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Definitions

DFA M = (Q,%,4,s,F)
» state p is inaccessible if §(s,x) # p forall x € £*

» states p and g are indistinguishable (p ~ q) if g(p,x) EF — 3(q7x) €F forall xe X*

Minimization Algorithm

DFA M = (Q,X,4,s,F)

@ remove inaccessible states

@ determine which states are indistinguishable by marking algorithm

® collapse indistinguishable states
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Marking Algorithm

given DFA M = (Q, %, d,s,F) without inaccessible states

@ tabulate all unordered pairs {p,q} with p,q € Q, initially unmarked

@ mark {p,q} ifpeFandg¢Forp¢F and g€eF

® repeat until no change: mark {p,q} if {d(p,a),0(q,a)} is marked for some a € ¥

p~q <= {p,g} isunmarked

~ is equivalence relation on Q

[p]l~ = {g € Q| p~qg} denotes equivalence class of p
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Definition (Collapsing Indistinguishable States)

DFA M/~ is defined as (Q’,Xx,d’,s’,F") with

» Q' ={[pl~ |p€Q}

> §'([plx,a) = [6(p,a)]~ well-defined: p~gq = d(p,a) =~ i(q,a)
> s = [s]

» F = {[pl~ | p € F}

L(M/~) = L(M)

is M/~ minimum-state DFA for L(M) ?

u Hwnn';/g;a'ctft WS 2024  Automata and Logic  lecture 5 1. Summary of Previous Lecture 5/36



Definitions

» first-order variables V3 = {x,y,...} ranging over natural numbers
» second-order variables V, = {X,Y,...} ranging over finite sets of natural numbers

» formulas of weak monadic second-order logic (WMSO)
pu= L x<y [ X(X) | —e@Ve | Ixe | IXp

with x,y € V1 and X € V,

Abbreviations

AP = =(np Ve p—1 = VY
VX.o = 23dx.—p VX.o = 23X . —p
x<y = (y<x X=y =XxX<YyANy<x
T ==l x=0:=-3Jy.y<x
X(0) := IxX(x)Ax=0 z=y+1l =y<zA-3xy<xAx<z
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» X(x) represents x € X

» MSO is WMSO without restriction to finite sets

» assignment « is mapping from variables x € V; to N and X € V, to finite subsets of N

» assignment « satisfies formula ¢ (a F ¢):

akF L

aEx<y — ax) < aly)

a E X(x) = a(x) € o(X)

aF -p = aFoy

aFpiVp, <<= aFpiorakFp;

aF3dx.p <~ a[x—n]Eoe forsome n e N

aF3IXp < «a[X— N]F ¢ forsome finite subset N C N
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Definitions

» formula ¢ is satisfiable if o F ¢ for some assignment «
» formula ¢ is valid if a E ¢ for all assignments «
» model of formula ¢ is assignment « such that o F ¢
» size of model a is smallest n such that
@® a(x) <n for xeV;
@ a(X) C{0,...,n—1} for X € V5

given alphabet ¥ and string x = ag ---ap_1 € X*

» second-order variables Vo, = {P, |a€ X}

» ax(P,) ={i<n|x;=a}
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x for ay

Definitions

» given alphabet ¥ and WMSO formula ¢ with free variables (exclusively) in {P,|a € X}
Lp) ={xeX [xF ¢}

» set A C Y* is WMSO definable if A = L(y) for some WMSO formula ¢

set A C Y* isreqgularif and only if A is WMSO definable
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> ( alternating) finite automata

>

» (alternating) Bichi automata

» (weak) monadic second-order logic

» Presburger arithmetic

» linear-time temporal logic
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2. WMSO Definability
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set A C Y* isreqgularif and only if A is WMSO definable
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set A C Y* isreqgularif and only if A is WMSO definable

Proof ( —)

next week
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set A C Y* isreqgularif and only if A is WMSO definable

Proof ( —)

next week

Definitions

DFA M = (Q,X,4,s,F)

» run of M oninput x = a;---a, € L* is sequence qo, ..., qn of states such that
ai ar an
S=Qqo——>q1—> - —(Qn
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set A C Y* isreqgularif and only if A is WMSO definable

Proof ( —)

next week

Definitions

DFA M = (Q,X,4,s,F)

» run of M oninput x = a;---a, € L* is sequence qo, ..., qn of states such that
ai ar an
S=Qqo——>q1—> - —(Qn
» run qo, ..., qn is accepting if g, € F
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Proof ( — )

» DFA M = (Q,%,4,s,F)
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Proof ( — )

