

WS 2024 lecture 2



# Automata and Logic

Aart Middeldorp and Johannes Niederhauser

### Outline

- 1. Summary of Previous Lecture
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- 6. Hamming Distance
- 7. Further Reading

#### Definitions

- deterministic finite automaton (DFA) is quintuple  $M = (Q, \Sigma, \delta, s, F)$  with
  - ① *Q*: finite set of states
  - (2)  $\Sigma$ : input alphabet
  - **③**  $\delta: Q \times \Sigma \rightarrow Q$ : transition function
  - (4)  $s \in Q$ : start state
  - **(5)**  $F \subseteq Q$ : **final** (accept) states
- $\widehat{\delta} \colon Q imes \mathbf{\Sigma}^* o Q$  is inductively defined by

$$\tilde{b}(q,\epsilon)=q$$

- $\widehat{\delta}(q, xa) = \delta(\widehat{\delta}(q, x), a)$
- string  $x \in \Sigma^*$  is accepted by M if  $\widehat{\delta}(s, x) \in F$
- string  $x \in \Sigma^*$  is rejected by M if  $\widehat{\delta}(s, x) \notin F$
- language accepted by M:  $L(M) = \{x \mid \hat{\delta}(s, x) \in F\}$

Definition

set  $A \subseteq \Sigma^*$  is regular if A = L(M) for some DFA M

Theorem

regular sets are effectively closed under intersection, union, and complement

#### Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

#### Logic

universität innsbruck

- (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

WS 2024 Automata

### Outline

**1. Summary of Previous Lecture** 

#### 2. Nondeterministic Finite Automata

- 3. Epsilon Transitions
- 4. Intermezzo
- **5. Closure Properties**
- 6. Hamming Distance
- 7. Further Reading

|           |           |                                |          | A.M  |
|-----------|-----------|--------------------------------|----------|------|
| and Logic | lecture 2 | 1. Summary of Previous Lecture | Contents | 5/30 |

universität WS 2024 Automata and Logic lecture 2 2. Nondeterministic Finite Automata
inspruck

Example NFA  $M = (Q, \Sigma, \Delta, S, F)$ аb а ab **1**  $Q = \{1, 2, 3\}$  $\begin{array}{c|c} \Delta & a & b \\ \hline 1 & \{1,2\} & \{1\} \end{array}$ **2**  $\Sigma = \{a, b\}$ 2 **{3**}  $\{1,3\}$ **4**  $S = \{1\}$ 3 {3} Ø **6**  $F = \{3\}$ 

#### Definitions

- ▶ nondeterministic finite automaton (NFA) is quintuple  $N = (Q, \Sigma, \Delta, S, F)$  with
  - ① *Q*: finite set of states
  - (2)  $\Sigma$ : input alphabet
  - (3)  $\Delta: Q \times \Sigma \rightarrow 2^{Q}$ : transition function
  - (4)  $S \subseteq Q$ : set of start states
  - (5)  $F \subseteq Q$ : final (accept) states
- $\widehat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$  is inductively defined by

$$\Delta(A,\epsilon) = A$$

$$\widehat{\Delta}(A, xa) = \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$$

•  $x \in \Sigma^*$  is accepted by N if  $\widehat{\Delta}(S, x) \cap F \neq \emptyset$ 

AM\_

6/30

#### Theorem

Outline

every set accepted by NFA is regular

#### Proof (subset construction)

- NFA  $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- L(N) = L(M) for DFA  $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$  with
  - (1)  $Q_M = 2^{Q_N}$ (2)  $\delta_M(A, a) = \widehat{\Delta}_N(A, a)$  for all  $A \subseteq Q_N$  and  $a \in \Sigma$ (3)  $s_M = S_N$ (4)  $F_M = \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$
- ▶ claim:  $\widehat{\delta_M}(A, x) = \widehat{\Delta}_N(A, x)$  for all  $A \subseteq Q_N$  and  $x \in \Sigma^*$

proof of claim: easy induction on |x|

**1. Summary of Previous Lecture** 

3. Epsilon Transitions

5. Closure Properties

6. Hamming Distance

7. Further Reading

4. Intermezzo

2. Nondeterministic Finite Automata

| universität<br>innsbruck | WS 2024 | Automata and Logic | lecture 2 | 2. Nondeterministic Finite Automata |
|--------------------------|---------|--------------------|-----------|-------------------------------------|

