

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

- ▶ nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with
 - ① Q: finite set of states
 - ② Σ : input alphabet
 - 3 $\Delta: Q \times \Sigma \to {\color{red} 2^Q}:$ transition function
 - (5) $F \subseteq Q$: final (accept) states
- ▶ $\widehat{\Delta}$: $2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}(A,\epsilon)=A$$

$$\widehat{\Delta}(A, xa) = \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$$

▶ $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S,x) \cap F \neq \emptyset$

Theorem

every set accepted by NFA is regular

- ▶ NFA with ϵ -transitions (NFA $_{\epsilon}$) is sextuple $N = (Q, \Sigma, \epsilon, \Delta, S, F)$ such that
 - ① $\epsilon \notin \Sigma$
 - ② $M_{\epsilon} = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\epsilon\}$
- ▶ ϵ -closure of set $A \subseteq Q$ is defined as $C_{\epsilon}(A) = \bigcup \left\{\widehat{\Delta}_{N_{\epsilon}}(A, x) \mid x \in \{\epsilon\}^*\right\}$
- $lackbox{}\widehat{\Delta}_N\colon 2^Q imes \Sigma^* o 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A,\epsilon) = C_{\epsilon}(A)$$
 $\widehat{\Delta}_N(A,xa) = \bigcup \{C_{\epsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_N(A,x)\}$

Theorem

- every set accepted by NFA_ε is regular
- regular sets are effectively closed under union, concatenation, and asterate

Automata

- ▶ (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- ► (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. Regular Expressions

- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

▶ regular expression α over alphabet Σ :

$$a\in \Sigma$$

$$\beta + \gamma$$

▶ regular expression α over alphabet Σ :

$$\mathbf{a} \in \Sigma$$
 ϵ

Ø

 $\beta + \gamma$

$$L(\mathbf{a}) = \{a\}$$

▶ regular expression α over alphabet Σ :

$$a \in \Sigma$$
 ϵ

Ø

 $\beta + \gamma$

$$L(a) = \{a\}$$

$$L(\boldsymbol{\epsilon}) = \{\epsilon\}$$

- ▶ regular expression α over alphabet Σ :
 - $a \in \Sigma$ ϵ

Ø

- $\beta + \gamma$
- $\beta\gamma$

$$L(a) = \{a\}$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\varnothing)=\varnothing$$

ightharpoonup regular expression α over alphabet Σ :

$$a\in \Sigma$$
 ϵ

$$\epsilon$$

$$\beta + \gamma$$

$$\beta\gamma$$

$$L(a) = \{a\}$$

$$L(\beta + \gamma) = L(\beta) \cup L(\gamma)$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\emptyset) = \emptyset$$

• regular expression α over alphabet Σ :

$$a\in\Sigma$$
 ϵ

$$\epsilon$$

$$\beta + \gamma$$

$$\beta\gamma$$

$$L(a) = \{a\}$$

$$L(\beta + \gamma) = L(\beta) \cup L(\gamma)$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\beta\gamma) = L(\beta)L(\gamma)$$

$$L(\varnothing)=\varnothing$$

ightharpoonup regular expression α over alphabet Σ :

$$a\in \Sigma$$
 ϵ

$$\epsilon$$

$$\beta + \gamma$$

$$\beta\gamma$$

$$L(a) = \{a\}$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\epsilon) = \{\epsilon\}$$

 $L(\emptyset) = \emptyset$

$$L(\beta + \gamma) = L(\beta) \cup L(\gamma)$$
$$L(\beta\gamma) = L(\beta)L(\gamma)$$

$$L(\beta^*) = L(\beta)^*$$

ightharpoonup regular expression α over alphabet Σ :

$$a\in \Sigma$$
 ϵ

 $\beta + \gamma$

$$\beta \gamma$$

▶ set of strings $L(\alpha) \subseteq \Sigma^*$ matched by regular expression α :

$$L(a) = \{a\}$$

$$L(\beta + \gamma) = L(\beta) \cup L(\gamma)$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\beta\gamma) = L(\beta)L(\gamma)$$

$$L(\varnothing)=\varnothing$$

$$L(\beta^*) = L(\beta)^*$$

Example

regular expression $(a+b)^*b$ matches all strings over $\Sigma = \{a,b\}$ that end with b

ightharpoonup regular expression α over alphabet Σ :

$$a\in \Sigma$$
 ϵ

$$\beta + \gamma$$
 $\beta \gamma$

▶ set of strings $L(\alpha) \subseteq \Sigma^*$ matched by regular expression α :

$$L(a) = \{a\}$$

$$\{\epsilon\}$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\beta + \gamma) = L(\beta) \cup L(\gamma)$$

$$L(\beta\gamma) = L(\beta)L(\gamma)$$

$$L(\varnothing)=\varnothing$$

$$L(\beta^*) = L(\beta)^*$$

Example

regular expression $(a+b)^*b$ matches all strings over $\Sigma = \{a,b\}$ that end with b

