

WS 2024 lecture 3

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

- **1. Summary of Previous Lecture**
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Definitions

- ▶ nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with
 - ① *Q*: finite set of states
 - ② Σ: input alphabet
 - (3) $\Delta: Q \times \Sigma \rightarrow 2^{Q}$: transition function
 - (4) $S \subseteq Q$: set of start states
 - (5) $F \subseteq Q$: final (accept) states

• $\widehat{\Delta}$: $2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

 $\widehat{\Delta}(A,\epsilon) = A$

 $\widehat{\Delta}(A, xa) = \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$

• $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S, x) \cap F \neq \emptyset$

Theorem

every set accepted by NFA is regular

Definitions

▶ NFA with ϵ -transitions (NFA $_{\epsilon}$) is sextuple $N = (Q, \Sigma, \epsilon, \Delta, S, F)$ such that

(1) $\epsilon \notin \Sigma$

② $M_{\epsilon} = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\epsilon\}$

- ► ϵ -closure of set $A \subseteq Q$ is defined as $C_{\epsilon}(A) = \bigcup \left\{ \widehat{\Delta}_{N_{\epsilon}}(A, x) \mid x \in \{\epsilon\}^* \right\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_{N}(A,\epsilon) = \boldsymbol{C}_{\boldsymbol{\epsilon}}(A) \qquad \qquad \widehat{\Delta}_{N}(A,xa) = \bigcup \left\{ \boldsymbol{C}_{\boldsymbol{\epsilon}}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,x) \right\}$$

Theorem

- every set accepted by NFA_e is regular
- regular sets are effectively closed under union, concatenation, and asterate

Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- linear-time temporal logic

1. Summary of Previous Lecture

2. Regular Expressions

- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Definitions

• regular expression α over alphabet Σ :

 $\mathbf{a} \in \Sigma$ $\boldsymbol{\epsilon}$ $\boldsymbol{\varnothing}$ $\boldsymbol{\beta} + \boldsymbol{\gamma}$ $\boldsymbol{\beta} \boldsymbol{\gamma}$ $\boldsymbol{\beta}^*$

• set of strings $L(\alpha) \subseteq \Sigma^*$ matched by regular expression α :

L(a) = { a }	$L(eta+\gamma)=L(eta)\cup L(\gamma)$
$L(\epsilon) = \{\epsilon\}$	$L(\beta\gamma) = L(\beta)L(\gamma)$
$L(\mathbf{\emptyset}) = \emptyset$	$L(\beta^*) = L(\beta)^*$

Example

regular expression $(a + b)^*b$ matches all strings over $\Sigma = \{a, b\}$ that end with b

Definition

regular expressions α and β are equivalent ($\alpha \equiv \beta$) if $L(\alpha) = L(\beta)$

Theorem

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular $\iff A = L(\alpha)$ for some regular expression α

Proof (⇐)

induction on regular expression α

α	$L(\alpha)$	finite automaton	α	L(lpha)
$a\in\Sigma$	{ <i>a</i> }	$\longrightarrow \bigcirc \xrightarrow{a} \bigcirc$	$\beta + \gamma$	$L(eta) \cup L(\gamma)$
ϵ	$\{\epsilon\}$	$\longrightarrow \bigcirc$	$\beta\gamma$	$L(\beta)L(\gamma)$
Ø	Ø	$\longrightarrow \bigcirc$	β^*	$L(eta)^*$

 $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis

 \implies $L(\alpha)$ is regular according to closure properties of regular sets

Lemma (Arden's Lemma)

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $e \notin A$ then $X = A^*B$

Proof

$X \subseteq A^*B$

- let $x \in X = AX \cup B$
- induction on |x|
 - $x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
 - $x \in B \implies x \in A^*B$ because $\epsilon \in A^*$

$X \supseteq A^*B$

- $x \in A^*B \implies x = x_1 \cdots x_k y$ for some $x_1, \ldots, x_k \in A$ and $y \in B$
- ▶ induction on k
 - $k = 0 \implies x = y \in B \subseteq X$
 - $\blacktriangleright k > 0 \implies x_2 \cdots x_k y \in X \implies x \in AX \subseteq X$

Theorem

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular $\iff A = L(\alpha)$ for some regular expression α

Proof (\Longrightarrow)

given NFA
$$N = (Q, \Sigma, \Delta, S, F)$$
 with $Q = \{1, \dots, n\}$ and $S = \{1\}$

define system of equations

$$X_{i} = \left(\bigcup_{a \in \Sigma} \bigcup_{j \in \Delta(i,a)} \{a\}X_{j}\right) \cup \begin{cases} \{\epsilon\} & \text{if } i \in F\\ \varnothing & \text{otherwise} \end{cases}$$

with unknowns X_1, \ldots, X_n

▶ transform X₁ into regular expression by successive substitution and Arden's lemma

