

WS 2024 lecture 3

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- 1. Summary of Previous Lecture
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

universitat WS 2024 Automata and Logic lecture 3

Definitions

► nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, S, F)$ with

① *Q*: finite set of states

- ② Σ: input alphabet
- (3) $\Delta: Q \times \Sigma \to \mathbf{2}^Q$: transition function
- (4) $S \subseteq Q$: set of start states
- (5) $F \subseteq Q$: final (accept) states
- $\blacktriangleright \ \widehat{\Delta} \colon 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}(\mathsf{A},\epsilon) = \mathsf{A}$$

$$\widehat{\Delta}(A,xa) = igcup_{q \in \widehat{\Delta}(A,x)} \Delta(q,a)$$

• $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S, x) \cap F \neq \emptyset$

Theorem

every set accepted by NFA is regular

inspruck ws 2024 Automata and Edgle lecture 5 1. Summary of Previous Lecture	universitat	WS 2024	Automata and Logic	lecture 3	1. Summary of Previous Lecture
--	-------------	---------	--------------------	-----------	--------------------------------

Definitions

▶ NFA with ϵ -transitions (NFA_{ϵ}) is sextuple $N = (Q, \Sigma, \epsilon, \Delta, S, F)$ such that

1 $\epsilon \notin \Sigma$

② $M_{\epsilon} = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\epsilon\}$

- ϵ -closure of set $A \subseteq Q$ is defined as $C_{\epsilon}(A) = \bigcup \left\{ \widehat{\Delta}_{N_{\epsilon}}(A, x) \mid x \in \{\epsilon\}^* \right\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_{N}(A,\epsilon) = \mathbf{C}_{\boldsymbol{\epsilon}}(A) \qquad \qquad \widehat{\Delta}_{N}(A,xa) = \bigcup \left\{ \mathbf{C}_{\boldsymbol{\epsilon}}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,x) \right\}$$

Theorem

AМ

- every set accepted by NFA_{ϵ} is regular
- regular sets are effectively closed under union, concatenation, and asterate

Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

Logic

(weak) monadic second-order logic

WS 2024 Automata and Logic lecture 3

- Presburger arithmetic
- ► linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. Regular Expressions

- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

A.M				
5/26	universität	WS 2024	Automata and Logic	lecture 3

AM

 β^*

Definitions

universität

• regular expression α over alphabet Σ :

$$\boldsymbol{\theta} \in \boldsymbol{\Sigma} \quad \boldsymbol{\epsilon} \quad \boldsymbol{\varnothing} \quad \boldsymbol{\beta} + \boldsymbol{\gamma} \quad \boldsymbol{\beta} \boldsymbol{\gamma}$$

• set of strings $L(\alpha) \subseteq \Sigma^*$ matched by regular expression α :

$L(a) = \{a\}$	$L(\beta + \gamma) = L(\beta) \cup L(\gamma)$
$L(\boldsymbol{\epsilon}) = \{\epsilon\}$	$L(\beta\gamma) = L(\beta)L(\gamma)$
$L(\mathbf{\emptyset}) = \emptyset$	$L(eta^*) = L(eta)^*$

1. Summary of Previous Lecture Contents

Example

regular expression $(a+b)^*b$ matches all strings over $\Sigma=\{a,b\}$ that end with b

Definition

regular expressions α and β are equivalent ($\alpha \equiv \beta$) if $L(\alpha) = L(\beta)$

Theorem

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular $\iff A = L(\alpha)$ for some regular expression α

2. Regular Expressions

Proof (⇐)

induction on regular expression α

α	$L(\alpha)$	finite automaton	α	$L(\alpha)$
$a \in \Sigma$	{a}	$\longrightarrow \bigcirc \xrightarrow{a} \bigcirc \bigcirc$	$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
ϵ	$\{\epsilon\}$	$\longrightarrow \bigcirc$	$\beta\gamma$	$L(\beta)L(\gamma)$
ø	Ø	$\longrightarrow \bigcirc$	β^*	$L(\beta)^*$

 $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis

 \implies $L(\alpha)$ is regular according to closure properties of regular sets

AM_

Lemma (Arden's Lemma)

if $A, B, X \subseteq \Sigma^*$ such that $X = AX \cup B$ and $\epsilon \notin A$ then $X = A^*B$