» DFAM = (Q,X%,4,s,F) with O = {q1,...,9m}
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» DFAM = (Q,X%,4,s,F) with O = {q1,...,9m}

» second-order variables Xg,, ..., Xq,
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> Xy = {i|d(s,a1--- a) = q} forinput a;---a, € £*
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> Xq:{i|§(s,a1---a,-):q} forinput a;---a, € ©*

a a b
run s —p—q—p
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> Xy = {i|d(s,a1--- a) = q} forinput a;---a, € £*

a a b
run s —p—q—p

assignment

P, = {0,1} P, = {2}
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> Xy = {i|d(s,a1--- a) = q} forinput a;---a, € £*

a a b
run s —p—q—p

assignment

Pa:{ovl} Pb:{z} XS:{O} XP:{173} Xq:{z}
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» DFAM = (Q,X%,4,s,F) with O = {q1,...,9m}

» second-order variables X, , ..., Xg, toencode accepting runs of M as WMSO formula ¢y
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» DFAM = (Q,X%,4,s,F) with O = {q1,...,9m}

» second-order variables Xg,, ..., Xy, to encode accepting runs of M as WMSO formula ¢p:

oy = 3Xg,. -+ I Xg,,- L. /\ﬂPa(E) A <VX. /\ﬁPa(x) — £ < x) A 1 Ay Abs Aty
acx acx
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> Xy = {i|d(s,a1--- a) = q} forinput a;---a, € £*
» ( denotes length n of input

a a b
run s —p—q—p

assignment

Pa:{ovl} Pb:{z} XS:{O} XP:{173} Xq:{z}
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» DFAM = (Q,X%,4,s,F) with O = {q1,...,9m}

» second-order variables Xg,, ..., Xy, to encode accepting runs of M as WMSO formula ¢p:

oy = 3Xg,. -+ I Xg,,- 3L /\ﬂPa(E) A <VX. /\ﬁPa(x) — £ < x) A Y1 A Ahs Ay
acx acx
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» DFAM = (Q,X%,4,s,F) with O = {q1,...,9m}

» second-order variables Xg,, ..., Xy, to encode accepting runs of M as WMSO formula ¢p:

oy = 3Xg,. -+ I Xg,,- 3L /\ﬂPa(Z) A <VX. /\ﬁPa(x) — £ < x) A 1 Ay A3 A g
acx acyx

Py == Vx.x < ( \/ Xq( > A /\ = (Xp(X) A Xg(x))

geQ p#q
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Proof ( — )
» DFAM = (Q,X%,4,s,F) with O = {q1,...,9m}
» second-order variables Xg,, ..., Xy, to encode accepting runs of M as WMSO formula ¢p:

oy = 3Xg,. -+ I Xg,,- 3L /\ﬂPa(Z) A <VX. /\ﬁPa(x) — £ < x) A 1 Ay A3 Ay
acx acyx

1 = Xs(0)
Y =Vx.x <l — ( \/ Xq(x)> A\~ (Xp(x) A Xg(x))
geQ p#q

Y3 = Vx.x <Ll — \/ Xg(X) A Pa(x) A Jy.y =x+1 A Xsg.a)(¥)
acx,qen
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» DFAM = (Q,X%,4,s,F) with O = {q1,...,9m}

» second-order variables Xg,, ..., Xy, to encode accepting runs of M as WMSO formula ¢p:

om = I Xg,. - IXg,,- L. /\ﬂPa(Z) A <VX. /\ﬁPa(x) — £ < x) A Y1 AN a A3 A g
aex acx

1 = Xs(0)

Y =Vx.x <l — ( \/ Xq(x)> A\~ (Xp(x) A Xg(x))

geQ p#q

Y3 = Vx.x <Ll — \/ Xg(X) A Pa(x) A Jy.y =x+1 A Xsg.a)(¥)
acx,qen

Vg = \/ Xq(£)

qeF
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> Xy = {i|d(s,a1--- a) = q} forinput a;---a, € £*
» ( denotes length n of input

a a b
run s —p—q—p

assignment

Pa:{ovl} Pb:{z} XS:{O} XP:{173} Xq:{z}

Proof ( — , cont’d)
> L(om) = L(M)
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» DFA M
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» DFA M 5
(1)

O——@Da»

» WMSO formula ¢y
IX1.3X2. 3L 2P (£) A =Pp(£) A (VX.2Pa(X) A =Pu(X) = £ < X) A1 Atha Athz Aty
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» DFA M 5
(1)