Definition

regular expressions α and β are equivalent $(\alpha \equiv \beta)$ if $L(\alpha) = L(\beta)$

finite automata and regular expressions are equivalent

finite automata and regular expressions are equivalent:

 $\text{for all } \textit{A} \subseteq \Sigma^* \quad \textit{A} \text{ is regular} \quad \Longleftrightarrow \quad \textit{A} = \textit{L}(\alpha) \text{ for some regular expression } \alpha$

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

$\mathsf{Proof} \; (\Longleftarrow)$

induction on regular expression α

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

Proof (←)

induction on regular expression α

$$\begin{array}{cccc}
\alpha & L(\alpha) & \alpha & L(\alpha) \\
\hline
a \in \Sigma & \{a\} & \beta + \gamma & L(\beta) \cup L(\gamma) \\
\epsilon & \{\epsilon\} & \beta \gamma & L(\beta)L(\gamma) \\
\varnothing & \varnothing & \beta^* & L(\beta)^*
\end{array}$$

finite automata and regular expressions are equivalent:

 $\text{for all } \textit{A} \subseteq \Sigma^* \quad \textit{A} \text{ is regular } \iff \textit{A} = \textit{L}(\alpha) \text{ for some regular expression } \alpha$

$oxed{\mathsf{Proof}}$ (\Longleftrightarrow)

induction on regular expression $\,\alpha\,$

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

$\mathsf{Proof} \; (\Longleftarrow)$

induction on regular expression α

α	$L(\alpha)$	finite automaton	α	$L(\alpha)$
$a \in \Sigma$	{a}	a	$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
ϵ	$\{\epsilon\}$	$\longrightarrow \bigcirc$	$\beta\gamma$	$L(\beta)L(\gamma)$
Ø	Ø		β^*	$L(eta)^*$

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

$oxed{\mathsf{Proof}}$ (\Longleftrightarrow)

induction on regular expression $\,\alpha\,$

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

Proof (\Leftarrow)

induction on regular expression α

 $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis

finite automata and regular expressions are equivalent:

 $\text{for all } \textit{A} \subseteq \Sigma^* \quad \textit{A} \text{ is regular} \quad \Longleftrightarrow \quad \textit{A} = \textit{L}(\alpha) \text{ for some regular expression } \alpha$

$oxed{\mathsf{Proof}}$ (\Longleftrightarrow)

induction on regular expression $\, \alpha \,$

 $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis

 \implies $L(\alpha)$ is regular according to closure properties of regular sets

if $A,B,X\subseteq \Sigma^*$ such that $X=AX\cup B$ and $\epsilon\notin A$ then $X=A^*B$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subseteq A^*B$$

 $X \supseteq A^*B$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subseteq A^*B$$

▶ let
$$x \in X$$

 $X \supseteq A^*B$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X\subseteq A^*B$$

▶ let $x \in X = AX \cup B$

 $X \supseteq A^*B$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subseteq A^*B$$

▶ let $x \in X = AX \cup B$

ightharpoonup induction on |x|

$$X \supseteq A^*B$$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subseteq A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoonup induction on |x|
 - $\rightarrow x \in AX$
 - $\rightarrow x \in B$

$$X \supseteq A^*B$$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subseteq A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoonup induction on |x|
- $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X$
 - $\rightarrow x \in B$

 $X \supseteq A^*B$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subseteq A^*B$$

- ▶ let $x \in X = AX \cup B$
- ightharpoon induction on |x|
- $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B$
 - $\rightarrow x \in B$

 $X \supset A^*B$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoon induction on |x|
- - $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - $\rightarrow x \in B$

 $X \supset A^*B$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subseteq A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoon induction on |x|
- $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - $\rightarrow x \in B \implies x \in A^*B$ because $\epsilon \in A^*$

