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Definitions

DFA M = (Q,Σ, δ, s, F)

▶ state p is inaccessible if δ̂(s, x) ̸= p for all x ∈ Σ∗

▶ states p and q are indistinguishable (p ≈ q) if δ̂(p, x) ∈ F ⇐⇒ δ̂(q, x) ∈ F for all x ∈ Σ∗

Minimization Algorithm

DFA M = (Q,Σ, δ, s, F)

1 remove inaccessible states

2 determine which states are indistinguishable by marking algorithm

3 collapse indistinguishable states
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Marking Algorithm

given DFA M = (Q,Σ, δ, s, F) without inaccessible states

1 tabulate all unordered pairs {p,q} with p, q ∈ Q, initially unmarked

2 mark {p,q} if p ∈ F and q /∈ F or p /∈ F and q ∈ F

3 repeat until no change: mark {p,q} if {δ(p, a), δ(q, a)} is marked for some a ∈ Σ

Lemmata

▶ p ≈ q ⇐⇒ {p,q} is unmarked

▶ ≈ is equivalence relation on Q

Notation

[p]≈ = {q ∈ Q | p ≈ q} denotes equivalence class of p
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Definition (Collapsing Indistinguishable States)

DFA M/≈ is defined as (Q′,Σ, δ′, s′, F′) with

▶ Q′ = {[p]≈ | p ∈ Q}
▶ δ′([p]≈, a) = [δ(p, a)]≈ well-defined: p ≈ q =⇒ δ(p, a) ≈ δ(q, a)

▶ s′ = [s]≈

▶ F′ = {[p]≈ | p ∈ F}

Theorem

L(M/≈) = L(M)

Question

is M/≈ minimum-state DFA for L(M) ?
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Definitions

▶ first-order variables V1 = {x, y, . . .} ranging over natural numbers

▶ second-order variables V2 = {X, Y, . . .} ranging over finite sets of natural numbers

▶ formulas of weak monadic second-order logic (WMSO)

φ ::= ⊥ | x < y | X(x) | ¬φ | φ1 ∨ φ2 | ∃ x. φ | ∃ X. φ

with x, y ∈ V1 and X ∈ V2

Abbreviations

φ ∧ ψ := ¬(¬φ ∨ ¬ψ) φ→ ψ := ¬φ ∨ ψ

∀ x. φ := ¬∃ x.¬φ ∀ X. φ := ¬∃ X.¬φ
x ⩽ y := ¬(y < x) x = y := x ⩽ y ∧ y ⩽ x

⊤ := ¬⊥ x = 0 := ¬∃ y. y < x

X(0) := ∃ x.X(x) ∧ x = 0 z = y+ 1 := y < z ∧ ¬∃ x. y < x ∧ x < z
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Remarks

▶ X(x) represents x ∈ X

▶ MSO is WMSO without restriction to finite sets

Definitions

▶ assignment α is mapping from variables x ∈ V1 to N and X ∈ V2 to finite subsets of N

▶ assignment α satisfies formula φ (α ⊨ φ):

α ⊭ ⊥
α ⊨ x < y ⇐⇒ α(x) < α(y)

α ⊨ X(x) ⇐⇒ α(x) ∈ α(X)

α ⊨ ¬φ ⇐⇒ α ⊭ φ

α ⊨ φ1 ∨ φ2 ⇐⇒ α ⊨ φ1 or α ⊨ φ2

α ⊨ ∃ x. φ ⇐⇒ α [x 7→ n] ⊨ φ for some n ∈ N

α ⊨ ∃ X. φ ⇐⇒ α [X 7→ N] ⊨ φ for some finite subset N ⊂ N
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Definitions

▶ formula φ is satisfiable if α ⊨ φ for some assignment α

▶ formula φ is valid if α ⊨ φ for all assignments α

▶ model of formula φ is assignment α such that α ⊨ φ

▶ size of model α is smallest n such that

1 α(x) < n for x ∈ V1

2 α(X) ⊆ {0, . . . , n− 1} for X ∈ V2

Definition

given alphabet Σ and string x = a0 · · · an−1 ∈ Σ∗

▶ second-order variables V2 = {Pa | a ∈ Σ}
▶ αx(Pa) = { i < n | xi = a}
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Notation

x for αx

Definitions

▶ given alphabet Σ and WMSO formula φ with free variables (exclusively) in {Pa | a ∈ Σ}

L(φ) = {x ∈ Σ∗ | x ⊨ φ}

▶ set A ⊆ Σ∗ is WMSO definable if A = L(φ) for some WMSO formula φ

Theorem

set A ⊆ Σ∗ is regular if and only if A is WMSO definable
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Automata

