

WS 2024 lecture 4

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- **1. Summary of Previous Lecture**
- 2. Minimization
- 3. Intermezzo
- 4. Weak Monadic Second-Order Logic
- 5. Further Reading

• regular expression α over alphabet Σ :

 $\mathbf{a} \in \Sigma$ $\boldsymbol{\epsilon}$ $\boldsymbol{\varnothing}$ $\boldsymbol{\beta} + \boldsymbol{\gamma}$ $\boldsymbol{\beta} \boldsymbol{\gamma}$ $\boldsymbol{\beta}^*$

▶ set of strings $L(\alpha) \subseteq \Sigma^*$ matched by regular expression α :

 $L(a) = \{a\} \qquad L(\emptyset) = \emptyset \qquad L(\beta\gamma) = L(\beta)L(\gamma)$ $L(\epsilon) = \{\epsilon\} \qquad L(\beta + \gamma) = L(\beta) \cup L(\gamma) \qquad L(\beta^*) = L(\beta)^*$

• regular expressions α and β are equivalent $(\alpha \equiv \beta)$ if $L(\alpha) = L(\beta)$

Theorem

finite automata and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ A is regular $\iff A = L(\alpha)$ for some regular expression α

- homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that $h(\epsilon) = \epsilon$ and h(xy) = h(x)h(y)
- if $A \subseteq \Sigma^*$ then $h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$
- if $B \subseteq \Gamma^*$ then $h^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$

"image of A under h"

"preimage of B under h"

Theorem

regular sets are effectively closed under homomorphic image and preimage

Theorem

problems

instance: DFA *M* and string *x* instance: DFA *M* instance: DFAs *M* and *N* question: $x \in L(M)$? question: $L(M) = \emptyset$? question: L(M) = L(N)? are decidable

Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. Minimization

- 3. Intermezzo
- 4. Weak Monadic Second-Order Logic
- 5. Further Reading

Example 1

$A=\{\texttt{1}\}$	$C = \{1, 3\}$	$E = \{1, 3, 4\}$
$B=\{1,2\}$	$D=\{1,2,4\}$	$\textit{F} = \{\texttt{1},\texttt{4}\}$

Example 🕄

DFA $M = (Q, \Sigma, \delta, s, F)$

- ▶ state p is inaccessible if $\widehat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- states p and q are distinguishable if

$$(\widehat{\delta}(p,x) \in \mathsf{F} \land \widehat{\delta}(q,x) \notin \mathsf{F}) \lor (\widehat{\delta}(p,x) \notin \mathsf{F} \land \widehat{\delta}(q,x) \in \mathsf{F})$$

for some $x \in \Sigma^*$

Minimization Algorithm

DFA $M = (Q, \Sigma, \delta, s, F)$

- ① remove inaccessible states
- ② for every two different states determine whether they are distinguishable (marking)
- 3 collapse indistinguishable states

Marking Algorithm

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- ① tabulate all unordered pairs $\{p,q\}$ with $p,q \in Q$, initially unmarked
- (2) mark $\{p,q\}$ if $p \in F$ and $q \notin F$ or $p \notin F$ and $q \in F$
- ③ repeat until no change:

mark $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a \in \Sigma$

Notation			
p ≈ q	\Leftrightarrow	states p and q are indistinguishable	
Lemma			
$n \approx a$		$\{n, q\}$ is unmarked	

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if for all $x \in \Sigma^*$ $\widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$

Lemma				
pprox is equivalence	e relation on Q:			
$ 0 \forall p \in Q $	ppprox p	(reflexivity)		
$\Theta \ \forall p,q \in Q$	$ppprox q \implies qpprox p$	(symmetry)		
$\Theta \forall p, q, r \in Q$	$p pprox q \land q pprox r \implies p pprox r$	(transitivity)		

Notation

 $[p]_{pprox} = \{q \in Q \mid p \approx q\}$ denotes equivalence class of p

Definition (Collapsing Indistinguishable States)

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

- ▶ $Q' = \{[p]_{\approx} \mid p \in Q\}$
- $\blacktriangleright \ \delta'([p]_{\approx},a) = [\delta(p,a)]_{\approx} \qquad \text{ well-defined: } p \approx q \implies \delta(p,a) \approx \delta(q,a)$
- ► $s' = [s]_{\approx}$
- ► $F' = \{ [p]_{\approx} \mid p \in F \}$

Lemma

1
$$\widehat{\delta'}([p]_{\approx}, x) = [\widehat{\delta}(p, x)]_{\approx}$$
 for all $x \in \Sigma'$
2 $p \in F \iff [p]_{\approx} \in F'$
for all $p \in Q$

Theorem

$$L(M/\approx) = L(M)$$

Proof

$$x \in L(M/\approx) \iff \widehat{\delta'}([s]_{\approx}, x) \in F' \iff [\widehat{\delta}(s, x)]_{\approx} \in F' \iff \widehat{\delta}(s, x) \in F \iff x \in L(M)$$

Question

is M/\approx minimum-state DFA for L(M)?