 $X \supset A^*B$

if A, B, $X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoonup induction on |x|
- ▶ $x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - $\rightarrow x \in B \implies x \in A^*B$ because $\epsilon \in A^*$

$$X \supseteq A^*B$$

 $\blacktriangleright x \in A^*B \implies x = x_1 \cdots x_k y \text{ for some } x_1, \dots, x_k \in A \text{ and } y \in B$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ▶ induction on |x|
- ▶ $x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - ▶ $x \in B$ $\Longrightarrow x \in A^*B$ because $\epsilon \in A^*$

$$X \supseteq A^*B$$

- ▶ $x \in A^*B \implies x = x_1 \cdots x_k y$ for some $x_1, \ldots, x_k \in A$ and $y \in B$
- ▶ induction on *k*

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoonup induction on |x|
- ▶ $x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - ▶ $x \in B$ $\Longrightarrow x \in A^*B$ because $\epsilon \in A^*$

$$X \supseteq A^*B$$

$$\blacktriangleright x \in A^*B \implies x = x_1 \cdots x_k y$$
 for some $x_1, \ldots, x_k \in A$ and $y \in B$

- ▶ induction on *k*
 - $k = 0 \implies x = y$

if A, B, $X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoonup induction on |x|
- $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - $\rightarrow x \in B \implies x \in A^*B$ because $\epsilon \in A^*$

$$X \supseteq A^*B$$

- $\blacktriangleright x \in A^*B \implies x = x_1 \cdots x_k y \text{ for some } x_1, \dots, x_k \in A \text{ and } y \in B$
- \triangleright induction on k
 - $k = 0 \implies x = y \in B$

if A, B, $X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoonup induction on |x|
- $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - $\rightarrow x \in B \implies x \in A^*B$ because $\epsilon \in A^*$

$$X \supseteq A^*B$$

- $\blacktriangleright x \in A^*B \implies x = x_1 \cdots x_k y \text{ for some } x_1, \dots, x_k \in A \text{ and } y \in B$
- \triangleright induction on k
- $k = 0 \implies x = y \in B \subseteq X$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

- ▶ let $x \in X = AX \cup B$
- ightharpoonup induction on |x|
- ▶ $x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - ▶ $x \in B$ $\Longrightarrow x \in A^*B$ because $\epsilon \in A^*$

$X \supseteq A^*B$

- $\blacktriangleright x \in A^*B \implies x = x_1 \cdots x_k y$ for some $x_1, \ldots, x_k \in A$ and $y \in B$
- ▶ induction on *k*
 - $k = 0 \implies x = y \in B \subseteq X$
 - $k > 0 \implies x_2 \cdots x_k y \in X$

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoonup induction on |x|
- ▶ $x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - ▶ $x \in B$ $\Longrightarrow x \in A^*B$ because $\epsilon \in A^*$

$$X \supseteq A^*B$$

▶
$$x \in A^*B \implies x = x_1 \cdots x_k y$$
 for some $x_1, \dots, x_k \in A$ and $y \in B$

lecture 3

- ▶ induction on k
 - $k = 0 \implies x = y \in B \subseteq X$
 - $k > 0 \implies x_2 \cdots x_k y \in X \implies x \in AX$

if A, B, $X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$$X \subset A^*B$$

▶ let
$$x \in X = AX \cup B$$

- ightharpoonup induction on |x|
- $\blacktriangleright x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - $\rightarrow x \in B \implies x \in A^*B$ because $\epsilon \in A^*$

$$X \supseteq A^*B$$

▶
$$x \in A^*B \implies x = x_1 \cdots x_k y$$
 for some $x_1, \ldots, x_k \in A$ and $y \in B$

lecture 3

- \triangleright induction on k
 - $k = 0 \implies x = y \in B \subseteq X$

WS 2024

 $k > 0 \implies x_2 \cdots x_k v \in X \implies x \in AX \subseteq X$

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

Proof (\Longrightarrow)

given NFA $N = (Q, \Sigma, \Delta, S, F)$ with $Q = \{1, ..., n\}$ and $S = \{1\}$

finite automata and regular expressions are equivalent:

for all $A\subseteq \Sigma^*$ A is regular \iff $A=L(\alpha)$ for some regular expression α

Proof (\Longrightarrow)

given NFA $N=(Q,\Sigma,\Delta,S,F)$ with $Q=\{1,\ldots,n\}$ and $S=\{1\}$

▶ define system of equations

$$X_i = \left(\bigcup_{a \in \Sigma} \bigcup_{j \in \Delta(i,a)} \{a\} X_j\right) \cup \begin{cases} \{\epsilon\} & \text{if } i \in F \\ \emptyset & \text{otherwise} \end{cases}$$

with unknowns X_1, \ldots, X_n

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular \iff $A = L(\alpha)$ for some regular expression α

Proof (\Longrightarrow)

