

WS 2024 lecture 5

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

Definitions

DFA $M = (Q, \Sigma, \delta, s, F)$

- ▶ state p is inaccessible if $\widehat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- ► states p and q are indistinguishable $(p \approx q)$ if $\widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$ for all $x \in \Sigma^*$

Minimization Algorithm

DFA $M = (Q, \Sigma, \delta, s, F)$

- 1 remove inaccessible states
- ② determine which states are indistinguishable by marking algorithm
- ③ collapse indistinguishable states

Marking Algorithm

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- 1 tabulate all unordered pairs $\{p,q\}$ with $p,q\in Q$, initially unmarked
- ② mark $\{p,q\}$ if $p \in F$ and $q \notin F$ or $p \notin F$ and $q \in F$
- ③ repeat until no change: mark $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a \in \Sigma$

Lemmata

▶ $p \approx q \iff \{p,q\}$ is unmarked

ightarrow pprox is equivalence relation on Q

Notation

 $[p]_{\approx} = \{q \in Q \mid p \approx q\}$ denotes equivalence class of p

Definition (Collapsing Indistinguishable States)

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

- ▶ $Q' = \{[p]_{\approx} \mid p \in Q\}$
- $\blacktriangleright \ \delta'([p]_{\approx},a) = [\delta(p,a)]_{\approx} \qquad \text{ well-defined: } p \approx q \implies \delta(p,a) \approx \delta(q,a)$
- ► $s' = [s]_{\approx}$
- ▶ $F' = \{ [p]_{\approx} \mid p \in F \}$

Theorem

$$L(M/\approx) = L(M)$$

Question

is M/\approx minimum-state DFA for L(M)?

Definitions

- ▶ first-order variables $V_1 = \{x, y, ...\}$ ranging over natural numbers
- ▶ second-order variables $V_2 = \{X, Y, ...\}$ ranging over finite sets of natural numbers
- formulas of weak monadic second-order logic (WMSO)

$$\varphi ::= \bot \mid x < y \mid X(x) \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x. \varphi \mid \exists X. \varphi$$

with $x, y \in V_1$ and $X \in V_2$

Abbreviations

- X(x) represents $x \in X$
- MSO is WMSO without restriction to finite sets

Definitions

- ▶ assignment α is mapping from variables $x \in V_1$ to \mathbb{N} and $X \in V_2$ to finite subsets of \mathbb{N}
- ▶ assignment α satisfies formula φ ($\alpha \models \varphi$):

Definitions

- ▶ formula φ is satisfiable if $\alpha \models \varphi$ for some assignment α
- ▶ formula φ is valid if $\alpha \models \varphi$ for all assignments α
- model of formula φ is assignment α such that $\alpha \vDash \varphi$
- size of model α is smallest *n* such that

```
(1) \alpha(x) < n \text{ for } x \in V_1

(2) \alpha(X) \subseteq \{0, ..., n-1\} for X \in V_2
```

Definition

given alphabet Σ and string $x = a_0 \cdots a_{n-1} \in \Sigma^*$

- second-order variables $V_2 = \{ P_a \mid a \in \Sigma \}$
- $\alpha_x(P_a) = \{i < n \mid x_i = a\}$

Notation

 \underline{x} for α_x

Definitions

• given alphabet Σ and WMSO formula φ with free variables (exclusively) in $\{P_a \mid a \in \Sigma\}$

$$\mathsf{L}(\varphi) = \{ \mathsf{x} \in \mathsf{\Sigma}^* \mid \underline{\mathsf{x}} \vDash \varphi \}$$

► set $A \subseteq \Sigma^*$ is WMSO definable if $A = L(\varphi)$ for some WMSO formula φ

Theorem

set $A \subseteq \Sigma^*$ is regular if and only if A is WMSO definable

Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. WMSO Definability

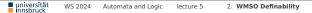
3. Intermezzo

- 4. Myhill-Nerode Relations
- 5. Further Reading

set $A\subseteq \Sigma^*$ is regular if and only if A is WMSO definable

set $A\subseteq \Sigma^*$ is regular if and only if A is WMSO definable

next week



set $A \subseteq \Sigma^*$ is regular if and only if A is WMSO definable

Proof (⇐)

next week

Definitions

DFA $M = (Q, \Sigma, \delta, s, F)$

▶ run of *M* on input $x = a_1 \cdots a_n \in \Sigma^*$ is sequence q_0, \ldots, q_n of states such that

$$s = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$$

set $A \subseteq \Sigma^*$ is regular if and only if A is WMSO definable

Proof (⇐)

next week

Definitions

DFA $M = (Q, \Sigma, \delta, s, F)$

▶ run of *M* on input $x = a_1 \cdots a_n \in \Sigma^*$ is sequence q_0, \ldots, q_n of states such that

$$s = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$$

▶ run q_0, \ldots, q_n is accepting if $q_n \in F$

• DFA $M = (Q, \Sigma, \delta, s, F)$

• DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$

- DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$
- second-order variables X_{q_1}, \ldots, X_{q_m}

•
$$X_q = \{i \mid \widehat{\delta}(s, a_1 \cdots a_i) = q\}$$
 for input $a_1 \cdots a_n \in \Sigma^*$