Lemma

 M/\approx cannot be collapsed further

universität universität unsbruck
WS 2024 Automata and Logic lecture 4
2. Minimization

Example

DFA for set of strings over $\{a, b\}$ containing at least three occurrences of three consecutive b's, overlapping permitted:

а √ b √ √ c $\checkmark \checkmark \checkmark d$ $\sqrt{\sqrt{\sqrt{\sqrt{e}}}}$ $\sqrt{\sqrt{\sqrt{\sqrt{f}}}}$ $\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{g}}}}}$ $\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{1}}}}}}}$ < < < < < < < < i i < < < < < < < < < < < j JJJJJJJJ JJK / / / / / / / / / / / / / / /

states d, g and h, k can be merged

Outline

- **1. Summary of Previous Lecture**
- 2. Minimization

3. Intermezzo

- 4. Weak Monadic Second-Order Logic
- 5. Further Reading

Furticify with session ID 8020 8256

Question

Which statements about the following DFA are true ?

- A states 2 and 3 are distinguishable
- B all states can be merged
- c the DFA is minimal
- D states 1 and 2 can be merged

Outline

- **1. Summary of Previous Lecture**
- 2. Minimization
- 3. Intermezzo

4. Weak Monadic Second-Order Logic

5. Further Reading

- ► first-order variables $V_1 = \{x, y, ...\}$ ranging over natural numbers
- ▶ second-order variables $V_2 = \{X, Y, ...\}$ ranging over finite sets of natural numbers
- formulas of weak monadic second-order logic

$$\varphi ::= \bot \mid x < y \mid X(x) \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x. \varphi \mid \exists X. \varphi$$

with $x, y \in V_1$ and $X \in V_2$

Abbreviations

$$\begin{array}{lll} \varphi \wedge \psi & := \neg (\neg \varphi \vee \neg \psi) & \varphi \rightarrow \psi & := \neg \varphi \vee \psi \\ \forall x. \varphi & := \neg \exists x. \neg \varphi & \forall X. \varphi & := \neg \exists X. \neg \varphi \\ x \leqslant y & := \neg (y < x) & x = y & := x \leqslant y \wedge y \leqslant \\ \top & := \neg \bot & x. X(x) \wedge x = 0 \end{array}$$

 $\leq x$

Remarks

- X(x) represents $x \in X$
- MSO is weak MSO without restriction to finite sets

Examples

- $\blacktriangleright \ (\forall x. X(x) \to Y(x)) \land (\exists y. \neg X(y) \land Y(y))$
- $\blacktriangleright \exists X. (\forall x. x = 0 \rightarrow X(x)) \land (\forall x. X(x) \rightarrow \exists y. x < y \land X(y))$
- $\blacktriangleright \exists X. X(0) \land (\forall y. \forall z. z = y + 1 \land z \leqslant x \rightarrow (X(y) \leftrightarrow \neg X(z))) \land X(x) \quad \iff x \text{ is even}$

Remark

$$z = y + 1$$
 abbreviates $y < z \land \neg \exists x. (y < x \land x < z)$

- ▶ assignment α is mapping from variables $x \in V_1$ to \mathbb{N} and $X \in V_2$ to finite subsets of \mathbb{N}
- ▶ assignment α satisfies formula φ ($\alpha \models \varphi$):