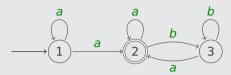
given NFA $N = (Q, \Sigma, \Delta, S, F)$ with $Q = \{1, ..., n\}$ and $S = \{1\}$

define system of equations

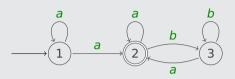
$$X_i = \left(\bigcup_{a \in \Sigma} \bigcup_{j \in \Delta(i,a)} \{a\} X_j\right) \cup \begin{cases} \{\epsilon\} & \text{if } i \in F \\ \emptyset & \text{otherwise} \end{cases}$$

with unknowns X_1, \ldots, X_n

▶ transform X₁ into regular expression by successive substitution and Arden's lemma



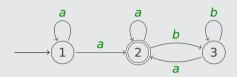
lecture 3



$$X_1 = aX_1 + aX_2$$

$$X_2 = aX_2 + bX_3 + \epsilon \qquad X_3 = aX_2 + bX_3$$

$$\lambda_3 = a\lambda_2 + b\lambda_3$$



$$X_1 = aX_1 + aX_2$$

$$X_1 = a^*aX_2$$

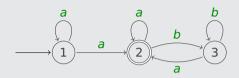
$$X_2 = aX_2 + bX_3 + \epsilon$$
 $X_3 = aX_2 + bX_3$

$$a_2 = a^*(bX_3 + \epsilon)$$

$$X_3 = aX_2 + bX_3$$

$$X_2 = a^*(bX_3 + \epsilon)$$
 $X_3 = b^*aX_2$ (Arden's lemma)

11/26



$$X_1 = aX_1 + aX_2$$

$$X_2 = aX_2 + bX_3 + \epsilon$$

$$X_3=aX_2+bX_3$$

$$X_1=a^*aX_2$$

$$X_2 = a^*(bX_3 + \epsilon)$$
 $X_3 = b^*aX_2$ (Arden's lemma)

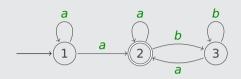
$$X_3 = b^*a\lambda$$

$$X_1=a^*aX_2$$

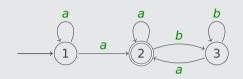
$$X_2 = a^*(bb^*aX_2 + \epsilon)$$

(substitute)

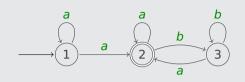
11/26



$$X_1=aX_1+aX_2$$
 $X_2=aX_2+bX_3+\epsilon$ $X_3=aX_2+bX_3$ $X_1=a^*aX_2$ $X_2=a^*(bX_3+\epsilon)$ $X_3=b^*aX_2$ (Arden's lemma) $X_1=a^*aX_2$ $X_2=a^*(bb^*aX_2+\epsilon)$ (substitute) $X_1=a^*aX_2$ $X_2=a^*bb^*aX_2+a^*$ (distribute)



$$X_1=aX_1+aX_2$$
 $X_2=aX_2+bX_3+\epsilon$ $X_3=aX_2+bX_3$ $X_1=a^*aX_2$ $X_2=a^*(bX_3+\epsilon)$ $X_3=b^*aX_2$ (Arden's lemma) $X_1=a^*aX_2$ $X_2=a^*(bb^*aX_2+\epsilon)$ (substitute) $X_1=a^*aX_2$ $X_2=a^*bb^*aX_2+a^*$ (distribute) $X_1=a^*aX_2$ $X_2=(a^*bb^*a)^*a^*$ (Arden's lemma)



$$X_1=aX_1+aX_2$$
 $X_2=aX_2+bX_3+\epsilon$ $X_3=aX_2+bX_3$ $X_1=a^*aX_2$ $X_2=a^*(bX_3+\epsilon)$ $X_3=b^*aX_2$ (Arden's lemma) $X_1=a^*aX_2$ $X_2=a^*(bb^*aX_2+\epsilon)$ (substitute) $X_1=a^*aX_2$ $X_2=a^*bb^*aX_2+a^*$ (distribute) $X_1=a^*aX_2$ $X_2=(a^*bb^*a)^*a^*$ (Arden's lemma) $X_1=a^*a(a^*bb^*a)^*a^*$ (substitute)

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Pirticify with session ID 8020 8256

Question

Which of the following strings belong to $L((aba + ab + b)^*)$?

