

WS 2024 lecture 1

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- 1. Introduction
 - Organisation Contents
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Initial Remarks

- ▶ Automata and Logic is elective module 1 in master program Computer Science
- ▶ master students must select 3 out of 6 elective modules:
 - 1 Automata and Logic
 - ② Constraint Solving (offered in 2025S)
 - 3 Cryptography
 - 4 High-Performance Computing
 - ⑤ Optimisation and Numerical Computation
 - Signal Processing and Algorithmic Geometry
- other master modules with theory content (Logic and Learning specialization):
 - ► Program and Resource Analysis (WM 8)
- Quantum Computing (WM 8)

► Tree Automata (WM 9)

- ► Research Seminar (WM 9)
- ► Semantics of Programming Languages (WM 7)

VO is streamed and recorded

Particify with session ID **8020 8256** for anonymous questions

AM

Important Information

- ► LVA 703302 (VO 2) + 703303 (PS 2)
- ▶ http://cl-informatik.uibk.ac.at/teaching/ws24/al
- online registration for VO required
- ► OLAT links for VO and PS

Time and Place

VO	Monday	8:15-10:00	HSB 9	(AM)
PS	Friday	8:15-10:00	SR 12	(JN)

Consultation Hours

Aart Middeldorp	3M07	Wednesday	11:30-13:00
Johannes Niederhauser	3M03	Thursday	9:00-10:30

AMWS 2024 Automata and Logic

Grading - PS

score = min $(\frac{10}{13}(E + P) + B, 100)$ E: points for solved exercises (at most 110)

B: points for bonus exercises (at most 20)

P: points for presentations of solutions (at most 20)

grade: $[0,50) \rightarrow \mathbf{5}$ $[50,63) \rightarrow \mathbf{4}$ $[63,75) \rightarrow \mathbf{3}$ $[75,88) \rightarrow \mathbf{2}$ $[88,100] \rightarrow \mathbf{1}$

- homework exercises are given on course web site
- solved exercises must be marked and solutions must be uploaded (PDF) in OLAT
- strict deadline: 7 am on Friday
- ▶ 10 points per PS
- two presentations of solutions are mandatory
- 20 points for two presentations; additional presentations give bonus points
- attendance is compulsory; unexcused absence is allowed twice (resulting in 0 points)

Schedule

week 1	07.10 & 11.10	week 6	11.11 & 15.11	week 11	16.12 & 10.01
week 2	14.10	week 7	18.11 & 22.11	week 12	13.01 & 17.01
week 3	21.10 & 25.10	week 8	25.11 & 29.11	week 13	20.01 & 24.01
week 4	28.10	week 9	02.12 & 06.12	week 14	27.01 (first exam)
week 5	04.11 & 08.11	week 10	09.12 & 13.12		

Grading - Vorlesung

- first exam on January 27
- registration starts 5 weeks and ends 2 weeks before exam
- de-registration is possible until 10:00 on January 24
- second exam on February 26
- third exam on September 25 (on demand)

WS 2024 Automata and Logic lecture 1

evaluation 2023W

Literature

▶ Dexter C Kozen Automata and Computability Springer-Verlag, 1997

 Christel Baier and Joost–Pieter Katoen **Principles of Model Checking**

MIT Press, 2008

▶ additional resources will be linked from course website

Online Material

- ▶ access to slides and exercises is restricted to uibk.ac.at domain
- ▶ solutions to selected exercises are available after they have been discussed in PS

WS 2024 Automata and Logic lecture 1

1. Introduction Organisation

AM

Outline

1. Introduction

Contents

- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading

 $AM_$ 1. Introduction

Automata

- ▶ (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata
- ▶ tree automata

Logic

- ► (weak) monadic second-order logic
- ► Presburger arithmetic
- ► linear-time temporal logic

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading

 ΔM_{\perp} WS 2024 Automata and Logic lecture 1 1. Introduction Contents

WS 2024 Automata and Logic lecture 1 2. Basic Definitions $AM_$

Definitions

- alphabet is finite set: its elements are called symbols or letters
- \blacktriangleright string over alphabet Σ is finite sequence of elements of Σ
- ▶ length |x| of string x is number of symbols in x
- ightharpoonup empty string is unique string of length 0 and denoted by ϵ
- Σ^* is set of all strings over Σ ($\emptyset^* = \{\epsilon\}$)
- ▶ language over Σ is subset of Σ^*

Examples

strings over $\Sigma = \{0,1\}$: 0 0110 ϵ

languages over Σ :

- \triangleright { ϵ , 0, 1, 00, 01, 10, 11} (all strings having at most two symbols)
- $\{x \mid x \text{ is valid program in some machine language} \}$