$\alpha \not\vDash \bot$			
$\alpha \models \mathbf{x} < \mathbf{y}$	\iff	$\alpha(\mathbf{x}) < \alpha(\mathbf{y})$	
$\alpha \models X(x)$	\iff	$\alpha(\mathbf{X}) \in \alpha(\mathbf{X})$	
$\alpha \models \neg \varphi$	\iff	$\alpha \nvDash \varphi$	
$\alpha \models \varphi_1 \lor \varphi_2$	\iff	$\alpha \vDash \varphi_1 \text{ or } \alpha \vDash \varphi$	2
$\alpha \vDash \exists \mathbf{x}. \varphi$	\iff	$\alpha[\mathbf{x}\mapsto\mathbf{n}]\vDash\varphi$	for some $n \in \mathbb{N}$
$\alpha \models \exists \mathbf{X}. \varphi$	\iff	$\alpha[\mathbf{X}\mapsto\mathbf{N}]\models\varphi$	for some finite subset $\mathit{N} \subset \mathbb{N}$

- ▶ formula φ is satisfiable if $\alpha \models \varphi$ for some assignment α
- ▶ formula φ is valid if $\alpha \models \varphi$ for all assignments α
- model of formula φ is assignment α such that $\alpha \vDash \varphi$
- size of model α is smallest *n* such that

```
(1) \alpha(x) < n \text{ for } x \in V_1

(2) \alpha(X) \subseteq \{0, ..., n-1\} for X \in V_2
```

Examples

$(\forall x. X(x) \rightarrow Y(x)) \land (\exists y. \neg X(y) \land Y(y))$	satisfiable

$$(\forall x. x = 0 \rightarrow x(x)) \land (\forall x. x(x) \rightarrow \exists y. x < y \land x(y))$$

► $(\exists x. X(x) \land \exists y. X(y) \land x \neq y) \land (\forall x. X(x) \rightarrow \exists y. Y(y) \land x < y)$

satisfiable

given alphabet Σ and string $x = a_0 \cdots a_{n-1} \in \Sigma^*$

- second-order variables $V_2 = \{ P_a \mid a \in \Sigma \}$
- $\alpha_x(P_a) = \{i < n \mid a_i = a\}$

Notation

 \underline{x} for α_x

Example

- $\boldsymbol{\Sigma} = \{\textbf{\textit{a}}, \textbf{\textit{b}}\}$
- <u>abba</u> $(P_a) = \{0,3\}$
- $\blacktriangleright \underline{abba}(P_b) = \{1,2\}$

Example

 $\boldsymbol{\Sigma} = \{\textbf{\textit{a}}, \textbf{\textit{b}}\}$

$$\triangleright \varphi = \forall x. \neg (P_a(x) \land P_b(x))$$

- $\flat \ \psi = \forall x. \forall y. (P_a(x) \land P_b(y)) \rightarrow x < y$
- ▶ $\chi = \forall x. P_b(x) \rightarrow \exists y. P_a(y) \land y < x$

 $\begin{array}{ll} \underline{x} \vDash \varphi \text{ for all } x \in \Sigma^* \\ \hline \underline{aabbb} \vDash \psi & \underline{aabab} \nvDash \psi \\ \hline \underline{aaaaa} \vDash \chi & \underline{babab} \nvDash \chi \end{array}$

Definitions

• given alphabet Σ and WMSO formula φ with free variables (exclusively) in $\{P_a \mid a \in \Sigma\}$

$$L(\varphi) = \{ x \in \Sigma^* \mid \underline{x} \vDash \varphi \}$$

▶ set $A \subseteq \Sigma^*$ is WMSO definable if $A = L(\varphi)$ for some WMSO formula φ

Examples

 $\boldsymbol{\Sigma} = \{\textbf{\textit{a}}, \textbf{\textit{b}}\}$

▶ regular set $L((a + b)^*ab(a + b)^*)$ is WMSO definable by formula

 $\exists x. \exists y. P_{a}(x) \land P_{b}(y) \land x < y \land \neg \exists z. x < z \land z < y$

WMSO formula

$$\exists x. P_a(x) \land \forall y. x < y \rightarrow \neg (P_a(y) \lor P_b(y))$$

defines regular set $\{xa \mid x \in \Sigma^*\}$

Theorem

set $A \subseteq \Sigma^*$ is regular if and only if A is WMSO definable

Outline

- **1. Summary of Previous Lecture**
- 2. Minimization
- 3. Intermezzo
- 4. Weak Monadic Second-Order Logic
- 5. Further Reading

Kozen

Lectures 13 and 14

Important Concepts

- $\blacktriangleright \alpha \vDash \varphi$
- indistinguishable states
- minimization algorithm
- model
- MSO

- satisfiability
- validity
- weak monadic second-order logic (WMSO)
- WMSO definability

homework for November 8