- Α
- в ababa
- **c** all strings over $\{a, b\}$ that start with b
- all strings over $\{a,b\}$ that do not contain two consecutive b's

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo

4. Homomorphisms

- 5. Decision Problems
- 6. Further Reading

regular sets are effectively closed under homomorphic image and preimage

regular sets are effectively closed under homomorphic image and preimage

Definitions

▶ homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\epsilon) = \epsilon$$

$$h(xy) = h(x)h(y)$$

regular sets are effectively closed under homomorphic image and preimage

Definitions

▶ homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\epsilon) = \epsilon$$
 $h(xy) = h(x)h(y)$

so homomorphism is completely determined by its effect on Σ

regular sets are effectively closed under homomorphic image and preimage

Definitions

▶ homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\epsilon) = \epsilon$$

$$h(xy) = h(x)h(y)$$

so homomorphism is completely determined by its effect on Σ

▶ if $A \subseteq \Sigma^*$ then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$

"image of A under h"

_A_M_

regular sets are effectively closed under homomorphic image and preimage

Definitions

▶ homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\epsilon) = \epsilon$$

$$h(xy) = h(x)h(y)$$

so homomorphism is completely determined by its effect on Σ

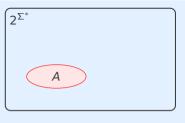
▶ if $A \subseteq \Sigma^*$ then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$

"image of A under h"

▶ if $B \subseteq \Gamma^*$ then $h^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$

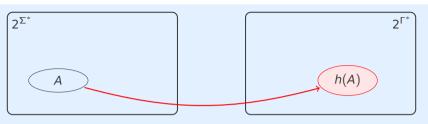
"preimage of B under h"

▶ homomorphism $h: \Sigma^* \to \Gamma^*$



▶ homomorphism $h \colon \Sigma^* \to \Gamma^*$

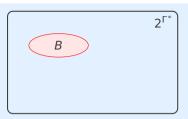
_A_M_



▶ homomorphism $h \colon \Sigma^* \to \Gamma^*$

universität innsbruck WS 2024 Auton

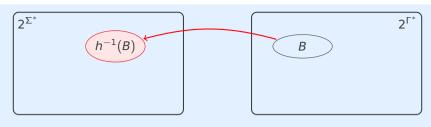
 2^{Σ^*}



16/26

▶ homomorphism $h \colon \Sigma^* \to \Gamma^*$

universität WS 2024 Automata and Logic lecture 3 4. **Homomorphisms**



▶ homomorphism $h \colon \Sigma^* \to \Gamma^*$

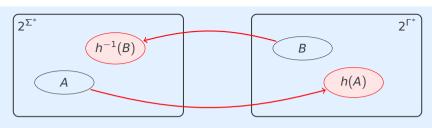
universität innsbruck

WS 2024

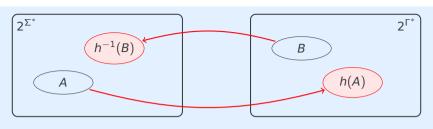
Automata and Logic

lecture 3

4. Homomorphisms



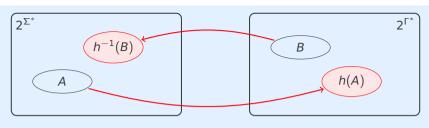
- ▶ homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $\blacktriangleright h^{-1}(h(A)) \supseteq A$
- $\blacktriangleright \ h(h^{-1}(B)) \subseteq B$



- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- ► $h^{-1}(h(A)) \supseteq A$
- $h(h^{-1}(B)) \subseteq B$

$$\Sigma = \Gamma = \{0,1\}$$
 $h(0) = 11$ $h(1) = 1$

4. Homomorphisms 16/26

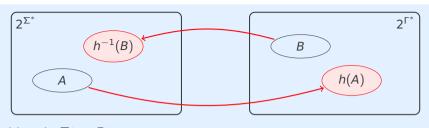


- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supseteq A$
- ► $h(h^{-1}(B)) \subseteq B$

$$\Sigma = \Gamma = \{0,1\}$$
 $h(0) = 11$ $h(1) = 1$ $A = \{0\}$

$$h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0,11\} \supseteq A$$

_A_M_



- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supset A$
- ▶ $h(h^{-1}(B)) \subseteq B$

$$\Sigma = \Gamma = \{0,1\}$$
 $h(0) = 11$ $h(1) = 1$ $A = B = \{0\}$

- $h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0,11\} \supseteq A$
- $h(h^{-1}(B)) = h(\emptyset) = \emptyset \subseteq B$

lecture 3

 $A \subseteq \{0,1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

 $A \subseteq \{0,1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

 $\Sigma = \{0,1\} \text{ and } \Gamma = \{0,1,2\}$

$$A \subseteq \{0,1\}^*$$
 is regular $\implies \{xy \mid x1y \in A\}$ is regular