•
$$X_q = \{i \mid \widehat{\delta}(s, a_1 \cdots a_i) = q\}$$
 for input $a_1 \cdots a_n \in \Sigma^*$

Example

▶ run
$$s \xrightarrow{a} p \xrightarrow{a} q \xrightarrow{b} p$$

•
$$X_q = \{i \mid \widehat{\delta}(s, a_1 \cdots a_i) = q\}$$
 for input $a_1 \cdots a_n \in \Sigma^*$

Example

- $\blacktriangleright \text{ run } s \xrightarrow{a} p \xrightarrow{a} q \xrightarrow{b} p$
- assignment

 $P_a = \{0, 1\}$ $P_b = \{2\}$

•
$$X_q = \{i \mid \widehat{\delta}(s, a_1 \cdots a_i) = q\}$$
 for input $a_1 \cdots a_n \in \Sigma^*$

Example

- $\blacktriangleright \text{ run } s \xrightarrow{a} p \xrightarrow{a} q \xrightarrow{b} p$
- assignment

$$P_a = \{0,1\}$$
 $P_b = \{2\}$ $X_s = \{0\}$ $X_p = \{1,3\}$ $X_q = \{2\}$

$\mathbf{\hat{P}}$ roof (\Longrightarrow)

- DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$
- ▶ second-order variables X_{q_1}, \ldots, X_{q_m} to encode accepting runs of M as WMSO formula φ_M

$\mathbf{\hat{P}}$ roof (\Longrightarrow)

- DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$
- ▶ second-order variables X_{q_1}, \ldots, X_{q_m} to encode accepting runs of M as WMSO formula φ_M :

$$\varphi_{\mathcal{M}} := \exists X_{q_1}. \cdots \exists X_{q_m}. \exists \ell. \bigwedge_{a \in \Sigma} \neg P_a(\ell) \land \left(\forall x. \bigwedge_{a \in \Sigma} \neg P_a(x) \to \ell \leqslant x \right) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

•
$$X_q = \{i \mid \widehat{\delta}(s, a_1 \cdots a_i) = q\}$$
 for input $a_1 \cdots a_n \in \Sigma^*$

• ℓ denotes length *n* of input

Example

$$run \ s \xrightarrow{a} p \xrightarrow{a} q \xrightarrow{b} p$$

assignment

$$P_a = \{0,1\}$$
 $P_b = \{2\}$ $X_s = \{0\}$ $X_p = \{1,3\}$ $X_q = \{2\}$

- DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$
- ▶ second-order variables X_{q_1}, \ldots, X_{q_m} to encode accepting runs of M as WMSO formula φ_M :

$$\varphi_{\mathcal{M}} := \exists X_{q_1}. \cdots \exists X_{q_m}. \exists \ell. \bigwedge_{a \in \Sigma} \neg P_a(\ell) \land \left(\forall x. \bigwedge_{a \in \Sigma} \neg P_a(x) \to \ell \leqslant x \right) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

 $\psi_1 := X_s(0)$

- DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$
- ► second-order variables X_{q_1}, \ldots, X_{q_m} to encode accepting runs of M as WMSO formula φ_M :

$$\varphi_{\mathcal{M}} := \exists X_{q_1}. \cdots \exists X_{q_m}. \exists \ell. \bigwedge_{a \in \Sigma} \neg P_a(\ell) \land \left(\forall x. \bigwedge_{a \in \Sigma} \neg P_a(x) \to \ell \leqslant x \right) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

$$\begin{split} \psi_1 &:= X_s(\mathbf{0}) \\ \psi_2 &:= \forall \, x. \, x \leqslant \ell \to \left(\bigvee_{q \in Q} X_q(x)\right) \land \bigwedge_{p \neq q} \neg \left(X_p(x) \land X_q(x)\right) \end{split}$$

- DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$
- ► second-order variables X_{q_1}, \ldots, X_{q_m} to encode accepting runs of M as WMSO formula φ_M :

$$\varphi_{\mathcal{M}} := \exists X_{q_1}. \cdots \exists X_{q_m}. \exists \ell. \bigwedge_{a \in \Sigma} \neg P_a(\ell) \land \left(\forall x. \bigwedge_{a \in \Sigma} \neg P_a(x) \to \ell \leqslant x \right) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

 $\psi_1 := X_s(0)$

$$\psi_2 := orall x. x \leqslant \ell
ightarrow \left(igvee_{q \in Q} X_q(x)
ight)
ightarrow igwee_{p
eq q}
eg \left(X_p(x) \wedge X_q(x)
ight)$$

$$\psi_{\mathfrak{Z}} := \forall x. x < \ell \rightarrow \bigvee_{a \in \Sigma, q \in Q} X_{q}(x) \land P_{a}(x) \land \exists y. y = x + 1 \land X_{\delta(q,a)}(y)$$

- DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$
- ► second-order variables X_{q_1}, \ldots, X_{q_m} to encode accepting runs of M as WMSO formula φ_M :

$$\varphi_{\mathcal{M}} := \exists X_{q_1}. \cdots \exists X_{q_m}. \exists \ell. \bigwedge_{a \in \Sigma} \neg P_a(\ell) \land \left(\forall x. \bigwedge_{a \in \Sigma} \neg P_a(x) \to \ell \leqslant x \right) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

$$\psi_1 := X_s(0)$$

$$\psi_2 := orall x. x \leqslant \ell
ightarrow \left(igvee_{q \in Q} X_q(x)
ight)
ightarrow igwee_{p
eq q}
eg \left(X_p(x) \wedge X_q(x)
ight)$$

$$\psi_3 := \forall x. x < \ell \rightarrow \bigvee_{a \in \Sigma, q \in Q} X_q(x) \land P_a(x) \land \exists y. y = x + 1 \land X_{\delta(q,a)}(y)$$

$$\psi_4 := \bigvee_{q \in F} X_q(\ell)$$

•
$$X_q = \{i \mid \widehat{\delta}(s, a_1 \cdots a_i) = q\}$$
 for input $a_1 \cdots a_n \in \Sigma^*$

• ℓ denotes length *n* of input

Example

$$run \ s \xrightarrow{a} p \xrightarrow{a} q \xrightarrow{b} p$$

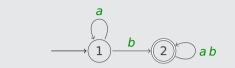
assignment

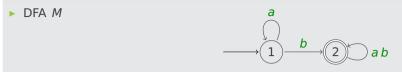
$$P_a = \{0,1\}$$
 $P_b = \{2\}$ $X_s = \{0\}$ $X_p = \{1,3\}$ $X_q = \{2\}$

Proof (\Longrightarrow , cont'd)

• $L(\varphi_M) = L(M)$

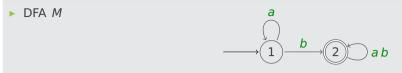
Example ► DFA M





• WMSO formula φ_M

 $\exists X_1. \exists X_2. \exists \ell. \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x. \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$



• WMSO formula φ_M

 $\exists X_1. \exists X_2. \exists \ell. \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x. \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$

with

 $\psi_1 = X_1(0)$

• WMSO formula φ_M

 $\exists X_1, \exists X_2, \exists \ell, \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x, \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$

with

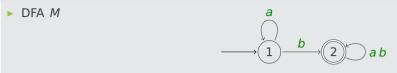
$$\psi_1 = X_1(0) \qquad \psi_2 = \forall x. x \leqslant \ell \rightarrow (X_1(x) \lor X_2(x)) \land \neg (X_1(x) \land X_2(x))$$

• WMSO formula φ_M

 $\exists X_1, \exists X_2, \exists \ell, \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x, \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$

with

$$\begin{split} \psi_1 &= X_1(0) \qquad \psi_2 = \forall \, x. \, x \leqslant \ell \, \rightarrow \, \left(X_1(x) \lor X_2(x) \right) \, \land \, \neg \left(X_1(x) \land X_2(x) \right) \\ \psi_3 &= \forall \, x. \, x < \ell \, \rightarrow \, \left(X_1(x) \land P_a(x) \land \exists \, y. \, y = x + 1 \land X_1(y) \right) \end{split}$$

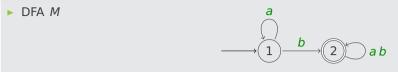


• WMSO formula φ_M

 $\exists X_1, \exists X_2, \exists \ell, \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x, \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$

with

$$\begin{split} \psi_1 &= X_1(0) \qquad \psi_2 = \forall x. x \leq \ell \rightarrow (X_1(x) \lor X_2(x)) \land \neg (X_1(x) \land X_2(x)) \\ \psi_3 &= \forall x. x < \ell \rightarrow (X_1(x) \land P_a(x) \land \exists y. y = x + 1 \land X_1(y)) \lor \\ &\qquad (X_1(x) \land P_b(x) \land \exists y. y = x + 1 \land X_2(y)) \end{split}$$



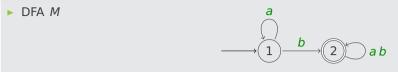
• WMSO formula φ_M

$$\exists X_1. \exists X_2. \exists \ell. \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x. \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

with

$$\psi_{1} = X_{1}(0) \qquad \psi_{2} = \forall x. x \leq \ell \rightarrow (X_{1}(x) \lor X_{2}(x)) \land \neg (X_{1}(x) \land X_{2}(x))$$

$$\psi_{3} = \forall x. x < \ell \rightarrow (X_{1}(x) \land P_{a}(x) \land \exists y. y = x + 1 \land X_{1}(y)) \lor (X_{1}(x) \land P_{b}(x) \land \exists y. y = x + 1 \land X_{2}(y)) \lor (X_{2}(x) \land P_{a}(x) \land \exists y. y = x + 1 \land X_{2}(y)) \lor (X_{2}(x) \land P_{b}(x) \land \exists y. y = x + 1 \land X_{2}(y)) \lor$$



