

WS 2024 lecture 5

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

universitat WS 2024 Automata and Logic lecture 5

Definitions

- DFA $M = (Q, \Sigma, \delta, s, F)$
- state p is inaccessible if $\widehat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- ► states p and q are indistinguishable $(p \approx q)$ if $\widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$ for all $x \in \Sigma^*$

Minimization Algorithm

DFA $M = (Q, \Sigma, \delta, s, F)$

- ① remove inaccessible states
- 2 determine which states are indistinguishable by marking algorithm
- ③ collapse indistinguishable states

A.M

Marking Algorithm

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- (1) tabulate all unordered pairs $\{p,q\}$ with $p,q\in Q$, initially unmarked
- (2) mark $\{p,q\}$ if $p \in F$ and $q \notin F$ or $p \notin F$ and $q \in F$
- (3) repeat until no change: mark $\{p,q\}$ if $\{\delta(p,a), \delta(q,a)\}$ is marked for some $a \in \Sigma$

Lemmata

- ▶ $p \approx q \iff \{p,q\}$ is unmarked
- \blacktriangleright \approx is equivalence relation on Q

Notation

$[p]_{\approx} = \{q \in Q \mid p \approx q\}$ denotes equivalence class of p

Definition (Collapsing Indistinguishable States)

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

- ► $Q' = \{[p]_{\approx} \mid p \in Q\}$
- $\delta'([p]_{\approx}, a) = [\delta(p, a)]_{\approx}$ well-defined: $p \approx q \implies \delta(p, a) \approx \delta(q, a)$
- ► $s' = [s]_{\approx}$
- ▶ $F' = \{[p]_{\approx} \mid p \in F\}$

Theorem

 $L(M/\approx) = L(M)$

Question	
is M/\approx minimum-state DFA for $L(M)$?	
universität Innsbruck WS 2024 Automata and Logic lecture 5 1. Summary of Previous Lecture	A.M

Definitions

- first-order variables $V_1 = \{x, y, ...\}$ ranging over natural numbers
- second-order variables $V_2 = \{X, Y, ...\}$ ranging over finite sets of natural numbers
- formulas of weak monadic second-order logic (WMSO)

 $\varphi ::= \bot \mid x < y \mid X(x) \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x. \varphi \mid \exists X. \varphi$

with $x, y \in V_1$ and $X \in V_2$

Abbreviations	
$\varphi \wedge \psi := \neg (\neg \varphi \vee \neg \psi)$	$\varphi \to \psi \ := \ \neg \varphi \lor \psi$
$\forall \mathbf{x}. \varphi := \neg \exists \mathbf{x}. \neg \varphi$	$\forall X. \varphi := \neg \exists X. \neg \varphi$
$x \leqslant y := \neg(y < x)$	$x = y := x \leqslant y \land y \leqslant x$
$\top := \neg \bot$	$x = 0 := \neg \exists y. y < x$
$X(0) := \exists x. X(x) \land x = 0$	$z = y + 1 := y < z \land \neg \exists x. y < x \land x < z$
	_ A.M
universität WS 2024 Automata and Logic lecture 5 innsbruck	1. Summary of Previous Lecture 6/32

Remarks

- X(x) represents $x \in X$
- MSO is WMSO without restriction to finite sets

Definitions

- ▶ assignment α is mapping from variables $x \in V_1$ to \mathbb{N} and $X \in V_2$ to finite subsets of \mathbb{N}
- assignment α satisfies formula φ ($\alpha \models \varphi$):

Definitions

- \blacktriangleright formula φ is satisfiable if $\alpha \vDash \varphi$ for some assignment α
- formula φ is valid if $\alpha \vDash \varphi$ for all assignments α
- model of formula φ is assignment α such that $\alpha \models \varphi$
- size of model α is smallest *n* such that
 - (1) $\alpha(x) < n$ for $x \in V_1$
 - ② $\alpha(X) \subseteq \{0, ..., n-1\}$ for $X \in V_2$

Definition

AM_

given alphabet Σ and string $x = a_0 \cdots a_{n-1} \in \Sigma^*$

- second-order variables $V_2 = \{ P_a \mid a \in \Sigma \}$
- $\bullet \ \alpha_{\mathbf{x}}(P_{\mathbf{a}}) = \{i < n \mid x_i = \mathbf{a}\}$