- \blacktriangleright $\Sigma = \{0,1\}$ and $\Gamma = \{0,1,2\}$
- ▶ define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \epsilon$

$$A \subseteq \{0,1\}^*$$
 is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $ightharpoonup Σ = {0,1}$ and $Γ = {0,1,2}$
- ▶ define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \epsilon$

▶ $h^{-1}(A) = \{x \mid h(x) \in A\}$

$$A \subseteq \{0,1\}^*$$
 is regular $\implies \{xy \mid x1y \in A\}$ is regular

- \blacktriangleright $\Sigma=\{0,1\}$ and $\Gamma=\{0,1,2\}$
- define homomorphisms $h, i \colon \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \epsilon$

- ▶ $h^{-1}(A) = \{x \mid h(x) \in A\}$
- $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$

$$A \subseteq \{0,1\}^*$$
 is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $ightharpoonup \Sigma = \{0,1\} \text{ and } \Gamma = \{0,1,2\}$
- ▶ define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \epsilon$

- $h^{-1}(A) = \{x \mid h(x) \in A\}$
- $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$
- $\{xy \mid x1y \in A\} = i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$

$$A \subseteq \{0,1\}^*$$
 is regular $\implies \{xy \mid x1y \in A\}$ is regular

- $\Sigma = \{0,1\} \text{ and } \Gamma = \{0,1,2\}$
- define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \epsilon$

- $h^{-1}(A) = \{x \mid h(x) \in A\}$
- $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2v \mid x1v \in A\}$
- $\{xy \mid x1y \in A\} = i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$ is regular

regular sets are effectively closed under homomorphic image and preimage

regular sets are effectively closed under homomorphic image and preimage

- ▶ NFA $M = (Q, \Gamma, \Delta, S, F)$
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$

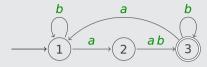
regular sets are effectively closed under homomorphic image and preimage

- ▶ NFA $M = (Q, \Gamma, \Delta, S, F)$
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- ho $h^{-1}(L(M)) = L(M')$ for NFA $M' = (Q, \Sigma, \Delta', S, F)$ with $\Delta'(q, a) = \widehat{\Delta}(\{q\}, h(a))$

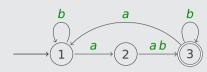
regular sets are effectively closed under homomorphic image and preimage

- ▶ NFA $M = (Q, \Gamma, \Delta, S, F)$
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- ▶ $h^{-1}(L(M)) = L(M')$ for NFA $M' = (Q, \Sigma, \Delta', S, F)$ with $\Delta'(q, a) = \widehat{\Delta}(\{q\}, h(a))$
- ▶ claim: $\widehat{\Delta}'(A,x) = \widehat{\Delta}(A,h(x))$ for all $A \subseteq Q$ and $x \in \Sigma^*$ proof of claim: easy induction on |x|

DFA M



► DFA M



homomorphism $h: \{a,b,c\}^* \rightarrow \{a,b\}^*$

$$h(a) = aa$$

$$h(b) = \epsilon$$

$$h(c) = bab$$

DFA M

homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

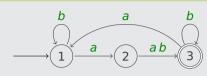
$$h(a) = aa$$

$$h(b) = \epsilon$$

$$h(c) = bab$$

DFA M'

DFA M



homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$

$$h(b) = \epsilon$$

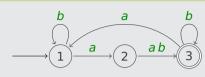
$$h(c) = bab$$

DFA M'

$$\delta'(1,a) = \widehat{\delta}(1,aa) = 3$$

WS 2024

DFA M



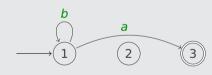
homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$

$$h(b) = \epsilon$$

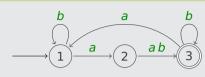
$$h(c) = bab$$

DFA M'



$$\delta'(1,b) = \widehat{\delta}(1,\epsilon) = 1$$

DFA M

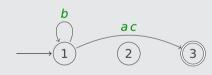


▶ homomorphism $h: \{a,b,c\}^* \rightarrow \{a,b\}^*$

$$h(a) = aa$$

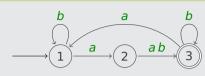
$$h(b) = \epsilon$$

$$h(c) = bab$$



$$\delta'(1,c) = \widehat{\delta}(1,bab) = 3$$

DFA M

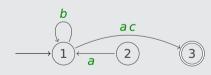


▶ homomorphism $h: \{a,b,c\}^* \rightarrow \{a,b\}^*$

$$h(a) = aa$$

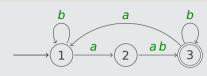
$$h(b) = \epsilon$$

$$h(c) = bab$$



$$\delta'(2,a) = \widehat{\delta}(2,aa) = 1$$

DFA M



homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

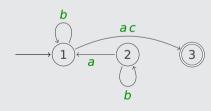
$$h(a) = aa$$

$$= aa$$

$$h(b) = \epsilon$$

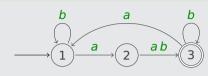
$$h(c) = bab$$

DFA M'