• WMSO formula φ_M

$$\exists X_1. \exists X_2. \exists \ell. \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x. \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

with

$$\begin{split} \psi_1 &= X_1(0) \qquad \psi_2 = \forall x. x \leqslant \ell \rightarrow (X_1(x) \lor X_2(x)) \land \neg (X_1(x) \land X_2(x)) \\ \psi_3 &= \forall x. x < \ell \rightarrow (X_1(x) \land P_a(x) \land \exists y. y = x + 1 \land X_1(y)) \lor \\ &\qquad (X_1(x) \land P_b(x) \land \exists y. y = x + 1 \land X_2(y)) \lor \\ &\qquad (X_2(x) \land P_a(x) \land \exists y. y = x + 1 \land X_2(y)) \lor \\ &\qquad (X_2(x) \land P_b(x) \land \exists y. y = x + 1 \land X_2(y)) \end{split}$$

 $\psi_4 = X_2(\ell)$

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability

3. Intermezzo

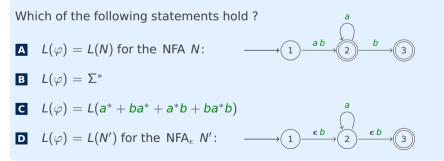
- 4. Myhill-Nerode Relations
- 5. Further Reading

Furticify with session ID 8020 8256

Question

Consider the language encoded by the following WMSO formula over $\Sigma = \{a, b\}$:

$$\begin{split} \varphi &= \exists \, \ell. \, \neg P_a(\ell) \, \land \, \neg P_b(\ell) \, \land \, \left(\, \forall \, x. \, \neg P_a(x) \, \land \, \neg P_b(x) \, \rightarrow \, \ell \leqslant x \right) \\ & \land \, \left(\, \forall \, x. \, P_b(x) \, \rightarrow \, x = 0 \, \lor \, \ell = x + 1 \, \right) \end{split}$$



Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo

4. Myhill-Nerode Relations

5. Further Reading

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s,x) = \widehat{\delta}(s,y)$$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s,x) = \widehat{\delta}(s,y)$$

Lemmata

▶ \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ for all $a \in \Sigma$ $xa \equiv_M ya$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s,x) = \widehat{\delta}(s,y)$$

Lemmata

- ▶ \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ for all $a \in \Sigma$ $xa \equiv_M ya$
- ► \equiv_M refines L(M): for all $x, y \in \Sigma^*$ $x \equiv_M y$ \implies either $x, y \in L(M)$ or $x, y \notin L(M)$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s,x) = \widehat{\delta}(s,y)$$

Lemmata

- ▶ \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ for all $a \in \Sigma$ $xa \equiv_M ya$
- ► \equiv_M refines L(M): for all $x, y \in \Sigma^*$ $x \equiv_M y$ \implies either $x, y \in L(M)$ or $x, y \notin L(M)$
- ▶ \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

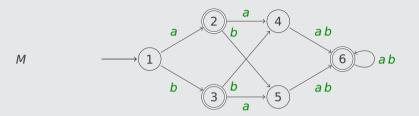
$$x \equiv_M y \iff \widehat{\delta}(s,x) = \widehat{\delta}(s,y)$$

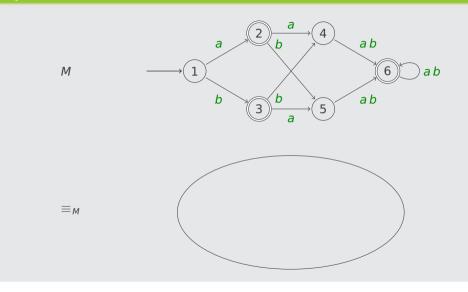
Lemmata

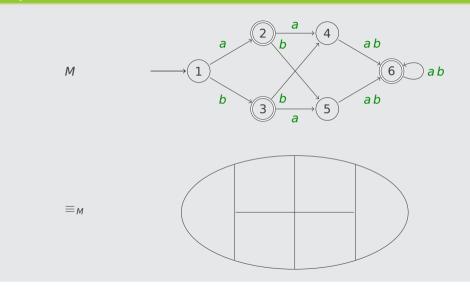
- ▶ \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ for all $a \in \Sigma$ $xa \equiv_M ya$
- ► \equiv_M refines L(M): for all $x, y \in \Sigma^*$ $x \equiv_M y$ \implies either $x, y \in L(M)$ or $x, y \notin L(M)$
- ▶ \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

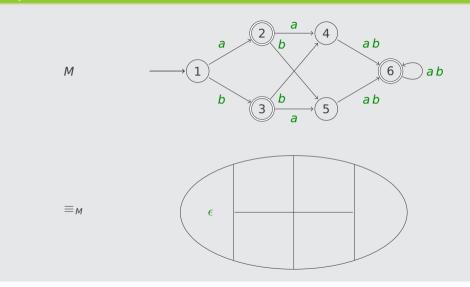
Definition

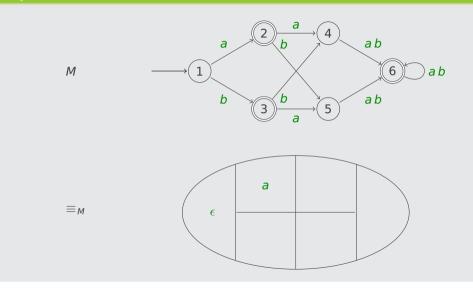
Myhill–Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