\_\_\_\_A\_M\_\_\_\_ 9/30



Example

# Definitions

- ▶ NFA with  $\epsilon$ -transitions (NFA $_{\epsilon}$ ) is sextuple  $N = (Q, \Sigma, \epsilon, \Delta, S, F)$  such that
  - 1  $\epsilon \notin \Sigma$

(2)  $N_{\epsilon} = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)$  is NFA over alphabet  $\Sigma \cup \{\epsilon\}$ 

- $\epsilon$ -closure of set  $A \subseteq Q$  is defined as  $C_{\epsilon}(A) = \bigcup \left\{ \widehat{\Delta}_{N_{\epsilon}}(A, x) \mid x \in \{\epsilon\}^* \right\}$
- $\widehat{\Delta}_{N}: 2^{Q} \times \Sigma^{*} \to 2^{Q}$  is inductively defined by

$$\widehat{\Delta}_{N}(A,\epsilon) = \boldsymbol{C}_{\boldsymbol{\epsilon}}(A) \qquad \qquad \widehat{\Delta}_{N}(A,xa) = \bigcup \left\{ \boldsymbol{C}_{\boldsymbol{\epsilon}}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,x) \right\}$$

A.M\_ 11/30

#### Lemma

 $C_{\epsilon}(A)$  is least extension of A that is closed under  $\epsilon$ -transitions:

$$q\in C_\epsilon({\sf A}) \quad \Longrightarrow \quad \Delta_{{\sf N}_\epsilon}(q,\epsilon)\subseteq C_\epsilon({\sf A})$$

#### Theorem

every set accepted by NFA<sub> $\epsilon$ </sub> is regular

#### **Proof** (construction)

- $\blacktriangleright \mathsf{NFA}_{\epsilon} \mathsf{N}_1 = (Q, \Sigma, \epsilon, \Delta_1, S, F_1)$
- $L(N_1) = L(N_2)$  for NFA  $N_2 = (Q, \Sigma, \Delta_2, S, F_2)$  with

(1)  $\Delta_2(q,a) = \widehat{\Delta}_1(\{q\},a)$  for all  $q \in Q$  and  $a \in \Sigma$ (2)  $F_2 = \{q \mid C_{\epsilon}(\{q\}) \cap F_1 \neq \emptyset\}$ 

universität WS 2024 Automata and Logic lecture 2 3. Epsilon Transitions





|                              |         |                    |           |                        | A.M_  |
|------------------------------|---------|--------------------|-----------|------------------------|-------|
| <br>universität<br>innsbruck | WS 2024 | Automata and Logic | lecture 2 | 3. Epsilon Transitions | 14/30 |
| innsbruck                    | WS 2024 | Automata and Logic | lecture 2 | 3. Epsilon transitions | 14/3  |



### Outline

A.M\_

13/30

- **1. Summary of Previous Lecture**
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions

#### 4. Intermezzo

- **5. Closure Properties**
- 6. Hamming Distance
- 7. Further Reading

### Furticify with session ID 8020 8256

#### Question

What is the language accepted by the NFA $_{\epsilon}$  given by the following transition table ?

|               |     | $\epsilon$ | а          | b           |
|---------------|-----|------------|------------|-------------|
| $\rightarrow$ | 1   | {2}        | $\{1, 2\}$ | {1}         |
|               | 2   | Ø          | Ø          | <b>{3</b> } |
|               | 3   | Ø          | <b>{4}</b> | <b>{4}</b>  |
|               | 4 F | Ø          | Ø          | Ø           |