Proof

$X \subset A^*B$

- ▶ let $x \in X = AX \cup B$
- induction on |x|
- $x \in AX \implies x = ay$ for some $a \in A$ and $y \in X \implies y \in A^*B \implies x \in A^*B$
- ► $x \in B$ \implies $x \in A^*B$ because $\epsilon \in A^*$

$X \supseteq A^*B$

- $x \in A^*B \implies x = x_1 \cdots x_k y$ for some $x_1, \ldots, x_k \in A$ and $y \in B$
- ▶ induction on *k*
 - $\mathbf{k} = \mathbf{0} \implies \mathbf{x} = \mathbf{y} \in B \subset X$
 - $\blacktriangleright k > 0 \implies x_2 \cdots x_k y \in X \implies x \in AX \subseteq X$

universität WS 2024 Automata and Logic lecture 3 2. Regular Expressions

Theorem

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular $\iff A = L(\alpha)$ for some regular expression α

Proof (\Longrightarrow)

given NFA $N = (Q, \Sigma, \Delta, S, F)$ with $Q = \{1, \dots, n\}$ and $S = \{1\}$

define system of equations

$$X_{i} = \left(\bigcup_{a \in \Sigma} \bigcup_{j \in \Delta(i,a)} \{a\} X_{j}\right) \cup \begin{cases} \{\epsilon\} & \text{if } i \in F \\ \varnothing & \text{otherwise} \end{cases}$$

with unknowns X_1, \ldots, X_n

- \blacktriangleright transform X₁ into regular expression by successive substitution and Arden's lemma
- universität WS 2024 Automata and Logic lecture 3 2. Regular Expressions

Example

$X_1 = a X_1 + a X_2$	$X_2 = aX_2 + bX_3 + \epsilon$	$X_3 = aX_2 + bX_3$	
$X_1 = a^* a X_2$	$X_2 = a^*(bX_3 + \epsilon)$	$X_3 = b^* a X_2$	(Arden's lemma)
$X_1 = a^* a X_2$	$X_2 = a^*(bb^*aX_2 + \epsilon)$		(substitute)
$X_1 = a^* a X_2$	$X_2 = a^*bb^*aX_2 + a^*$		(distribute)
$X_1 = a^* a X_2$	$X_2 = (a^*bb^*a)^*a^*$		(Arden's lemma)
$X_1 = a^*a(a^*bb^*a)^*a^*$			(substitute)

Outline

- **1. Summary of Previous Lecture**
- 2. Regular Expressions

3. Intermezzo

- 4. Homomorphisms
- 5. Decision Problems
- 6. Further Reading

11/26

AM_

9/26

AM_

10/26

Particify with session ID 8020 8256

Question

Which of the following strings belong to $L((aba + ab + b)^*)$?

- Α ε
- B ababa
- **C** all strings over $\{a, b\}$ that start with b
- **D** all strings over $\{a, b\}$ that do not contain two consecutive b's

Outline

- **1. Summary of Previous Lecture**
- 2. Regular Expressions
- 3. Intermezzo

4. Homomorphisms

- 5. Decision Problems
- 6. Further Reading

	A_M_		A.M
WS 2024 Automata and Logic lecture 3 3. Intermezzo	13/26	universitat WS 2024 Automata and Logic lecture 3 4. Homomorphisms	14/26

Theorem

universität innsbruck

regular sets are effectively closed under homomorphic image and preimage

Definitions

• homomorphism is mapping $h \colon \Sigma^* \to \Gamma^*$ such that

$$h(\epsilon) = \epsilon$$

h(xy) = h(x)h(y)

- so homomorphism is completely determined by its effect on $\boldsymbol{\Sigma}$
- if $A \subseteq \Sigma^*$ then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$
- "image of A under h"
- if $B \subseteq \Gamma^*$ then $h^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$

"preimage of B under h"

A.M

15/26

- ► homomorphism $h \colon \Sigma^* \to \Gamma^*$
- ► $h^{-1}(h(A)) \supseteq A$
- ► $h(h^{-1}(B)) \subseteq B$

Example

- $\Sigma = \Gamma = \{0,1\}$ h(0) = 11 h(1) = 1 $A = B = \{0\}$
- ▶ $h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0, 11\} \supseteq A$
- ▶ $h(h^{-1}(B)) = h(\emptyset) = \emptyset \subsetneq B$

