

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- 6. Hamming Distance
- 7. Further Reading

Definitions

- ▶ deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - ① *Q*: finite set of states
 - ② Σ : input alphabet
 - ③ $\delta: Q \times \Sigma \rightarrow Q$: transition function
 - 4 $s \in Q$: start state
 - **⑤** $F \subseteq Q$: final (accept) states
- ▶ $\hat{\delta}$: $Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q,\epsilon)=q$$

- string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s,x) \in F$
- ▶ string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$
- ▶ language accepted by M: $L(M) = \{x \mid \widehat{\delta}(s,x) \in F\}$

 $\widehat{\delta}(q,xa) = \delta(\widehat{\delta}(q,x),a)$

Definition

set $A \subseteq \Sigma^*$ is regular if A = L(M) for some DFA M

Theorem

regular sets are effectively closed under intersection, union, and complement

Automata

- ► (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- ▶ (alternating) Büchi automata

Logic

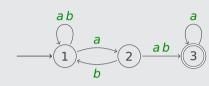
- ► (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

1. Summary of Previous Lecture

2. Nondeterministic Finite Automata

- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- **6.** Hamming Distance
- 7. Further Reading

NFA
$$M = (Q, \Sigma, \Delta, S, F)$$



$$Q = \{1, 2, 3\}$$

WS 2024

Definitions

- ▶ nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with
 - ① *Q*: finite set of states
 - (2) Σ : input alphabet
 - 3 $\Delta: Q \times \Sigma \to 2^Q$: transition function
 - 4 $S \subseteq Q$: set of start states
 - **⑤** $F \subseteq Q$: final (accept) states
- ▶ $\widehat{\Delta}$: $2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

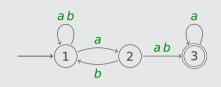
$$\widehat{\Delta}(A,\epsilon)=A$$

$$\widehat{\Delta}(A, xa) = \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$$

• $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S,x) \cap F \neq \emptyset$

Proof (subset construction)

- ▶ NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- ▶ L(N) = L(M) for DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with
 - ① $Q_M = 2^{Q_N}$
 - ② $\delta_M(A,a) = \widehat{\Delta}_N(A,a)$ for all $A \subseteq Q_N$ and $a \in \Sigma$
 - $\mathfrak{S}_M = S_N$
- ▶ claim: $\widehat{\delta}_M(A,x) = \widehat{\Delta}_N(A,x)$ for all $A \subseteq Q_N$ and $x \in \Sigma^*$ proof of claim: easy induction on |x|

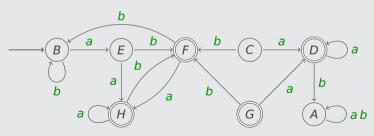


$$A = \emptyset$$
 $E = \{1,2\}$
 $B = \{1\}$ $F = \{1,3\}$
 $C = \{2\}$ $G = \{2,3\}$

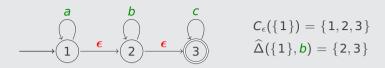
 $D = \{3\}$ $H = \{1, 2, 3\}$

abbbaababbabbbaababba

remove inaccesible states



- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- **5. Closure Properties**
- 6. Hamming Distance
- 7. Further Reading



Definitions

- ▶ NFA with ϵ -transitions (NFA $_{\epsilon}$) is sextuple $N = (Q, \Sigma, \epsilon, \Delta, S, F)$ such that
 - 1 $\epsilon \notin \Sigma$
 - ② $N_{\epsilon} = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\epsilon\}$
- ▶ ϵ -closure of set $A \subseteq Q$ is defined as $C_{\epsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\epsilon}}(A, x) \mid x \in \{\epsilon\}^*\}$
- $ightharpoonup \widehat{\Delta}_{N}: 2^{Q} \times \Sigma^{*} \to 2^{Q}$ is inductively defined by

$$\widehat{\Delta}_{N}(A,\epsilon) = \frac{\mathbf{C}_{\epsilon}(A)}{\widehat{\Delta}_{N}(A,xa)} = \bigcup \left\{ \frac{\mathbf{C}_{\epsilon}(\Delta(q,a))}{\widehat{\Delta}_{N}(A,x)} \right\}$$