WS 2024 Automata and Logic lecture 1

Definitions

▶ string concatenation $x, y \in \Sigma^* \implies xy \in \Sigma^*$ is associative:

$$(xy)z = x(yz)$$
 for all $x, y, z \in \Sigma^*$

• empty string is identity for concatenation:

$$\epsilon x = x \epsilon = x$$
 for all $x \in \Sigma^*$

- ightharpoonup x is substring (prefix, suffix) of y if y = uxv (y = xv, y = ux)
- $\rightarrow x^n (x \in \Sigma^*, n \in \mathbb{N})$:

$$x^0 = \epsilon$$

$$x^{n+1} = x^n x$$

- ▶ #a(x) ($a \in \Sigma$, $x \in \Sigma^*$) denotes number of a's in x

AM

Definitions

for $A, B \subseteq \Sigma^*$

- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ union
- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ ▶ intersection
- $\sim A = \Sigma^* A = \{x \in \Sigma^* \mid x \notin A\}$ complement
- $AB = \{xy \mid x \in A \text{ and } y \in B\}$ set concatenation
- $A^0 = \{\epsilon\} \qquad A^{n+1} = AA^n$ ▶ powers A^n $(n \in \mathbb{N})$
- ▶ asterate A* is union of all finite powers of A

$$A^* = \bigcup_{n \geqslant 0} A^n = \{x_1 x_2 \cdots x_n \mid n \geqslant 0 \text{ and } x_i \in A \text{ for all } 1 \leqslant i \leqslant n\}$$

- $\rightarrow A^+ = AA^* = \bigcup A^n$
- $\mathbf{2}^A = \{Q \mid Q \subset A\}$ power set

Examples

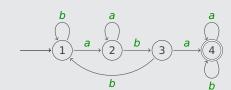
- substrings of 011: 0, 1, 01, 11, 011, ϵ
- prefixes of 011: 0, 01, 011, ϵ
- suffixes of 011: 1, 11, 011, ϵ
- $(011)^3 = 011011011 \neq 011^3$
- + #1(011011011) = 6 #0(ϵ) = 0
- $\{0,10,111\}\{1,11\} = \{01,101,1111,011,1011,11111\}$
- $\{0,01,111\}\{1,11\} = \{01,011,1111,0111,11111\}$
- $\{1,01\}^3 = \{111,0111,1011,01011,1101,01101,10101,010101\}$
- $\{1,01\}^* = \{\epsilon,1,01,11,011,101,0101,111,0111,1011,01011,\ldots\}$
- $2^{\{1,01\}} = \{\emptyset, \{1\}, \{01\}, \{1,01\} \}$

AM

Some Useful Properties

- $\triangleright \varnothing A = A\varnothing = \varnothing$
- $ightharpoonup \sim (A \cup B) = (\sim A) \cap (\sim B)$
- $ightharpoonup A^{m+n} = A^m A^n$
- $A^*A^* = A^*$
- $A^{**} = A^*$
- $A^* = \{\epsilon\} \cup AA^* = \{\epsilon\} \cup A^*A$
- $\triangleright \varnothing^* = \{\epsilon\}$

_A_M_ WS 2024 Automata and Logic lecture 1


Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading

 $AM_$

Example

DFA $M = (Q, \Sigma, \delta, s, F)$

- $Q = \{1, 2, 3, 4\}$
- **2** $\Sigma = \{a, b\}$ 1 2 1
- 2 2 3
- s = 1
- 4 4 4 **6** $F = \{4\}$
- $b a b a a \in L(M)$ 1 1 2 3 4 4
- $a a b b b \notin L(M)$ 1 2 2 3 1 1
- $L(M) = \{x \mid x \text{ contains } aba \text{ as substring}\}$

Definitions

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① Q: finite set of states
 - **②** Σ: input alphabet
 - ③ $\delta: Q \times \Sigma \to Q$: transition function
 - **4** $s \in Q$: start state
 - final (accept) states ⑤ F ⊆ Q:
- ▶ $\hat{\delta}$: $Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q, \epsilon) = q$$
 $\widehat{\delta}(q, xa) = \delta(\widehat{\delta}(q, x), a)$

- ▶ string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$
- ▶ language accepted by M: $L(M) = \{x \mid \widehat{\delta}(s,x) \in F\}$
- ▶ set $A \subseteq \Sigma^*$ is regular if A = L(M) for some DFA M

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

 ΔM_{-}

WS 2024 Automata and Logic lecture 1

Particify with session ID 8020 8256

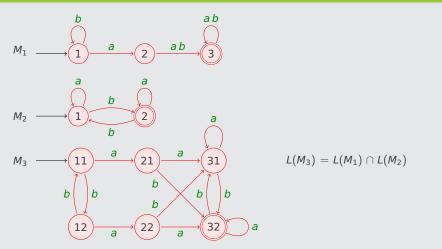
Question

What is the language accepted by the DFA given by the following transition table?