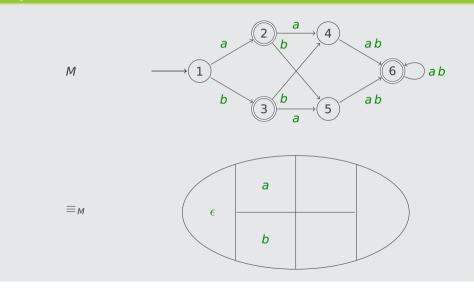




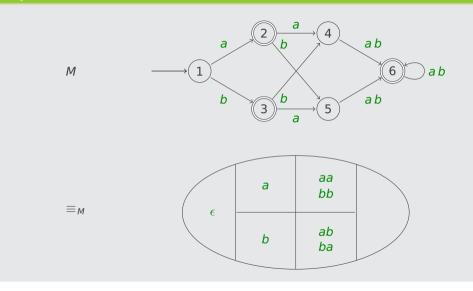


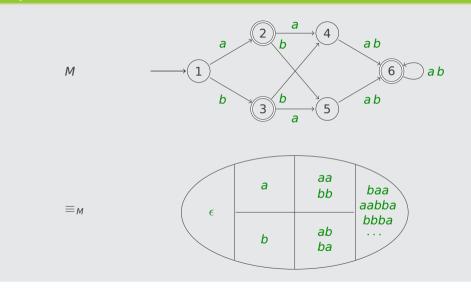


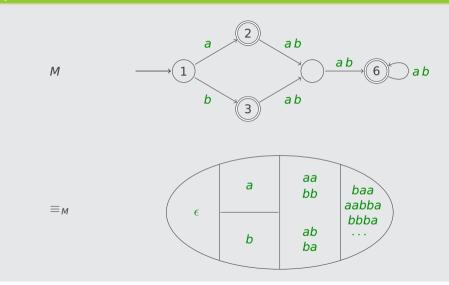


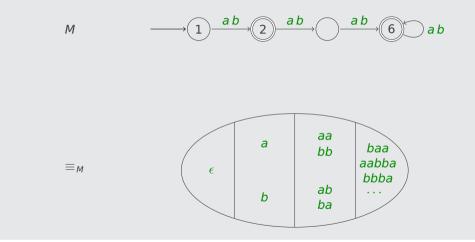












given Myhill–Nerode relation \equiv for set $L \subseteq \Sigma^*$ DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

 $\blacktriangleright Q = \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

- $\blacktriangleright Q = \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- ► $\delta([x]_{\equiv}, a) = [xa]_{\equiv}$

- $\blacktriangleright Q = \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- ► $\delta([x]_{\equiv}, a) = [xa]_{\equiv}$
- ▶ $s = [\epsilon]_{\equiv}$

- $\blacktriangleright Q = \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- ► $\delta([x]_{\equiv}, a) = [xa]_{\equiv}$
- $s = [\epsilon]_{\equiv}$
- $\blacktriangleright F = \{ [x]_{\equiv} \mid x \in L \}$

- $\blacktriangleright Q = \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- $\delta([x]_{\equiv}, a) = [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$
- ▶ $s = [\epsilon]_{\equiv}$
- $\blacktriangleright F = \{ [x]_{\equiv} \mid x \in L \}$

given Myhill–Nerode relation \equiv for set $L \subseteq \Sigma^*$ DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

- $\blacktriangleright Q = \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- $\delta([x]_{\equiv}, a) = [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$
- $s = [\epsilon]_{\equiv}$
- $\blacktriangleright F = \{ [x]_{\equiv} \mid x \in L \}$

Lemma

1
$$\widehat{\delta}([x]_{\equiv}, y) = [xy]_{\equiv}$$
 for all $y \in \Sigma^*$

for all $x \in \Sigma^*$

given Myhill–Nerode relation \equiv for set $L \subseteq \Sigma^*$ DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

- $\blacktriangleright Q = \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- $\delta([x]_{\equiv}, a) = [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$
- $s = [\epsilon]_{\equiv}$
- $\blacktriangleright F = \{ [x]_{\equiv} \mid x \in L \}$

Lemma

$$\widehat{\delta}([x]_{\equiv}, y) = [xy]_{\equiv} \text{ for all } y \in \Sigma$$

for all $x \in \Sigma^*$

$$L(M_{\equiv}) = L$$

$$L(M_{\equiv}) = L$$

Proof

$x \in L(M_{\equiv}) \quad \Longleftrightarrow \quad \widehat{\delta}([\epsilon]_{\equiv}, x) \in F$

$$L(M_{\equiv}) = L$$

Proof

$x \in L(M_{\equiv}) \quad \Longleftrightarrow \quad \widehat{\delta}([\epsilon]_{\equiv}, x) \in F \quad \Longleftrightarrow \quad [x]_{\equiv} \in F$

$$L(M_{\equiv}) = L$$

Proof

$x \in L(M_{\equiv}) \iff \widehat{\delta}([\epsilon]_{\equiv}, x) \in F \iff [x]_{\equiv} \in F \iff x \in L$

$$L(M_{\equiv}) = L$$

Proof

$x \in L(M_{\equiv}) \iff \widehat{\delta}([\epsilon]_{\equiv}, x) \in F \iff [x]_{\equiv} \in F \iff x \in L$