Lemma

 $C_{\epsilon}(A)$ is least extension of A that is closed under ϵ -transitions:

$$q \in C_{\epsilon}(A) \implies \Delta_{N_{\epsilon}}(q, \epsilon) \subseteq C_{\epsilon}(A)$$

Theorem

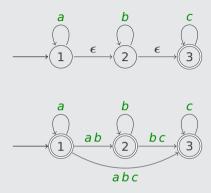
every set accepted by NFA, is regular

Proof (construction)

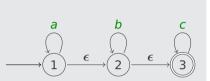
 \blacktriangleright NFA_{ϵ} N₁ = $(Q, \Sigma, \epsilon, \Delta_1, S, F_1)$

WS 2024

- \blacktriangleright $L(N_1) = L(N_2)$ for NFA $N_2 = (Q, \Sigma, \Delta_2, S, F_2)$ with ① $\Delta_2(q,a) = \widehat{\Delta}_1(\{q\},a)$ for all $q \in Q$ and $a \in \Sigma$
 - (2) $F_2 = \{ a \mid C_{\epsilon}(\{a\}) \cap F_1 \neq \emptyset \}$



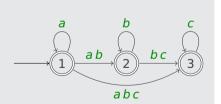
 $NFA_{\epsilon} N_1 = (\{1,2,3\}, \{a,b,c\}, \epsilon, \Delta_1, \{1\}, \{3\}) \text{ with }$



NFA $N_2 = (\{1,2,3\},\{a,b,c\},\Delta_2,\{1\},F_2)$ with

▶
$$F_2 = \{q \mid C_{\epsilon}(\{q\}) \cap \{3\} \neq \emptyset\} = \{q \mid 3 \in C_{\epsilon}(\{q\})\} = \{1,2,3\}$$

▶ ∆₂	а	b	C
1		$\{2,3\}$	{3}
2	Ø	$\{2,3\}$	{3}
3	Ø	Ø	{3}



- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- **5. Closure Properties**
- 6. Hamming Distance
- 7. Further Reading

Question

What is the language accepted by the NFA $_{\epsilon}$ given by the following transition table ?

$$egin{array}{c|cccc} & \epsilon & a & b \ \hline 1 & \{2\} & \{1,2\} & \{1\} \ 2 & arnothing & arnothing & \{3\} \ 3 & arnothing & \{4\} & \{4\} \ 4F & arnothing & arnothing & arnothing & arnothing \end{array}$$

- **A** $\{a,b\}^*$
- **B** $\{xaby \mid x \in \{a,b\}^* \text{ and } y \in \{a,b\}\}$
- **C** $\{xyz \mid x, z \in \{a, b\}^* \text{ and } y \in \{a, b\}\}$

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- 6. Hamming Distance
- 7. Further Reading

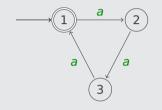
Theorem

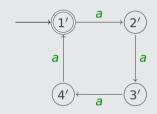
regular sets are effectively closed under union, concatenation, and asterate

Proof

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- without loss of generality $O_1 \cap O_2 = \emptyset$
- $ightharpoonup A \cup B = L(N)$ for NFA $N = (O, \Sigma, \Delta, S, F)$ with
 - (1) $O = O_1 \cup O_2$
 - (2) $S = S_1 \cup S_2$
 - $(3) F = F_1 \cup F_2$
 - $egin{aligned} \textcircled{4} & \Delta(q,a) &= egin{cases} \Delta_1(q,a) & ext{if } q \in Q_1 \ \Delta_2(q,a) & ext{if } q \in Q_2 \end{cases} \end{aligned}$

 $\{x \in \{a\}^* \mid |x| \text{ is divisible by 3}\} \quad \bigcup \quad \{x \in \{a\}^* \mid |x| \text{ is divisible by 4}\}$





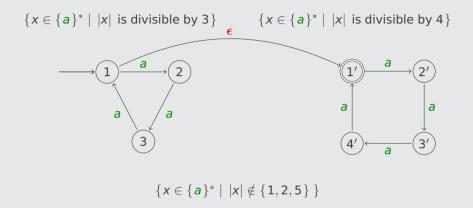
 $\{x \in \{a\}^* \mid |x| \text{ is divisible by 3 or 4}\}$