Notation

x for α_x

Definitions

Theorem

universität

• given alphabet Σ and WMSO formula φ with free variables (exclusively) in $\{P_a \mid a \in \Sigma\}$

 $L(\varphi) = \{ x \in \Sigma^* \mid \underline{x} \vDash \varphi \}$

1. Summary of Previous Lecture

• set $A \subseteq \Sigma^*$ is WMSO definable if $A = L(\varphi)$ for some WMSO formula φ

set $A \subseteq \Sigma^*$ is regular if and only if A is WMSO definable

Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- linear-time temporal logic
- universität Inspruck WS 2024 Automata and Logic lecture 5 1. Summary of Previous Lecture Contents

Outline

1. Summary of Previous Lecture

WS 2024 Automata and Logic lecture 5

2. WMSO Definability

- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

Theorem

set $A \subseteq \Sigma^*$ is regular if and only if A is WMSO definable

Proof (\Leftarrow)

next week

Definitions

DFA $M = (Q, \Sigma, \delta, s, F)$

▶ run of *M* on input $x = a_1 \cdots a_n \in \Sigma^*$ is sequence q_0, \ldots, q_n of states such that

$$s = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n$$

▶ run q_0, \ldots, q_n is accepting if $q_n \in F$

AM_

9/32

AM_

10/32

Proof (\Longrightarrow)

- DFA $M = (Q, \Sigma, \delta, s, F)$ with $Q = \{q_1, \dots, q_m\}$
- second-order variables X_{q_1}, \ldots, X_{q_m} to encode accepting runs of M as WMSO formula φ_M :

$$\begin{split} \varphi_{\mathsf{M}} &:= \exists X_{q_{1}}. \cdots \exists X_{q_{m}}. \exists \ell. \bigwedge_{a \in \Sigma} \neg P_{a}(\ell) \land \left(\forall x. \bigwedge_{a \in \Sigma} \neg P_{a}(x) \to \ell \leqslant x \right) \land \psi_{1} \land \psi_{2} \land \psi_{3} \land \psi_{4} \\ \psi_{1} &:= X_{s}(0) \\ \psi_{2} &:= \forall x. x \leqslant \ell \to \left(\bigvee_{q \in Q} X_{q}(x) \right) \land \bigwedge_{p \neq q} \neg \left(X_{p}(x) \land X_{q}(x) \right) \\ \psi_{3} &:= \forall x. x < \ell \to \bigvee_{a \in \Sigma, q \in Q} X_{q}(x) \land P_{a}(x) \land \exists y. y = x + 1 \land X_{\delta(q,a)}(y) \\ \psi_{4} &:= \bigvee_{q \in F} X_{q}(\ell) \end{split}$$

universität universität universität WS 2024 Automata and Logic lecture 5 2. WMSO Definability

Remarks

- $X_q = \{i \mid \widehat{\delta}(s, a_1 \cdots a_i) = q\}$ for input $a_1 \cdots a_n \in \Sigma^*$
- ℓ denotes length *n* of input

Example

- $\blacktriangleright \text{ run } s \xrightarrow{a} p \xrightarrow{a} q \xrightarrow{b} p$
- assignment

$$P_a = \{0,1\}$$
 $P_b = \{2\}$ $X_s = \{0\}$ $X_p = \{1,3\}$ $X_q = \{2\}$

Proof (\Rightarrow , cont'd)	
► $L(\varphi_M) = L(M)$	
universităt WS 2024 Automata and Logic lecture 5 2. WMSO Definability	A.M 14/32

Example > DFA M $\begin{array}{c} a \\ \hline \\ & & \\ \hline \\ & & \\ \end{array} \end{array}$ > WMSO formula φ_M $\exists X_1. \exists X_2. \exists \ell. \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x. \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$ with $\psi_1 = X_1(0) \qquad \psi_2 = \forall x. x \leqslant \ell \rightarrow (X_1(x) \lor X_2(x)) \land \neg (X_1(x) \land X_2(x))$ $\psi_3 = \forall x. x < \ell \rightarrow (X_1(x) \land P_a(x) \land \exists y. y = x + 1 \land X_1(y)) \lor$ $(X_1(x) \land P_b(x) \land \exists y. y = x + 1 \land X_2(y)) \lor$

$$\begin{aligned} & \left(X_2(x) \land P_a(x) \land \exists y. y = x + 1 \land X_2(y)\right) \lor \\ & \left(X_2(x) \land P_b(x) \land \exists y. y = x + 1 \land X_2(y)\right) \end{aligned}$$