$$\delta'(2,b) = \widehat{\delta}(2,\epsilon) = 2$$

DFA M



 $h(b) = \epsilon$

▶ homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$

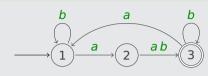
► DFA M'

$$\begin{array}{c}
b \\
ac \\
2 \\
b
\end{array}$$

$$\delta'(2,c) = \widehat{\delta}(2,bab) = 1$$

h(c) = bab

DFA M

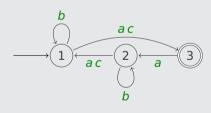


▶ homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$

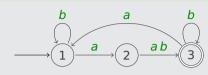
$$h(b) = \epsilon$$

$$h(c) = bab$$



$$\delta'(3,a) = \widehat{\delta}(3,aa) = 2$$

DFA M

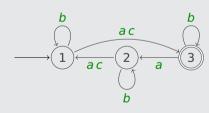


▶ homomorphism $h: \{a,b,c\}^* \rightarrow \{a,b\}^*$

$$h(a) = aa$$

$$h(b) = \epsilon$$

$$h(c) = bab$$



$$\delta'(3,b) = \widehat{\delta}(3,\epsilon) = 3$$

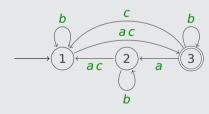
DFA M

▶ homomorphism $h: \{a,b,c\}^* \rightarrow \{a,b\}^*$

h(a) = aa

$$h(b) = \epsilon$$

h(c) = bab



$$\delta'(3,c) = \widehat{\delta}(3,bab) = 1$$

regular sets are effectively closed under homomorphic image and preimage

regular sets are effectively closed under homomorphic image and preimage

- ightharpoonup regular expression α over Σ
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$

regular sets are effectively closed under homomorphic image and preimage

- ▶ regular expression α over Σ
- ▶ homomorphism $h: \Sigma^* \to \Gamma^*$
- ▶ $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$a' = h(a)$$
 for $a \in \Sigma$ $(\beta + \gamma)' = \beta' + \gamma'$
 $\epsilon' = \epsilon$ $(\beta \gamma)' = \beta' \gamma'$
 $\emptyset' = \emptyset$ $\beta^{*'} = \beta'^{*}$

- ▶ Hamming distance H(x,y) is number of places where bit strings x and y differ
- ▶ if $|x| \neq |y|$ then $H(x,y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

WS 2024

- ▶ Hamming distance H(x,y) is number of places where bit strings x and y differ
- ▶ if $|x| \neq |y|$ then $H(x,y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leqslant k \text{ for some } y \in A\}$

Lemma

 $A\subseteq\{0,1\}^*$ is regular \implies $\forall\,k\in\mathbb{N}$ $N_k(A)$ is regular

- ▶ Hamming distance H(x,y) is number of places where bit strings x and y differ
- ▶ if $|x| \neq |y|$ then $H(x,y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

Lemma

$$A\subseteq\{0,1\}^*$$
 is regular \implies $\forall\,k\in\mathbb{N}$ $N_k(A)$ is regular

Proof

lecture 3

 $D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\}$ is regular

- ▶ Hamming distance H(x,y) is number of places where bit strings x and y differ
- ightharpoonup if $|x| \neq |y|$ then $H(x,y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

Lemma

$$A\subseteq\{0,1\}^*$$
 is regular \implies $\forall\,k\in\mathbb{N}$ $N_k(A)$ is regular

Proof

 $D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\}$ is regular $= \{x \in (\{0,1\} \times \{0,1\})^* \mid H(fst(x), snd(x)) \leq k\}$

WS 2024

- ▶ Hamming distance H(x,y) is number of places where bit strings x and y differ
- if $|x| \neq |y|$ then $H(x,y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N}$ $N_k(A)$ is regular

Proof

 $D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\}$ is regular $= \{x \in (\{0,1\} \times \{0,1\})^* \mid H(fst(x), snd(x)) \leq k\}$