O——@Da»

» WMSO formula ¢y
ElX]_.Ele.Ele.—\Pa(Z) A —\Pb(g) A (VX.—\Pa(X) A —\Pb(X) — /< X) A w]_ A wz A w3 A ¢4

with
Y1 = X1(0)
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» DFA M a
g

O——@Da»

» WMSO formula ¢y
IX1.3X2. 3L 2P (£) A =Pp(£) A (VX.2Pa(X) A =Pu(X) = £ < X) A1 A b2 Athz Aty
with
Y1 =X1(0) = Vx.x <L = (Xa(X) V X2(x)) A = (X2(x) A Xa(x))
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» DFA M a
g

O——@D3>

» WMSO formula ¢y
IX1.3X2. 3L 2P (£) A =Pp(£) A (VX.2Pa(X) A =Pp(X) = £ < X) A1 Atha Athz Aty
with
Y1 =X1(0) = Vx.x <L — (Xa(X) V X2(x)) A = (X2(x) A X2(x))
Y3 =Vx.x <l —= (Xa(x) APa(x) Ady.y = x+1AXi(y))
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» DFA M a
g

O——@D3>

» WMSO formula ¢y
IX1.3X2. 3L 2P (£) A =Pp(£) A (VX.2Pa(X) A =Pp(X) = £ < X) A1 Atha Athz Aty
with
Y1 =X1(0) = Vx.x <L — (Xa(X) V X2(x)) A = (X2(x) A X2(x))
Y3 =Vx.x <l = (Xa(x) APa(x) Ady.y =x+1AX1(y)) V
(X1(x) APo(x) ATy.y = x+1 A Xa(y))

B universitat i inabili
B hhebruck WS 2024 Automata and Logic lecture 5 2. WMSO Definability 19/36



» DFA M 5
(1)

O O LT

» WMSO formula ¢y
E|X1.5|X2.E|E.—\Pa(€) A ﬂPb(f) A (VX.—\Pa(X) A _\Pb(X) — /< X) A w]_ A wz A w3 A ¢4

with
Y1 =X1(0) = Vx.x <L — (Xa(X) V X2(x)) A = (X2(x) A X2(x))
Y3 =Vx.x <l = (Xa(x) APa(x) Ady.y =x+1AX1(y)) V

(X1(x) A Po(x) ATy.y = x+1AXa(y)) V

(X2(x) APa(x) ATy.y = x+1AX2(y)) V

(X2(x) APo(x) ATy.y = x+1 A Xa(y))
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» DFA M 5
(1)

O O LT

» WMSO formula ¢y
E|X1.5|X2.E|E.—\Pa(€) A ﬂPb(f) A (VX.—\Pa(X) A _\Pb(X) — /< X) A w]_ A wz A w3 A ’Lﬂ4

with
Y1 =X1(0) = Vx.x <L — (Xa(X) V X2(x)) A = (X2(x) A X2(x))
Y3 =Vx.x <l = (Xa(x) APa(x) Ady.y =x+1AX1(y)) V
(X1(x) A Po(x) ATy.y = x+1AXa(y)) V
(X2(x) APa(x) ATy.y = x+1AX2(y)) V
(X2(x) APo(x) ATy.y = x+1 A Xa(y))
Yo = Xa(¢)
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E]I'ﬁCify with session 1D

Consider the language encoded by the following WMSO formula over ¥ = {a,b}:

@ = FLAP5(0) A =Po(£) A (VX.2Ps(X) A =Py(x) — £ < X)
AN (VXPp(x) > x=0VL=x+1)

Which of the following statements hold ?
o . ab b

B L(p) = L(N) for the NFA N: © @ @

B Ly =%

@ L(e) = L(a*+ ba* + a*b + ba*b)

D

0
L(p) = L(N') for the NFA, N': 0 eb ) eb @
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4. Myhill-Nerode Relations
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equivalence relation =y on X* for DFA M = (Q, X, 0,s,F) is defined as follows:

X=uy <= 0s,x)=20(sy)
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equivalence relation =y on X* for DFA M = (Q, X, 0,s,F) is defined as follows:

X=uy <= 06s,x)=25(sy)

=y is right congruent: forall x,ye¥* x=yy = forallacX xa =y ya
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equivalence relation =y on X* for DFA M = (Q, X, 0,s,F) is defined as follows:

~

X=wy < 6sx)=0sy)