$$\psi_4 = X_2(\ell)$$

A.M_

13/32

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability

3. Intermezzo

- 4. Myhill-Nerode Relations
- 5. Further Reading

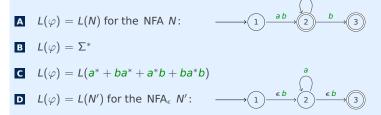
Furticify with session ID 8020 8256

Question

Consider the language encoded by the following WMSO formula over $\Sigma = \{a, b\}$:

$$\varphi = \exists \ell. \neg P_{a}(\ell) \land \neg P_{b}(\ell) \land (\forall x. \neg P_{a}(x) \land \neg P_{b}(x) \rightarrow \ell \leqslant x) \land (\forall x. P_{b}(x) \rightarrow x = 0 \lor \ell = x + 1$$

Which of the following statements hold ?



universität WS 2024 Automata and Logic lecture 5 3. Intermezzo

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo

4. Myhill-Nerode Relations

5. Further Reading

universität universität unspruck
WS 2024 Automata and Logic lecture 5
4. Myhill – Nerode Relations

Definition

equivalence relation \equiv_{M} on Σ^{*} for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_{M} y \iff \widehat{\delta}(s,x) = \widehat{\delta}(s,y)$$

Lemmata

- ▶ \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ for all $a \in \Sigma$ $xa \equiv_M ya$
- $\blacktriangleright \equiv_M$ refines L(M):
- for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ either $x, y \in L(M)$ or $x, y \notin L(M)$
- ▶ \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

Definition

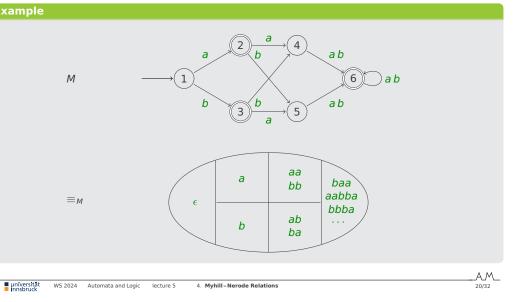
Myhill–Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines *L*

universität WS 2024 Automata and Logic lecture 5 4. Myhill – Nerode Relations

```
A.M_
19/32
```

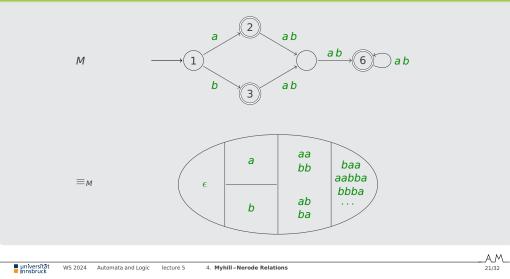
AМ

17/32

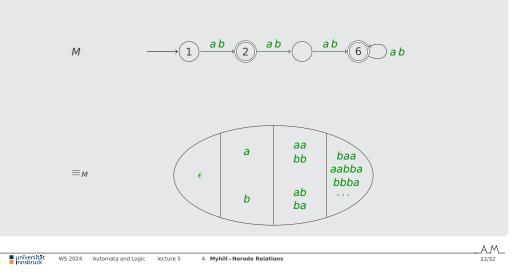


AM_

18/32



Example



Definition

given Myhill–Nerode relation \equiv for set $L \subseteq \Sigma^*$ DFA $M_{=}$ is defined as $(Q, \Sigma, \delta, s, F)$ with

- ► $Q = \{ [x]_{\equiv} | x \in \Sigma^* \}$
- ► $\delta([x]_{\equiv}, a) = [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$
- $s = [\epsilon]_{\equiv}$
- $\blacktriangleright F = \{ [x]_{\equiv} \mid x \in L \}$

Lemma

 $\widehat{\delta}([x]_{\pm}, y) = [xy]_{\pm} \text{ for all } y \in \Sigma^*$

 $2 x \in L \quad \iff \quad [x]_{=} \in F$

for all $x \in \Sigma^*$

Theorem

Proof

$L(M_{=}) = L$

$x \in L(M_{\equiv}) \iff \widehat{\delta}([\epsilon]_{\equiv}, x) \in F \iff [x]_{\equiv} \in F \iff x \in L$