Corollary

if *L* admits Myhill–Nerode relation then *L* is regular

two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill–Nerode relations for L
- ▶ $\approx \mapsto M_{\approx}$ from Myhill–Nerode relations for *L* to DFAs for *L*

are each others inverse (up to isomorphism of automata)

•

two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill–Nerode relations for L
- ▶ $\approx \mapsto M_{\approx}$ from Myhill–Nerode relations for *L* to DFAs for *L*

are each others **inverse** (up to isomorphism of automata):

 \equiv_{D} for every DFA **D** without inaccessible states

two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill–Nerode relations for L
- ▶ $\approx \mapsto M_{\approx}$ from Myhill–Nerode relations for *L* to DFAs for *L*

are each others **inverse** (up to isomorphism of automata):

• $M_{(\equiv_D)}$ for every DFA **D** without inaccessible states

- $D \mapsto \equiv_D$ from DFAs for L to Myhill–Nerode relations for L
- ▶ $\approx \mapsto M_{\approx}$ from Myhill–Nerode relations for *L* to DFAs for *L*

are each others **inverse** (up to isomorphism of automata):

• $M_{(\equiv_{D})} \simeq D$ for every DFA D without inaccessible states

- $D \mapsto \equiv_D$ from DFAs for L to Myhill–Nerode relations for L
- ▶ $\approx \mapsto M_{\approx}$ from Myhill–Nerode relations for *L* to DFAs for *L*

are each others **inverse** (up to isomorphism of automata):

- $M_{(\equiv_D)} \simeq D$ for every DFA D without inaccessible states
- M_{\approx} for every Myhill–Nerode relation \approx

- $D \mapsto \equiv_D$ from DFAs for L to Myhill–Nerode relations for L
- ▶ $\approx \mapsto M_{\approx}$ from Myhill–Nerode relations for *L* to DFAs for *L*

are each others **inverse** (up to isomorphism of automata):

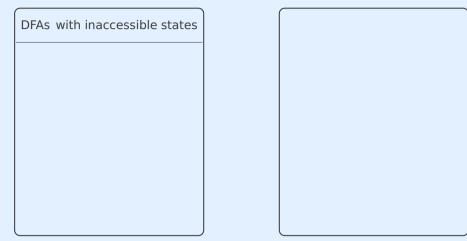
- $M_{(\equiv_D)} \simeq D$ for every DFA D without inaccessible states
- ▶ $\equiv_{(M_{\approx})}$ for every Myhill–Nerode relation \approx

- $D \mapsto \equiv_D$ from DFAs for L to Myhill–Nerode relations for L
- ▶ $\approx \mapsto M_{\approx}$ from Myhill–Nerode relations for *L* to DFAs for *L*

are each others **inverse** (up to isomorphism of automata):

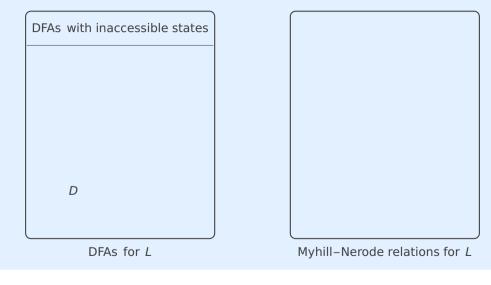
- $M_{(\equiv_D)} \simeq D$ for every DFA D without inaccessible states
- ▶ $\equiv_{(M_{\approx})} = \approx$ for every Myhill–Nerode relation \approx