▶ (deterministic, non-deterministic, alternating) finite automata

▶ regular expressions

▶ (alternating) Büchi automata

Logic

▶ (weak) monadic second-order logic

▶ Presburger arithmetic

▶ linear-time temporal logic
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Theorem

set A ⊆ Σ∗ is regular if and only if A is WMSO definable

Proof ( ⇐= )

next week

Definitions

DFA M = (Q,Σ, δ, s, F)

▶ run of M on input x = a1 · · · an ∈ Σ∗ is sequence q0, . . . , qn of states such that

s = q0
a1−−→ q1

a2−−→ · · · an−−→ qn

▶ run q0, . . . , qn is accepting if qn ∈ F
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Proof ( =⇒ )

▶ DFA M = (Q,Σ, δ, s, F) with Q = {q1, . . . , qm}
▶ second-order variables Xq1 , . . . , Xqm to encode accepting runs of M as WMSO formula φM :

φM := ∃ Xq1 . · · · ∃ Xqm .∃ ℓ.
∧
a∈Σ

¬Pa(ℓ) ∧
(
∀ x.

∧
a∈Σ

¬Pa(x) → ℓ ⩽ x

)
∧ ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4

ψ1 := Xs(0)

ψ2 := ∀ x. x ⩽ ℓ →
( ∨

q∈Q

Xq(x)

)
∧

∧
p ̸=q

¬
(
Xp(x) ∧ Xq(x)

)
ψ3 := ∀ x. x < ℓ →

∨
a∈Σ, q∈Q

Xq(x) ∧ Pa(x) ∧ ∃ y. y = x+ 1 ∧ Xδ(q,a)(y)

ψ4 :=
∨
q∈F

Xq(ℓ)
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Remarks

▶ Xq = { i | δ̂(s, a1 · · · ai) = q} for input a1 · · · an ∈ Σ∗

▶ ℓ denotes length n of input

Example

▶ run s
a−→ p

a−→ q
b−→ p

▶ assignment

Pa = {0,1} Pb = {2} Xs = {0} Xp = {1,3} Xq = {2}

Proof ( =⇒ , cont’d)

▶ L(φM) = L(M)
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Example

▶ DFA M

1 2

a

b
ab

▶ WMSO formula φM

∃ X1.∃ X2.∃ ℓ.¬Pa(ℓ) ∧ ¬Pb(ℓ) ∧
(
∀ x.¬Pa(x) ∧ ¬Pb(x) → ℓ ⩽ x

)
∧ ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4

with

ψ1 = X1(0) ψ2 = ∀ x. x ⩽ ℓ →
(
X1(x) ∨ X2(x)

)
∧ ¬

(
X1(x) ∧ X2(x)

)
ψ3 = ∀ x. x < ℓ →

(
X1(x) ∧ Pa(x) ∧ ∃ y. y = x+ 1 ∧ X1(y)

)
∨(

X1(x) ∧ Pb(x) ∧ ∃ y. y = x+ 1 ∧ X2(y)
)
∨(

X2(x) ∧ Pa(x) ∧ ∃ y. y = x+ 1 ∧ X2(y)
)
∨(

X2(x) ∧ Pb(x) ∧ ∃ y. y = x+ 1 ∧ X2(y)
)

ψ4 = X2(ℓ)

WS 2024 Automata and Logic lecture 5 2. WMSO Definability 15/32

Outline

1. Summary of Previous Lecture

2. WMSO Definability

3. Intermezzo

4. Myhill–Nerode Relations

5. Further Reading

WS 2024 Automata and Logic lecture 5 3. Intermezzo 16/32



with session ID 8020 8256

Question

Consider the language encoded by the following WMSO formula over Σ = {a,b}:

φ = ∃ ℓ.¬Pa(ℓ) ∧ ¬Pb(ℓ) ∧
(
∀ x.¬Pa(x) ∧ ¬Pb(x) → ℓ ⩽ x

)
∧

(
∀ x. Pb(x) → x = 0 ∨ ℓ = x+ 1

)
Which of the following statements hold ?

A L(φ) = L(N) for the NFA N: 1 2 3

a

a b b

B L(φ) = Σ∗

C L(φ) = L(a∗ + ba∗ + a∗b+ ba∗b)

D L(φ) = L(N′) for the NFAϵ N′ : 1 2 3

a

ϵ b ϵ b
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Definition

equivalence relation ≡M on Σ∗ for DFA M = (Q,Σ, δ, s, F) is defined as follows:

x ≡M y ⇐⇒ δ̂(s, x) = δ̂(s, y)

Lemmata

▶ ≡M is right congruent: for all x, y ∈ Σ∗ x ≡M y =⇒ for all a ∈ Σ xa ≡M ya

▶ ≡M refines L(M): for all x, y ∈ Σ∗ x ≡M y =⇒ either x, y ∈ L(M) or x, y /∈ L(M)