Theorem

regular sets are effectively closed under union, concatenation, and asterate

Proof

- $ightharpoonup A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $B=L(N_2)$ for NFA $N_2=(Q_2,\Sigma,\Delta_2,S_2,F_2)$
- ightharpoonup without loss of generality $Q_1 \cap Q_2 = \varnothing$
- ullet AB=L(N) for NFA $_{\epsilon}$ $N=(Q,\Sigma,\epsilon,\Delta,S_1,F_2)$ with
 - ① $Q = Q_1 \cup Q_2$ $(A_1(q, a) \text{ if } q \in Q_1 \text{ and } a \in \Sigma)$



Theorem

regular sets are effectively closed under union, concatenation, and asterate

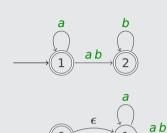
Proof

- $ightharpoonup A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $ightharpoonup A^* = L(N)$ for NFA $_{\epsilon} N = (Q, \Sigma, \epsilon, \Delta, S, F)$ with

 - ② $S = \{s\}$
 - $F = \{s\}$

$$\{a\}^*\{b\}^*$$

$$({a}^*{b}^*)^* = {a,b}^*$$



- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- **5. Closure Properties**
- **6. Hamming Distance**
- 7. Further Reading

Definitions

- ▶ Hamming distance H(x,y) is number of places where bit strings x and y differ
- ▶ if $|x| \neq |y|$ then $H(x,y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leqslant k \text{ for some } y \in A\}$

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies N_2(A)$ is regular

Lemma

$$A \subseteq \{0,1\}^*$$
 is regular $\implies N_2(A)$ is regular

Proof

- ▶ A = L(M) for DFA $M = (Q_M, \{0, 1\}, \delta_M, s_M, F_M)$
- ▶ define NFA $N = (Q_N, \{0,1\}, \Delta_N, S_N, F_N)$ with
- ① $Q_N = Q_M \times \{0,1,2\}$
 - ② $\Delta_N((p,0),a) = \{(q,0) \mid \delta_M(p,a) = q\} \cup \{(q,1) \mid \delta_M(p,b) = q \text{ for some } b \neq a\}$ $\Delta_N((p,1),a) = \{(q,1) \mid \delta_M(p,a) = q\} \cup \{(q,2) \mid \delta_M(p,b) = q \text{ for some } b \neq a\}$

$$\Delta_{N}((p,2),a)=\{(q,2)\mid \delta_{M}(p,a)=q\}$$
 for all $a\in\Sigma$

- **4** $F_N = F_M \times \{0, 1, 2\}$

Proof (cont'd)

▶ key property:

$$(q,j)\in \widehat{\Delta}_N(\{(p,i)\},y) \quad \Longleftrightarrow \quad \widehat{\delta_M}(p,x)=q \text{ for some } x\in \{0,1\}^*$$

for all $p, q \in Q_M$, $y \in \{0, 1\}^*$, $i, j \in \{0, 1, 2\}$ such that |x| = |y| and H(x, y) = j - i

▶
$$N_2(A) = \{y \mid H(y,x) \le 2 \text{ for some } x \in A\}$$

$$= \{y \mid H(y,x) = k \text{ for some } x \in A \text{ and } k \in \{0,1,2\}\}$$

$$= \{y \mid H(y,x) = k \text{ and } \widehat{\delta_M}(s_M,x) = q \text{ for some } x \in A, k \in \{0,1,2\} \text{ and } q \in F_M\}$$

$$= \{y \mid (q,k) \in \widehat{\Delta}_N(\{(s_M,0)\},y) \text{ for some } q \in F_M \text{ and } k \in \{0,1,2\}\}$$

$$= \{y \mid (q,k) \in \widehat{\Delta}_N(\{(s_M,0)\},y) \text{ for some } (q,k) \in F_N\}$$

$$= \{y \mid \widehat{\Delta}_N(\{(s_M,0)\},y) \cap F_N \neq \emptyset\}$$

= L(N)

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- **5. Closure Properties**
- 6. Hamming Distance
- 7. Further Reading

Kozen

▶ Lecture 5 and 6

Important Concepts

- \triangleright ϵ -transition
- \triangleright ϵ -closure
- asterate

- ► Hamming distance
- NFA
 - subset construction

 \triangleright NFA $_{\epsilon}$

homework for October 25