delta_1}(p,y),a),\delta_2(\widehat{\delta_2}(q,y),a)) \end{split}$$

A.M

(definition of $\widehat{\delta}_3$)

(definition of δ_3)

(induction hypothesis)

claim:
$$\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x)) \quad \forall x \in \Sigma^*$$

▶ base case: |x| = 0 and thus $x = \epsilon$

$$\widehat{\delta_3}((p,q),x)=(p,q)=(\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

• induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\hat{\delta}_{3}((p,q),x) = \delta_{3}(\hat{\delta}_{3}((p,q),y),a)
= \delta_{3}((\hat{\delta}_{1}(p,y),\hat{\delta}_{2}(q,y)),a)
= (\delta_{1}(\hat{\delta}_{1}(p,y),a),\delta_{2}(\hat{\delta}_{2}(q,y),a))$$

$$= (\delta_1(\delta_1(p,y),a), \delta_2(\delta_2(q,y),a))$$
$$= (\widehat{\delta_1}(p,x), \widehat{\delta_2}(q,x))$$

(definition of $\widehat{\delta}_3$)

(definition of δ_3)

(induction hypothesis)

(definition of $\widehat{\delta_1}$ and $\widehat{\delta_2}$)

regular sets are effectively closed under complement

regular sets are effectively closed under complement

$$lacksquare$$
 $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$

regular sets are effectively closed under complement

- lacksquare $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with

regular sets are effectively closed under complement

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$

regular sets are effectively closed under complement

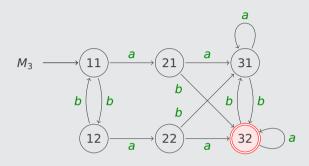
- lacksquare $A=L(M_1)$ for DFA $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$
 - ② $\delta_2(q,a) = \delta_1(q,a) \quad \forall \ q \in Q_2 \ \forall \ a \in \Sigma$

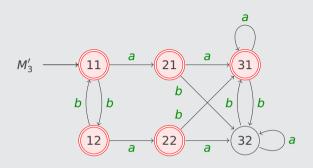
regular sets are effectively closed under complement

- lacksquare $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$
 - ② $\delta_2(q,a) = \delta_1(q,a) \quad \forall \ q \in Q_2 \ \forall \ a \in \Sigma$
 - 3 $s_2 = s_1$

regular sets are effectively closed under complement

- $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$
 - ② $\delta_2(q,a) = \delta_1(q,a) \quad \forall \ q \in Q_2 \ \forall \ a \in \Sigma$
 - $s_2 = s_1$





 $L(M_3') = \sim L(M_3)$

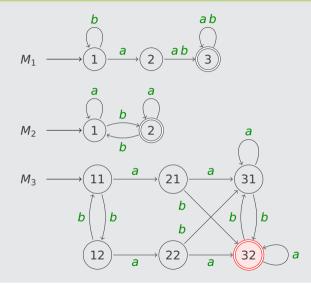
regular sets are effectively closed under union

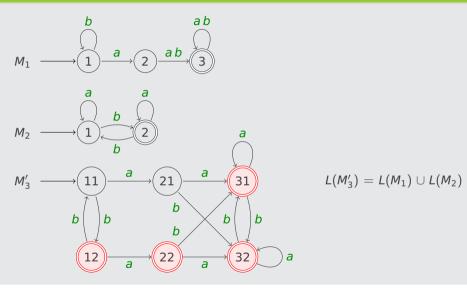
regular sets are effectively closed under union

$$\textbf{A} \cup \textbf{B} = \sim ((\sim A) \cap (\sim B))$$

Proof (explicit construction)

- $A = L(M_1)$ for DFA $M_1 = (O_1, \Sigma, \delta_1, s_1, F_1)$
 - $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- $ightharpoonup A \cup B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - (1) $O_3 = O_1 \times O_2 = \{(p,q) \mid p \in O_1 \text{ and } q \in O_2\}$
 - 2 $F_3 = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
 - $\mathbf{3}$ $s_3 = (s_1, s_2)$





Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

▶ Lectures 1-4

▶ Lectures 1–4

Important Concepts

- alphabet
- closure properties
- ► DFA

- language
- product construction

- regular set
- string

▶ Lectures 1-4

Important Concepts

- alphabet
- closure properties
- DFA

- language
- product construction

- regular set
- string

homework for October 11

▶ Lectures 1-4

Important Concepts

- alphabet
- closure properties
- ► DFA

- language
- product construction

- regular set
- string

homework for October 11

Solutions

must be uploaded (PDF format) in OLAT before 7 am on Friday

WS 2024

▶ Lectures 1-4

Important Concepts

- alphabet
 - closure properties
- ► DFA

- language
- product construction

- regular set
- string

homework for October 11

Solutions

- must be uploaded (PDF format) in OLAT before 7 am on Friday
- bonus exercises give bonus points