▶ ≡M is of finite index: ≡M has finitely many equivalence classes

Definition

Myhill–Nerode relation for L ⊆ Σ∗ is right congruent equivalence relation of finite index on Σ∗

that refines L
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Example

M 1

2

3

4

5

6

a

b

a

b

a

b

ab

ab

ab

≡M ϵ

a

b

aa
bb

ab
ba

baa
aabba
bbba
· · ·
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Example

M 1

2

3

6

a

b

ab

ab

ab
ab

≡M ϵ

a

b

aa
bb

ab
ba

baa
aabba
bbba
· · ·
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Example

M 1 2 6
ab ab ab

ab

≡M ϵ

a

b

aa
bb

ab
ba

baa
aabba
bbba
· · ·
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Definition

given Myhill–Nerode relation ≡ for set L ⊆ Σ∗ DFA M≡ is defined as (Q,Σ, δ, s, F) with

▶ Q = {[x ]≡ | x ∈ Σ∗}
▶ δ([x ]≡, a) = [xa]≡ well-defined: x ≡ y =⇒ xa ≡ ya

▶ s = [ϵ]≡

▶ F = {[x ]≡ | x ∈ L}

Lemma

1 δ̂([x ]≡, y) = [xy ]≡ for all y ∈ Σ∗

2 x ∈ L ⇐⇒ [x ]≡ ∈ F

for all x ∈ Σ∗
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Theorem

L(M≡) = L

Proof

x ∈ L(M≡) ⇐⇒ δ̂([ϵ]≡, x) ∈ F ⇐⇒ [x ]≡ ∈ F ⇐⇒ x ∈ L

Corollary

if L admits Myhill–Nerode relation then L is regular
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Theorem

two mappings (for L ⊆ Σ∗)

▶ D 7→ ≡D from DFAs for L to Myhill–Nerode relations for L

▶ ≈ 7→ M≈ from Myhill–Nerode relations for L to DFAs for L

are each others inverse (up to isomorphism of automata):

▶ M(≡D) ≃ D for every DFA D without inaccessible states

▶ ≡(M≈) = ≈ for every Myhill–Nerode relation ≈
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for regular L ⊆ Σ∗

DFAs with inaccessible states

DFAs for L Myhill–Nerode relations for L

D ≃ M(≡D) ≡D

≡M≈ = ≈M≈

M( · )

≡( · )
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Definition

for any set L ⊆ Σ∗ equivalence relation ≡L on Σ∗ is defined as follows:

x ≡L y ⇐⇒ for all z ∈ Σ∗ (
xz ∈ L ⇐⇒ yz ∈ L

)

Lemma

for any set L ⊆ Σ∗ ≡L is coarsest right congruent refinement of L:

if ∼ is right congruent equivalence relation refining L then

for all x, y ∈ Σ∗ x ∼ y =⇒ x ≡L y

≡L has fewest equivalence classes
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Theorem

following statements are equivalent for any set L ⊆ Σ∗ :

▶ L is regular

▶ L admits Myhill–Nerode relation

▶ ≡L is of finite index

Corollary

for every regular set L M(≡ L) is minimum-state DFA for L

Theorem

for every DFA M M/≈ ≃ M(≡ L)
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Examples

1 A = {anbn | n ⩾ 0} is not regular

because ≡A has infinitely many equivalence classes:

i ̸= j =⇒ a i ̸≡A a j
(
a ib i ∈ A and a jb i /∈ A

)
2 B = {a2n | n ⩾ 0} is not regular

because ≡B has infinitely many equivalence classes:

i < j =⇒ a2 i ̸≡B a2 j (
a2 i

a2 i

= a2 i+1 ∈ B and a2 j

a2 i

/∈ B
)

3 C = {an! | n ⩾ 0} is not regular

because ≡C has infinitely many equivalence classes:

i < j =⇒ a i ! ̸≡C a j !
(
a i !a i ! i = a(i+1)! ∈ C and a j !a i ! i /∈ C

)
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Example

4 D = {ap | p is prime} is not regular

because ≡D has infinitely many equivalence classes:

i < j and i, j are primes =⇒ a i ̸≡D a j

▶ suppose a i ≡D a j and let k = j− i

▶ a i ≡D a j = a iak ≡D a jak ≡D a jakak = a ja2k ≡D · · · ≡D a ja j k = a j(k+1)

▶ a i ∈ D and a j(k+1) /∈ D

▶ ≡D does not refine D �
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Kozen

▶ Lectures 13 – 16

Important Concepts

▶ coarse

▶ finite index

▶ Myhill–Nerode relation

▶ refinement

▶ right congruence

▶ (accepting) run

homework for November 8
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