=y is right congruent: forall x,ye¥* x=yy = forallacX xa =y ya

=p refines L(M): forall x,y e ¥* x =y y = either x,y € L(M) or x,y & L(M)
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equivalence relation =y on X* for DFA M = (Q, X, 0,s,F) is defined as follows:

X=pyy <+— g(s,x) = S(S,y)

=y is right congruent: forall x,ye¥* x=yy = forallacX xa =y ya
=y refines L(M): forall x,y e ¥* x =y y = either x,y € L(M) or x,y & L(M)

=y is of finite index: = has finitely many equivalence classes
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equivalence relation =y on X* for DFA M = (Q, X, 0,s,F) is defined as follows:

~

X =mYy < 5(57)() - g(say)

=y is right congruent: forall x,ye¥* x=yy = forallacX xa =y ya
=y refines L(M): forall x,y e ¥* x =y y = either x,y € L(M) or x,y & L(M)

=y is of finite index: =y has finitely many equivalence classes

Myhill-Nerode relation for L C ¥* is right congruent equivalence relation of finite index on **
that refines L

AM_
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/___\
aa
a bb baa
= p aabba
5 bbba
a .
2 ba
\—/
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given Myhill-Nerode relation = forset L C ¥* DFA M= is defined as (Q, X, d,s,F) with
> 0= {x]= | xeT*}
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given Myhill-Nerode relation = forset L C ¥* DFA M= is defined as (Q, X, d,s,F) with
> 0= {x]= | xeT*}
> 5([x]=.a) = [xal=
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given Myhill-Nerode relation = forset L C ¥* DFA M= is defined as (Q, X, d,s,F) with
> 0= {x]= | xeT*}
> 5([x]=.a) = [xal=

» s = [e]=
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pefinition
given Myhill-Nerode relation = forset L C ¥* DFA M= is defined as (Q, X, d,s,F) with

> 0= {x]= | xeT*}

» i([x]z,a) = [xa]=

» s = [e]=

> F = {[xl= |xeL}
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given Myhill-Nerode relation = forset L C ¥* DFA M= is defined as (Q, X, d,s,F) with
> 0= {x]= | xeT*}

» i([x]=,a) = [xa]= well-defined: x =y = xa =ya

» s = [e]=
. F={[xl= |xeL}
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pefinition
given Myhill-Nerode relation = forset L C ¥* DFA M= is defined as (Q, X, J,s, F) with

> 0= {x]= | xeT*}

» i([x]=,a) = [xa]= well-defined: x =y = xa =ya

» s = [e]=

> F={[xl= |xeL}

5([x)=.y) = [xy]= forall y € x*

forall x € X*
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pefinition
given Myhill-Nerode relation = forset L C ¥* DFA M= is defined as (Q, X, J,s, F) with

> 0= {x]= | xeT*}

» i([x]=,a) = [xa]= well-defined: x =y = xa =ya

» s = [e]=

> F={[xl= |xeL}

5([x)=.y) = [xy]= forall y € x*
XeEL << [x]z€F

forall x € X*
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xelMz) < O(elesx)eF <= [x]l=eF <« xel

i i 28/36
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L(M=) =L

xel(M2) < (e]lex)eF <= [x]loeF < xel

Corollary

if L admits Myhill-Nerode relation then L is regular
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Theorem

two mappings (for L € ¥*)
» D — =p from DFAs for L to Myhill-Nerode relations for L

> &~ — My from Myhill-Nerode relations for L to DFAs for L

are each others inverse (up to isomorphism of automata)
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Theorem

two mappings (for L € ¥*)

» D — =p from DFAs for L to Myhill-Nerode relations for L
> &~ — My from Myhill-Nerode relations for L to DFAs for L
are each others inverse (up to isomorphism of automata):

» Mz, ~ D  forevery DFA D without inaccessible states

rEmMy) = & for every Myhill-Nerode relation ~
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for reqular L C ¥*

s A s A

. J . J

DFAs for L Myhill-Nerode relations for L
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for reqular L C ¥*

s A s A

DFAs with inaccessible states
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for reqular L C ¥*

s A s A

DFAs with inaccessible states

D

Il
S

\/

¢ J E() ¢ J

DFAs for L Myhill-Nerode relations for L
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for reqular L C ¥*

s A s A

DFAs with inaccessible states

M)
D M(ED) =p
" J E() " J
DFAs for L Myhill-Nerode relations for L
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for reqular L C ¥*

s A s A

DFAs with inaccessible states
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" J E() " J
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for reqular L C ¥*