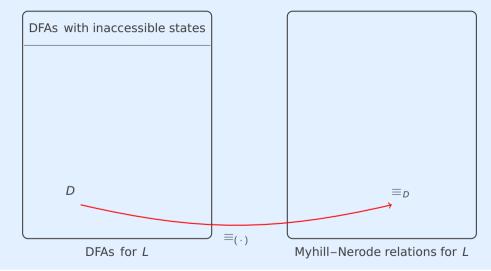
Myhill–Nerode relations for L

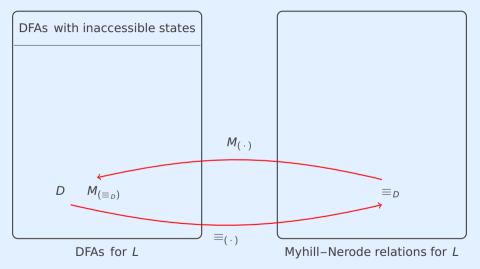


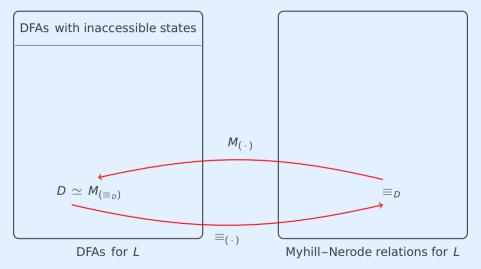
DFAs for L

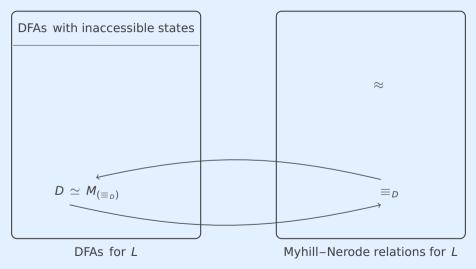
Myhill–Nerode relations for L

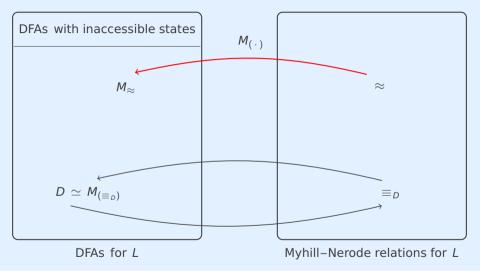


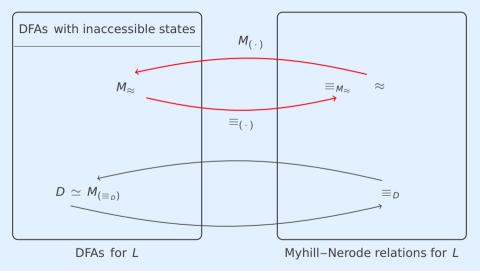




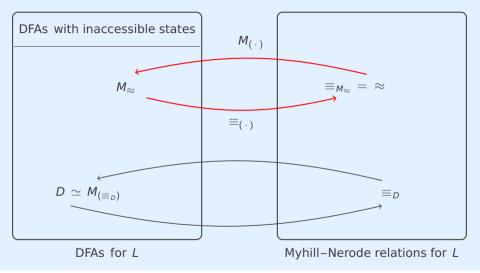








_A_M_ 30/36



for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff$$
 for all $z \in \Sigma^*$ $(xz \in L \iff yz \in L)$

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff$$
 for all $z \in \Sigma^*$ $(xz \in L \iff yz \in L)$

Lemma

for any set $L \subseteq \Sigma^* \equiv_L$ is coarsest right congruent refinement of L

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff$$
 for all $z \in \Sigma^*$ $(xz \in L \iff yz \in L)$

Lemma

for any set $L \subseteq \Sigma^* \equiv_L$ is **coarsest** right congruent refinement of *L*:

if \sim is right congruent equivalence relation refining *L* then

for all
$$x, y \in \Sigma^*$$
 $x \sim y \implies x \equiv_L y$

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \quad \Longleftrightarrow \quad \text{for all } z \in \Sigma^* \quad (xz \in L \iff yz \in L)$$

Lemma

for any set $L \subseteq \Sigma^* \equiv_L$ is **coarsest** right congruent refinement of *L*:

if \sim is right congruent equivalence relation refining *L* then

for all
$$x, y \in \Sigma^*$$
 $x \sim y \implies x \equiv_L y$

\equiv_L has fewest equivalence classes

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill–Nerode relation

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill–Nerode relation
- $\blacktriangleright \equiv_L$ is of finite index

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill–Nerode relation
- $\blacktriangleright \equiv_L$ is of finite index

Corollary

for every regular set $L = M_{(\equiv_L)}$ is minimum-state DFA for L

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill–Nerode relation
- $\blacktriangleright \equiv_L$ is of finite index

Corollary

for every regular set $L = M_{(\equiv_L)}$ is minimum-state DFA for L

Theorem

for every DFA M $M/\approx \simeq M_{(\equiv_L)}$

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill–Nerode relation
- $\blacktriangleright \equiv_L$ is of finite index

Corollary

for every regular set $L = M_{(\equiv_L)}$ is minimum-state DFA for L

Theorem

for every DFA M $M/\approx \simeq M_{(\equiv_L)}$

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill–Nerode relation
- $\blacktriangleright \equiv_L$ is of finite index

Corollary

for every regular set $L = M_{(\equiv_L)}$ is minimum-state DFA for L

Theorem

for every DFA M $M/\approx \simeq M_{(\equiv_L)}$

1 $A = \{a^n b^n \mid n \ge 0\}$ is not regular

1 $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes

1 $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j$$

1 $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j \ (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

• $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

2 $B = \{a^{2^n} \mid n \ge 0\}$ is not regular

because \equiv_B has infinitely many equivalence classes

• $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

2 $B = \{a^{2^n} \mid n \ge 0\}$ is not regular

because \equiv_B has infinitely many equivalence classes:

$$i < j \implies a^{2'} \not\equiv_B a^{2'}$$

• $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j \ (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

2 $B = \{a^{2^n} \mid n \ge 0\}$ is not regular

because \equiv_B has infinitely many equivalence classes:

$$i < j \implies a^{2'} \not\equiv_B a^{2'} (a^{2'}a^{2'} = a^{2^{i+1}} \in B \text{ and } a^{2'}a^{2'} \notin B)$$

• $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j \ (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