- **B**  $\{xaby \mid x \in \{a, b\}^* \text{ and } y \in \{a, b\}\}$
- **C**  $\{xyz \mid x, z \in \{a, b\}^* \text{ and } y \in \{a, b\}\}$
- **D**  $\{xyz \mid x \in \{a,b\}^*, y \in \{b,ab\} \text{ and } z \in \{a,b\}\}$

universität WS 2024 Automata and Logic lecture 2 4. Intermezzo innsbruck



AM\_

17/30

### Outline

- **1. Summary of Previous Lecture**
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- 6. Hamming Distance
- 7. Further Reading

Example

universität universität unsbruck
WS 2024 Automata and Logic lecture 2
5. Closure Properties \_A\_M\_ 18/30

#### Theorem

regular sets are effectively closed under union, concatenation, and asterate

#### Proof

- $A = L(N_1)$  for NFA  $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ 
  - $B = L(N_2)$  for NFA  $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- without loss of generality  $Q_1 \cap Q_2 = \emptyset$
- $A \cup B = L(N)$  for NFA  $N = (Q, \Sigma, \Delta, S, F)$  with
  - $\begin{array}{ll} \textcircled{1} & Q = Q_1 \cup Q_2 \\ \textcircled{2} & S = S_1 \cup S_2 \\ \textcircled{3} & F = F_1 \cup F_2 \\ \textcircled{4} & \Delta(q,a) = \begin{cases} \Delta_1(q,a) & \text{if } q \in Q_1 \\ \Delta_2(q,a) & \text{if } q \in Q_2 \end{cases} \end{array}$

#### A.M\_ 19/30





 ${x \in {a}^* \mid |x| \text{ is divisible by 3 or 4}}$ 

#### Theorem

regular sets are effectively closed under union, concatenation, and asterate

#### Proof

•  $A = L(N_1)$  for NFA  $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ 

$$B = L(N_2)$$
 for NFA  $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$ 

- without loss of generality  $Q_1 \cap Q_2 = \emptyset$
- AB = L(N) for NFA<sub> $\epsilon$ </sub>  $N = (Q, \Sigma, \epsilon, \Delta, S_1, F_2)$  with

(1) 
$$Q = Q_1 \cup Q_2$$
  
(2)  $\Delta(q, a) = \begin{cases} \Delta_1(q, a) & \text{if } q \in Q_1 \text{ and } a \in \Sigma \\ \Delta_2(q, a) & \text{if } q \in Q_2 \text{ and } a \in \Sigma \\ S_2 & \text{if } q \in F_1 \text{ and } a = \epsilon \\ \varnothing & \text{otherwise} \end{cases}$ 

- universität WS 2024 Automata and Logic lecture 2 5. Closure Properties

Example



A.M\_ universitat WS 2024 Automata and Logic lecture 2 5. Closure Properties 22/30

#### Theorem

regular sets are effectively closed under union, concatenation, and asterate

 $\epsilon$ 

#### Proof

- $A = L(N_1)$  for NFA  $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $\mathbf{A}^* = L(N)$  for NFA<sub> $\epsilon$ </sub>  $N = (Q, \Sigma, \epsilon, \Delta, S, F)$  with

(1) 
$$Q = Q_1 \uplus \{\mathbf{s}\}$$
  
(2)  $S = \{s\}$   
(3)  $F = \{s\}$   
(4)  $\Delta(q, a) = \begin{cases} \Delta_1(q, a) & \text{if } q \in Q_1 \text{ and } a \in \Sigma \\ S_1 & \text{if } q = s \text{ and } a = \epsilon \\ S & \text{if } q \in F_1 \text{ and } a = \epsilon \\ \varnothing & \text{otherwise} \end{cases}$ 

universität WS 2024 Automata and Logic lecture 2 5. Closure Properties \_A.M\_

21/30



## Outline

- **1. Summary of Previous Lecture**
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties

#### 6. Hamming Distance

7. Further Reading

#### Definitions

- Hamming distance H(x, y) is number of places where bit strings x and y differ
- if  $|x| \neq |y|$  then  $H(x,y) = \infty$
- ▶  $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