Example

$X_1 = aX_1 + aX_2$	$X_2 = a X_2 + b X_3 + \epsilon$	$X_3 = aX_2 + bX_3$	
$X_1 = a^* a X_2$	$X_2=a^*(bX_3+\epsilon)$	$X_3 = b^* a X_2$	(Arden's lemma)
$X_1 = a^* a X_2$	$X_2=a^*(bb^*aX_2+\epsilon)$		(substitute)
$X_1 = a^* a X_2$	$X_2 = a^*bb^*aX_2 + a^*$		(distribute)
$X_1 = a^* a X_2$	$X_2 = (a^*bb^*a)^*a^*$		(Arden's lemma)
$X_1=a^*a(a^*bb^*a)^*a^*$			(substitute)

- **1. Summary of Previous Lecture**
- 2. Regular Expressions

3. Intermezzo

- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

Furticify with session ID 8020 8256

Question

Which of the following strings belong to $L((aba + ab + b)^*)$?

- A ϵ
- B ababa
- **C** all strings over $\{a, b\}$ that start with b
- **D** all strings over $\{a, b\}$ that do not contain two consecutive b's

- **1. Summary of Previous Lecture**
- 2. Regular Expressions
- 3. Intermezzo

4. Homomorphisms

- 5. Decision Problems
- 6. Further Reading

Theorem

regular sets are effectively closed under homomorphic image and preimage

Definitions

• homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\epsilon) = \epsilon$$
 $h(xy) = h(x)h(y)$

so homomorphism is completely determined by its effect on Σ

• if $A \subseteq \Sigma^*$ then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$

"image of A under h"

• if $B \subseteq \Gamma^*$ then $h^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$

"preimage of B under h"

- homomorphism $h: \Sigma^* \to \Gamma^*$
- ► $h^{-1}(h(A)) \supseteq A$
- ► $h(h^{-1}(B)) \subseteq B$

Example

$$\Sigma = \Gamma = \{0,1\}$$
 $h(0) = 11$ $h(1) = 1$ $A = B = \{0\}$

►
$$h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0, 11\} \supseteq A$$

 $\blacktriangleright h(h^{-1}(B)) = h(\emptyset) = \emptyset \subsetneq B$

Example

- $A \subseteq \{0,1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular
- \blacktriangleright Σ = {0,1} and Γ = {0,1,2}
- ▶ define homomorphisms $h, i \colon \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \epsilon$

▶
$$h^{-1}(A) = \{x \mid h(x) \in A\}$$

▶
$$h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$$

▶ ${xy | x1y \in A} = i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$ is regular

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof

- NFA $M = (Q, \Gamma, \Delta, S, F)$
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- ▶ $h^{-1}(L(M)) = L(M')$ for NFA $M' = (Q, \Sigma, \Delta', S, F)$ with $\Delta'(q, a) = \widehat{\Delta}(\{q\}, h(a))$

▶ claim: $\widehat{\Delta'}(A,x) = \widehat{\Delta}(A,h(x))$ for all $A \subseteq Q$ and $x \in \Sigma^*$

proof of claim: easy induction on |x|

Example

▶ homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

$$h(a) = aa$$
 $h(b) = \epsilon$ $h(c) = bab$

$$\delta'(3,c) = \widehat{\delta}(3,bab) = 1$$

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$a'=h(a)$ for $a\in\Sigma$	$(eta+\gamma)'=eta'+\gamma'$
$\epsilon'=\epsilon$	$(eta\gamma)'=eta'\gamma'$
arnothing' = arnothing	${\beta^*}'={\beta'}^*$

Definitions

- Hamming distance H(x, y) is number of places where bit strings x and y differ
- if $|x| \neq |y|$ then $H(x,y) = \infty$
- ▶ $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

Lemma $A \subseteq \{0,1\}^*$ is regular $\forall k \in \mathbb{N}$ $N_k(A)$ is regular

Proof

 $D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\} \text{ is regular}$ $= \{x \in (\{0,1\} \times \{0,1\})^* \mid H(\mathsf{fst}(x),\mathsf{snd}(x)) \leq k\}$ $N_k(A) = \mathsf{fst}(\mathsf{snd}^{-1}(A) \cap D_k)$

Example

- $A = \{0011\}$ k = 2
- $N_k(A)$ consists of

• $fst(snd^{-1}(A) \cap D_k)$ consists of

- **1. Summary of Previous Lecture**
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms

5. Decision Problems

6. Further Reading

Remark

most decision problems concerning regular sets are decidable

Theoremproblemsinstance: DFA M and string xinstance: DFA Mquestion: $x \in L(M)$?question: $L(M) = \emptyset$?question: $L(M) = \emptyset$?are decidable

Remark

representation of regular sets (DFA, NFA, regular expression) may affect complexity of decision problems

- **1. Summary of Previous Lecture**
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

► Lecture 7-10

Important Concepts

- Arden's lemma
- homomorphism

- homomorphic image
- homomorphic preimage

regular expression

homework for October 25