2 $B = \{a^{2^n} \mid n \ge 0\}$ is not regular

because \equiv_B has infinitely many equivalence classes:

$$i < j \implies a^{2'} \not\equiv_B a^{2'} (a^{2'}a^{2'} = a^{2^{i+1}} \in B \text{ and } a^{2'}a^{2'} \notin B)$$

3 $C = \{a^{n!} \mid n \ge 0\}$ is not regular

because \equiv_{C} has infinitely many equivalence classes

• $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j \ (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

2 $B = \{a^{2^n} \mid n \ge 0\}$ is not regular

because \equiv_B has infinitely many equivalence classes:

$$i < j \implies a^{2'} \not\equiv_B a^{2'} (a^{2'}a^{2'} = a^{2^{i+1}} \in B \text{ and } a^{2'}a^{2'} \notin B)$$

3 $C = \{a^{n!} \mid n \ge 0\}$ is not regular

because \equiv_C has infinitely many equivalence classes:

$$i < j \implies a^{i!} \not\equiv_C a^{j!}$$

1 $A = \{a^n b^n \mid n \ge 0\}$ is not regular

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

2 $B = \{a^{2^n} \mid n \ge 0\}$ is not regular

because \equiv_B has infinitely many equivalence classes:

$$i < j \implies a^{2'} \not\equiv_B a^{2'} (a^{2'}a^{2'} = a^{2^{i+1}} \in B \text{ and } a^{2'}a^{2'} \notin B)$$

3 $C = \{a^{n!} \mid n \ge 0\}$ is not regular

because \equiv_C has infinitely many equivalence classes:

$$i < j \implies a^{i!} \not\equiv_C a^{j!} (a^{i!}a^{i!i} = a^{(i+1)!} \in C \text{ and } a^{j!}a^{i!i} \notin C)$$

• $D = \{a^p \mid p \text{ is prime}\}$ is not regular

because \equiv_D has infinitely many equivalence classes:

```
i < j and i, j are primes \implies a^i \not\equiv_D a^j
```

 $D = \{ a^p \mid p \text{ is prime} \} \text{ is not regular}$

because \equiv_D has infinitely many equivalence classes:

```
i < j and i, j are primes \implies a^i \not\equiv_D a^j
```

```
• suppose a^i \equiv_D a^j and let k = j - i
```

 $D = \{ a^p \mid p \text{ is prime} \} \text{ is not regular}$

because \equiv_D has infinitely many equivalence classes:

```
i < j and i, j are primes \implies a^i \not\equiv_D a^j
```

• suppose
$$a^i \equiv_D a^j$$
 and let $k = j - i$

$$\triangleright \ a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k$$

• $D = \{a^p \mid p \text{ is prime}\}$ is not regular

because \equiv_D has infinitely many equivalence classes:

i < j and i, j are primes $\implies a^i \not\equiv_D a^j$

• suppose
$$a^i \equiv_D a^j$$
 and let $k = j - i$

$$\blacktriangleright a^{i} \equiv_{D} a^{j} = a^{i}a^{k} \equiv_{D} a^{j}a^{k} \equiv_{D} a^{j}a^{k}a^{k} = a^{j}a^{2k}$$

 $D = \{ a^p \mid p \text{ is prime} \} \text{ is not regular}$

because \equiv_D has infinitely many equivalence classes:

i < j and i, j are primes $\implies a^i \not\equiv_D a^j$

• suppose
$$a^i \equiv_D a^j$$
 and let $k = j - i$

• $D = \{a^p \mid p \text{ is prime}\}$ is not regular

because \equiv_D has infinitely many equivalence classes:

i < j and i, j are primes $\implies a^i \not\equiv_D a^j$

• suppose
$$a^i \equiv_D a^j$$
 and let $k = j - i$

$$\blacktriangleright a^{i} \equiv_{D} a^{j} = a^{i}a^{k} \equiv_{D} a^{j}a^{k} \equiv_{D} a^{j}a^{k}a^{k} = a^{j}a^{2k} \equiv_{D} \cdots \equiv_{D} a^{j}a^{jk} = a^{j(k+1)}a^{jk}$$

▶ $a^i \in D$ and $a^{j(k+1)} \notin D$

• $D = \{a^p \mid p \text{ is prime}\}$ is not regular

because \equiv_D has infinitely many equivalence classes:

i < j and i, j are primes $\implies a^i \not\equiv_D a^j$

• suppose
$$a^i \equiv_D a^j$$
 and let $k = j - i$

 $\bullet \ a^{i} \equiv_{D} a^{j} = a^{i}a^{k} \equiv_{D} a^{j}a^{k} \equiv_{D} a^{j}a^{k}a^{k} = a^{j}a^{2k} \equiv_{D} \cdots \equiv_{D} a^{j}a^{jk} = a^{j(k+1)}$

- ▶ $a^i \in D$ and $a^{j(k+1)} \notin D$
- $\blacktriangleright \equiv_D$ does not refine D 4

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

Kozen

► Lectures 13-16

Lectures 13–16

Important Concepts coarse Myhill–Nerode relation right congruence finite index refinement (accepting) run

	Lectures	13-16
--	----------	-------

Important Concepts			
► coarse	Myhill–Nerode relation	right congruence	
finite index	 refinement 	 (accepting) run 	

homework for November 8