### Lemma

 $A \subseteq \{0,1\}^* \text{ is regular } \implies N_2(A) \text{ is regular}$ 

| universität<br>innsbruck | WS 2024 | Automata and Logic | lecture 2 | 6. Hamming Distance |  |
|--------------------------|---------|--------------------|-----------|---------------------|--|

\_A\_M\_ 25/30

A.M\_

27/30

#### universität WS 2024 Automata and Logic lecture 2 6. Hamming Distance innspruck

#### Lemma

 $A \subseteq \{0,1\}^*$  is regular  $\implies N_2(A)$  is regular

### Proof

- A = L(M) for DFA  $M = (Q_M, \{0, 1\}, \delta_M, s_M, F_M)$
- define NFA  $N = (Q_N, \{0, 1\}, \Delta_N, S_N, F_N)$  with
  - (1)  $Q_N = Q_M \times \{0, 1, 2\}$
  - (2)  $\Delta_N((p,0),a) = \{(q,0) \mid \delta_M(p,a) = q\} \cup \{(q,1) \mid \delta_M(p,b) = q \text{ for some } b \neq a\}$   $\Delta_N((p,1),a) = \{(q,1) \mid \delta_M(p,a) = q\} \cup \{(q,2) \mid \delta_M(p,b) = q \text{ for some } b \neq a\}$   $\Delta_N((p,2),a) = \{(q,2) \mid \delta_M(p,a) = q\} \text{ for all } a \in \Sigma$
  - (3)  $S_N = \{(s_M, 0)\}$
  - (a)  $F_N = F_M \times \{0, 1, 2\}$

### Proof (cont'd)

key property:

$$(q,j)\in\widehat{\Delta}_{\sf N}(\{(p,i)\},y)\quad\iff\quad \widehat{\delta_{\sf M}}(p,x)=q ext{ for some } x\in\{0,1\}^*$$

for all  $p, q \in Q_M$ ,  $y \in \{0,1\}^*$ ,  $i, j \in \{0,1,2\}$  such that |x| = |y| and H(x,y) = j - i

- $N_2(A) = \{y \mid H(y, x) \leq 2 \text{ for some } x \in A\}$ 
  - $= \{ y \mid H(y,x) = k \text{ for some } x \in A \text{ and } k \in \{0,1,2\} \}$
  - $= \{y \mid H(y,x) = k \text{ and } \widehat{\delta_M}(s_M,x) = q \text{ for some } x \in A, \ k \in \{0,1,2\} \text{ and } q \in F_M\}$
  - $= \{ y \mid (q,k) \in \widehat{\Delta}_{N}(\{(s_{M},0)\}, y) \text{ for some } q \in F_{M} \text{ and } k \in \{0,1,2\} \}$
  - $= \{ y \mid (q,k) \in \widehat{\Delta}_{N}(\{(s_{M},0)\}, y) \text{ for some } (q,k) \in F_{N} \}$
  - $= \{y \mid \widehat{\Delta}_{N}(\{(s_{M}, 0)\}, y) \cap F_{N} \neq \emptyset\}$
  - = L(N)

AM\_

## Outline

- **1. Summary of Previous Lecture**
- 2. Nondeterministic Finite Automata
- 3. Epsilon Transitions
- 4. Intermezzo
- 5. Closure Properties
- 6. Hamming Distance
- 7. Further Reading

# Kozen

► Lecture 5 and 6

| Important Concepts                           |                                      |                                         |
|----------------------------------------------|--------------------------------------|-----------------------------------------|
| $\blacktriangleright$ $\epsilon$ -transition | <ul> <li>Hamming distance</li> </ul> | $\blacktriangleright$ NFA $_{\epsilon}$ |
| ► e-closure                                  | ► NFA                                | subset construction                     |
| asterate                                     |                                      |                                         |
|                                              |                                      |                                         |
|                                              |                                      |                                         |
|                                              | homework for October 2               | 25                                      |

#### universitat WS 2024 Automata and Logic lecture 2 7. Further Reading

\_\_\_A\_M\_\_ 29/30

universitat WS 2024 Automata and Logic lecture 2 7. Further Reading

\_A\_M\_ 30/30