Example

 $\mathsf{A} \subseteq \{\mathsf{0},\mathsf{1}\}^*$ is regular $\implies \{xy \mid x \mathtt{1} y \in \mathsf{A}\}$ is regular

- $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, 2\}$
- define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = 6$

- ▶ $h^{-1}(A) = \{x \mid h(x) \in A\}$
- ▶ $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$
- ▶ { $xy | x1y \in A$ } = $i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$ is regular

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof

- $\blacktriangleright \text{ NFA } M = (Q, \Gamma, \Delta, S, F)$
- ► homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for NFA $M' = (Q, \Sigma, \Delta', S, F)$ with $\Delta'(q, a) = \widehat{\Delta}(\{q\}, h(a))$
- ► claim: $\widehat{\Delta'}(A, x) = \widehat{\Delta}(A, h(x))$ for all $A \subseteq Q$ and $x \in \Sigma^*$ proof of claim: easy induction on |x|

universitat	WS 2024	Automata and Logic	lecture 3	4. Homomorphisms	

A.M 17/26

h(c) = bab

universität WS 2024 Automata and Logic lecture 3 4. Homomorphisms innspruck ___A_M__ 18/26

Examp<u>le</u>

DFA M

▶ homomorphism $h: \{a, b, c\}^* \rightarrow \{a, b\}^*$

► DFA M'

 $\delta'(\mathsf{3}, c) = \widehat{\delta}(\mathsf{3}, bab) = \mathsf{1}$

AМ

19/26

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof

- regular expression α over Σ

WS 2024 Automata and Logic lecture 3

- ► homomorphism $h: \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$a'=h(a)$ for $a\in\Sigma$	$(eta+\gamma)'=eta'+\gamma'$
$\epsilon'=\epsilon$	$(\beta\gamma)'=\beta'\gamma'$
$oldsymbol{arphi}'=oldsymbol{arphi}$	${\beta^*}'={\beta'}^*$

4. Homomorphisms

Definitions

- **•** Hamming distance H(x, y) is number of places where bit strings x and y differ
- ▶ if $|x| \neq |y|$ then $H(x,y) = \infty$
- $N_k(A) = \{x \in \{0,1\}^* \mid H(x,y) \leq k \text{ for some } y \in A\}$

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N}$ $N_k(A)$ is regular

Proof

 $D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\}$ is regular $= \{ x \in (\{0,1\} \times \{0,1\})^* \mid H(fst(x), snd(x)) \leq k \}$

 $N_k(A) = \operatorname{fst}(\operatorname{snd}^{-1}(A) \cap D_k)$

universität WS 2024 Automata and Logic 4. Homomorphisms lecture 3

A.M_

21/26

Example

- ▶ $A = \{0011\}$ k = 2
- \triangleright N_k(A) consists of

• fst(snd⁻¹(A) \cap D_k) consists of

0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	0	1	0	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	1	1	0	0	1	1	1	1	0	0	0	1	0	0	1	1	0	1	0	1	0	1	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	0	1	1	0	1	1	1	1	0	1	1	1	1								
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1								

universität innsbruck	WS 2024	Automata and Logic	lecture 3	4.	Homomorphisms
--------------------------	---------	--------------------	-----------	----	---------------

Outline

- **1. Summary of Previous Lecture**
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms

5. Decision Problems

6. Further Reading

Remark

most decision problems concerning regular sets are decidable

Theorem

Remark

problems instance: DFA *M* and string *x* instance: DFA M question: $x \in L(M)$?

question: $L(M) = \emptyset$?

instance: DFAs M and N question: L(M) = L(N)?

are decidable

representation of regular sets (DFA, NFA, regular expression) may affect complexity of decision problems

AM

Outline

- **1. Summary of Previous Lecture**
- 2. Regular Expressions
- 3. Intermezzo
- 4. Homomorphisms
- 5. Decision Problems

6. Further Reading

Kozen

► Lecture 7-10

Important Concepts Arden's lemma homomorphism	 homomorphic image homomorphic preimage 	 regular expression

homework for October 25

universität innsbruck	WS 2024	Automata and Logic	lecture 3	6.	Further Reading
--------------------------	---------	--------------------	-----------	----	-----------------

__A_M__ 25/26

universitat innsbruck
WS 2024 Automata and Logic lecture 3
6. Further Reading _A_M_ 26/26