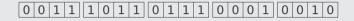
 $N_{\nu}(A) = \operatorname{fst}(\operatorname{snd}^{-1}(A) \cap D_{\nu})$

WS 2024

 $A = \{0011\}$ k = 2

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of
 - 0 0 1 1

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of



WS 2024

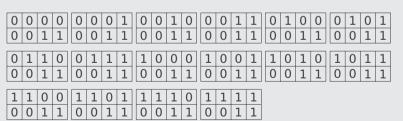
Automata and Logic

lecture 3 4. Homomorphisms

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

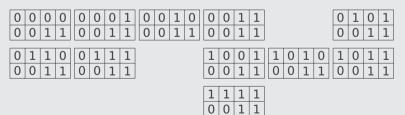
- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

ightharpoonup snd⁻¹(A) consists of



- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

▶ $\operatorname{snd}^{-1}(A) \cap D_k$ consists of



WS 2024

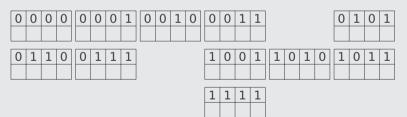
Automata and Logic

lecture 3

4. Homomorphisms

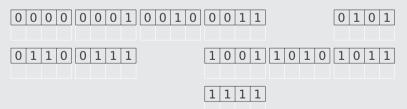
- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of



- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of



universität

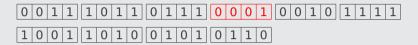
- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of

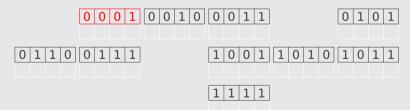


22/26

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

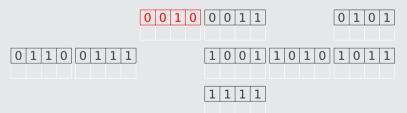


▶ $fst(snd^{-1}(A) \cap D_k)$ consists of



- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of



- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of

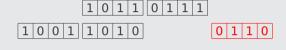
- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of

1 1 1 1

_A_M_

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of



▶ $fst(snd^{-1}(A) \cap D_k)$ consists of

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

• $fst(snd^{-1}(A) \cap D_k)$ consists of

1 1 1 1

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

• $fst(snd^{-1}(A) \cap D_k)$ consists of

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

1 1 1 1

 $fst(snd^{-1}(A) \cap D_k)$ consists of

1 0 1 0 1 0 1 1

1 1 1 1

WS 2024

Automata and Logic

lecture 3

4. Homomorphisms

- $A = \{0011\}$ k = 2
- \triangleright $N_k(A)$ consists of

1 1 1 1

1 0 1 1

 $fst(snd^{-1}(A) \cap D_k)$ consists of

1 1 1 1

WS 2024

- $A = \{0011\}$ k = 2
- $ightharpoonup N_k(A)$ consists of

1 1 1 1

▶ $fst(snd^{-1}(A) \cap D_k)$ consists of

WS 2024

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

most decision problems concerning regular sets are decidable

most decision problems concerning regular sets are decidable

Theorem

problems

instance: DFA M and string x

question: $x \in L(M)$?

most decision problems concerning regular sets are decidable

Theorem

problems

instance: DFA M and string x

question: $x \in L(M)$?

instance: DFA M

question: $L(M) = \emptyset$?

most decision problems concerning regular sets are decidable

Theorem

problems

instance: DFA M and string x

instance: DFA M

question: $L(M) = \emptyset$?

instance: DFAs M and N question: L(M) = L(N)?

universität

WS 2024

question: $x \in L(M)$?

Automata and Logic

lecture 3

5 Decision Problems

most decision problems concerning regular sets are decidable

Theorem

problems

instance: DFA M and string x

question: $x \in L(M)$?

instance: DFA M

question: $L(M) = \emptyset$?

instance: DFAs M and N question: L(M) = L(N)?

are decidable

most decision problems concerning regular sets are decidable

Theorem

problems

instance: DFA M and string x

question: $x \in L(M)$?

instance: DFA M

question: $L(M) = \emptyset$?

instance: DFAs M and N question: L(M) = L(N)?

are decidable

Remark

representation of regular sets (DFA, NFA, regular expression) may affect complexity of decision problems

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Kozen

▶ Lecture 7-10

Kozen

▶ Lecture 7–10

Important Concepts

homomorphism

Arden's lemma

- homomorphic image
- homomorphic preimage

regular expression

Kozen

▶ Lecture 7–10

Important Concepts

homomorphism

- Arden's lemma

- homomorphic image
- homomorphic preimage

homework for October 25

regular expression