Here the arrow indicates the start state and F marks the final states.

- $A \quad \{a^n b \mid n \in \mathbb{N}\}$
- $\sim (\{a\}^*\{b\}\{a,b\}^*)$
- c the set of strings over $\{a,b\}$ containing exactly one b
- **D** the set of strings over $\{a,b\}$ that do not contain two or more b's

Outline


- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Theorem

regular sets are effectively closed under intersection

Proof (product construction)

- \rightarrow A = L(M₁) for DFA M₁ = (Q₁, Σ , δ ₁, s₁, F₁)
 - $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- ▶ $A \cap B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - ② $F_3 = F_1 \times F_2$
 - $\mathfrak{S}_3 = (s_1, s_2)$
 - $\delta_3((p,q),a) = (\delta_1(p,a),\delta_2(q,a))$ for all $p \in Q_1$, $q \in Q_2$, $a \in \Sigma$
- $\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x))$ for all $x \in \Sigma^*$ ▶ claim:
- proof of claim: easy induction on |x| (on next slide)

WS 2024 Automata and Logic

Proof of Claim

claim: $\widehat{\delta}_3((p,q),x) = (\widehat{\delta}_1(p,x),\widehat{\delta}_2(q,x)) \quad \forall \, x \in \Sigma^*$

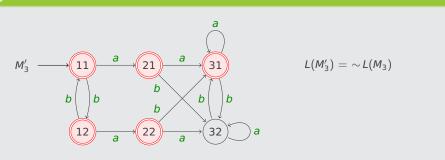
|x| = 0 and thus $x = \epsilon$ ▶ base case:

$$\widehat{\delta_3}((p,q),x) = (p,q) = (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x))$$

• induction step: |x| > 0 and thus x = ya with |y| = |x| - 1

$$\begin{split} \widehat{\delta_3}((p,q),x) &= \delta_3(\widehat{\delta_3}((p,q),y),a) & \text{(definition of } \widehat{\delta_3}) \\ &= \delta_3((\widehat{\delta_1}(p,y),\widehat{\delta_2}(q,y)),a) & \text{(induction hypothesis)} \\ &= (\delta_1(\widehat{\delta_1}(p,y),a),\delta_2(\widehat{\delta_2}(q,y),a)) & \text{(definition of } \widehat{\delta_3}) \\ &= (\widehat{\delta_1}(p,x),\widehat{\delta_2}(q,x)) & \text{(definition of } \widehat{\delta_1} \text{ and } \widehat{\delta_2}) \end{split}$$

 $AM_$


Theorem

regular sets are effectively closed under complement

Proof

- ▶ $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
- $ightharpoonup \sim A = \Sigma^* A = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ with
 - ① $Q_2 = Q_1$
 - ② $\delta_2(q,a) = \delta_1(q,a) \quad \forall q \in Q_2 \ \forall a \in \Sigma$
 - 3 $s_2 = s_1$

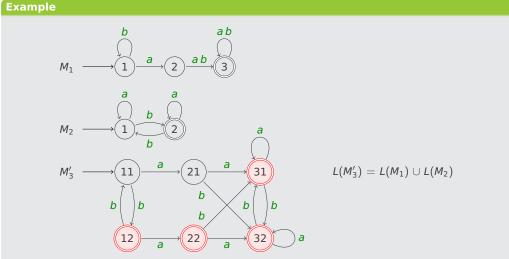
Example

 $AM_$

 $AM_$

Theorem

regular sets are effectively closed under union


Proof (explicit construction)

- ▶ $A = L(M_1)$ for DFA $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$
 - $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- ▶ $A \cup B = L(M_3)$ for DFA $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ with
 - ① $Q_3 = Q_1 \times Q_2 = \{(p,q) \mid p \in Q_1 \text{ and } q \in Q_2\}$
 - ② $F_3 = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
 - $s_3 = (s_1, s_2)$

WS 2024 Automata and Logic lecture 1

ΔM_{-}

_A_M_

Outline

- 1. Introduction
- 2. Basic Definitions
- 3. Deterministic Finite Automata
- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading

Kozen

▶ Lectures 1-4

Important Concepts

alphabet

language

regular set

- closure properties
- product construction
- string

DFA

homework for October 11

Solutions

- ... must be uploaded (PDF format) in OLAT before 7 am on Friday
- ... bonus exercises give bonus points

WS 2024 Automata and Logic lecture 1