Corollary

M

23/32

if L admits Myhill–Nerode relation then L is regular

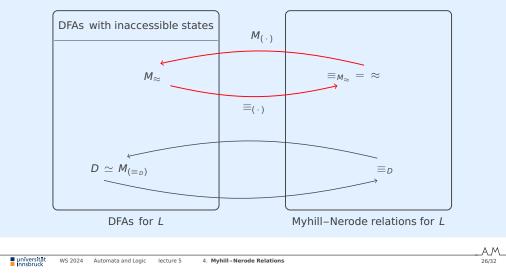
Theorem

two mappings (for $L \subseteq \Sigma^*$)

- \blacktriangleright $D \mapsto \equiv_D$ from DFAs for L to Myhill–Nerode relations for L
- from Myhill–Nerode relations for L to DFAs for L $\blacktriangleright \approx \mapsto M_{\approx}$
- are each others **inverse** (up to isomorphism of automata):
- $M_{(\equiv_p)} \simeq D$ for every DFA D without inaccessible states
- ▶ $\equiv_{(M_{\approx})}$ = ≈ for every Myhill–Nerode relation ≈

WS 2024 Automata and Logic lecture 5

for regular $L \subseteq \Sigma^*$



Definition

universität

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

 $x \equiv_L y \iff$ for all $z \in \Sigma^*$ $(xz \in L \iff yz \in L)$

4. Myhill-Nerode Relations

Theorem

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- ► *L* is regular
- L admits Myhill–Nerode relation
- $\blacktriangleright \equiv_L$ is of finite index

Lemma

universität

for any set $L \subseteq \Sigma^* \equiv_L$ is **coarsest** right congruent refinement of *L*:

if \sim is right congruent equivalence relation refining *L* then

WS 2024 Automata and Logic lecture 5

for all $x, y \in \Sigma^*$ $x \sim y \implies x \equiv_l y$

\equiv_L has fewest equivalence classes

4. Myhill-Nerode Relations

A.M_ 27/32

A.M

25/32

Corollary

for every regular set $L = M_{(\equiv_L)}$ is minimum-state DFA for L

Theorem

for every DFA M $M/\approx \simeq M_{(\equiv_L)}$

Examples

 $\mathbf{0} \ A = \{a^n b^n \mid n \ge 0\} \text{ is not regular }$

because \equiv_A has infinitely many equivalence classes:

$$i \neq j \implies a^i \not\equiv_A a^j (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

 $B = \{ a^{2^n} \mid n \ge 0 \} \text{ is not regular }$

because \equiv_B has infinitely many equivalence classes:

$$i < j \implies a^{2^i} \not\equiv_B a^{2^j} (a^{2^i}a^{2^i} = a^{2^{i+1}} \in B \text{ and } a^{2^i}a^{2^i} \notin B)$$

3 $\quad C = \{a^{n!} \mid n \ge 0\} \text{ is not regular}$

because \equiv_{c} has infinitely many equivalence classes:

$$i < j \implies a^{i!} \not\equiv_C a^{j!} (a^{i!}a^{i!i} = a^{(i+1)!} \in C \text{ and } a^{j!}a^{i!i} \notin C)$$

universität WS 2024 Automata and Logic lecture 5 4. Myhill – Nerode Relations innsbruck

Example

• $D = \{a^p \mid p \text{ is prime}\}\$ is not regular

because \equiv_D has infinitely many equivalence classes:

$$i < j$$
 and i, j are primes $\implies a^i \not\equiv_D a^j$

▶ suppose $a^i \equiv_D a^j$ and let k = j - i

$$\blacktriangleright a^{i} \equiv_{D} a^{j} = a^{i}a^{k} \equiv_{D} a^{j}a^{k} \equiv_{D} a^{j}a^{k}a^{k} = a^{j}a^{2k} \equiv_{D} \cdots \equiv_{D} a^{j}a^{jk} = a^{j(k+1)}$$

▶ $a^i \in D$ and $a^{j(k+1)} \notin D$

▶ \equiv_D does not refine D 4

universität innsbruck	WS 2024	Automata and Logic	lecture 5	4. Myhill-Nerode Relations	

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo
- 4. Myhill-Nerode Relations
- 5. Further Reading

Kozen

► Lectures 13-16

Important Concepts		
► coarse	Myhill–Nerode relation	right congruence
finite index	 refinement 	 (accepting) run

homework for November 8

AM_

29/32

A.M.