s A s A

DFAs with inaccessible states
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/ \
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DFAs for L Myhill-Nerode relations for L
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for reqular L C ¥*
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for reqular L C ¥*
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forany set L C ¥* equivalence relation =, on ¥* is defined as follows:

x=y <= forallzeX" (xzel <= yzel)

u iwanniggFﬁictEt WS 2024  Automata and Logic  lecture 5 4. Myhill-Nerode Relations 31/36



forany set L C ¥* equivalence relation =, on ¥* is defined as follows:

x=y <= forallzeX" (xzel <= yzel)

foranyset L C ¥* =, is coarsest right congruent refinement of L

B universitat ill- i
hhebruck WS 2024 Automata and Logic lecture 5 4. Myhill-Nerode Relations 31/36



forany set L C ¥* equivalence relation =, on ¥* is defined as follows:

x=y <= forallzeX" (xzel <= yzel)

foranyset L C ¥* =, is coarsest right congruent refinement of L:
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forall x,yeY¥ x~y — Xx=,V¥
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forany set L C ¥* equivalence relation =, on ¥* is defined as follows:

x=y <= forallzeX" (xzel <= yzel)

foranyset L C ¥* =, is coarsest right congruent refinement of L:

if ~ is right congruent equivalence relation refining L then

forall x,yeY¥ x~y — Xx=,V¥

=, has fewest equivalence classes
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Theorem

following statements are equivalent for any set L C > *:
» L is regular

» L admits Myhill-Nerode relation
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Theorem
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@ A={a"b"|n >0} isnotregular
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@ A={a"b"|n >0} isnotregular
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@ A={a""|n >0} is notregular
because =, has infinitely many equivalence classes:

i#j = a #sa (ab'cAandab ¢A)
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because =3 has infinitely many equivalence classes:
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@ A={a""|n >0} is notregular
because =, has infinitely many equivalence classes:

i#j = a #sa (ab'cAandab ¢A)

® B ={a”|n> 0} isnot regular

because =3 has infinitely many equivalence classes:
o . . o - o
i<j = a® #ga* (a%a® =a* €B and a’a? ¢ B)

@ C=1{a"|n >0} isnotregular

because = has infinitely many equivalence classes:

i<j — ai! §—éC aj! (ai!ai!i — a(i—l—l)! € C and aj!ai!i ¢ C)
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@ D = {aP|p isprime} is not regular

because =p has infinitely many equivalence classes:

i<jandi,jareprimes =— a' #pa
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@ D = {aP|p isprime} is not regular

because =p has infinitely many equivalence classes:

i<jandi,jareprimes =— a' #pa

» suppose a' =p a/ andlet k =j —i
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@ D = {aP|p isprime} is not regular

because =p has infinitely many equivalence classes:

i<jandi,jareprimes =— a' #pa

» suppose a' =p a/ andlet k =j —i

-8l =p @ = algt =5 ala
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@ D = {aP|p isprime} is not regular

because =p has infinitely many equivalence classes:

i<jandi,jareprimes =— a' #pa

» suppose a' =p a/ andlet k =j —i

» a' =p al = a'ak =p alak =p alakak = a/a*
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@ D = {aP|p isprime} is not regular

because =p has infinitely many equivalence classes:

i<jandi,jareprimes =— a' #pa

» suppose a' =p a/ andlet k =j —i
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@ D = {aP|p isprime} is not regular
because =p has infinitely many equivalence classes:

i<jandi,jareprimes =— a' #pa

» suppose a' =p a/ andlet k =j —i

Ca = = e =y A = 2l Al o = Al = gilEl

» a' €D and a/ktt) ¢ D

B universitat i ill- i
B hhebruck WS 2024 Automata and Logic lecture 5 4. Myhill-Nerode Relations 34/36



@ D = {aP|p isprime} is not regular
because =p has infinitely many equivalence classes:

i<jandi,jareprimes =— a' #pa

» suppose a' =p al andlet k =) —i
» a' =p al = alak =p alak =p alakak = ala® =p ... =p alalk = a/ktD)
» a' €D and a/(kt1) ¢ D

» =p does not refine D 4
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Outline

5. Further Reading
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» Lectures 13-16
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http://cl-informatik.uibk.ac.at/teaching/ws24/al/exercises/04.pdf

» Lectures 13-16

coarse Myhill-Nerode relation right congruence

finite index refinement (accepting) run
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http://cl-informatik.uibk.ac.at/teaching/ws24/al/exercises/04.pdf

» Lectures 13-16

coarse Myhill-Nerode relation right congruence

finite index refinement (accepting) run

homework for November 8
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