

WS 2024 lecture 6

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows: $x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$

Lemmata

- ► \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ for all $a \in \Sigma$ $xa \equiv_M ya$
- ► \equiv_M refines L(M): for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ either $x, y \in L(M)$ or $x, y \notin L(M)$
- ▶ \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

Definition

Myhill–Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff$$
 for all $z \in \Sigma^*$ $(xz \in L \iff yz \in L)$

Theorem

1 for every regular set $L \subseteq \Sigma^*$

there exists one-to-one correspondence (up to isomorphism of automata) between

- DFAs for L with input alphabet Σ and without inaccessible states
- Myhill–Nerode relations for L
- **2** for every set $L \subseteq \Sigma^*$

L is regular \iff *L* admits Myhill–Nerode relation $\iff \equiv_L$ is of finite index

8 regular sets are WMSO definable

Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. WMSO Definability

- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

• $FV(\varphi)$ denotes list of free variables in φ

 FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones

 FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones

Example

 $\varphi = \exists X.X(x) \rightarrow \exists y.x < y \land Y(y)$

 FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones

Example

$$\varphi = \exists X.X(x) \rightarrow \exists y.x < y \land Y(y)$$

 $\mathsf{FV}(\varphi) = (\mathsf{X},\mathsf{Y})$

- FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones
- ► assignment for φ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, I_1, \ldots, I_n)$ such that i_1, \ldots, i_m are elements of \mathbb{N} and I_1, \ldots, I_n are finite subsets of \mathbb{N}

Example

$$\varphi = \exists X.X(x) \rightarrow \exists y.x < y \land Y(y)$$

$$\mathsf{FV}(\varphi) = (\mathbf{X}, \mathsf{Y})$$

- FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones
- ► assignment for φ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, I_1, \ldots, I_n)$ such that i_1, \ldots, i_m are elements of \mathbb{N} and I_1, \ldots, I_n are finite subsets of \mathbb{N}

Example
$$\varphi = \exists X. X(x) \rightarrow \exists y. x < y \land Y(y)$$
 $\mathsf{FV}(\varphi) = (x, Y)$

Notation

$$(i, I)$$
 for $(i_1, ..., i_m, I_1, ..., I_n)$

$$\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

	0	1	2	3	4	5	induced assignment
<i>x</i> ₁	0	0	0	1	0	0	<i>i</i> ₁ = 3
X_1	1	0	1	0	1	0	
<i>X</i> ₂	0	0	0	0	0	0	

universität WS 2024 Automata and Logic lecture 6 2. WMSO Definability
Innsbruck

	0	1	2	3	4	5	induced assignmen
<i>x</i> ₁	0	0	0	1	0	0	<i>i</i> ₁ = 3
X_1	1	0	1	0	1	0	$I_1 = \{0, 2, 4\}$
X2	0	0	0	0	0	0	

	0	1	2	3	4	5	induced assignment
<i>x</i> ₁	0	0	0	1	0	0	$i_1 = 3$
X_1	1	0	1	0	1	0	$I_1 = \{0, 2, 4\}$
<i>X</i> ₂	0	0	0	0	0	0	$I_2 = \emptyset$

	0	1	2	3	4	5	induced assignment
<i>x</i> ₁	0	0	0	1	0	0	<i>i</i> ₁ = 3
X_1	1	0	1	0	1	0	$I_1 = \{0, 2, 4\}$
<i>X</i> ₂	0	0	0	0	0	0	$I_2 = \emptyset$

Remark

assignments are identified with strings over $\{0,1\}^{m+n}$ (here k = m + n)

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

Remarks

• every *m*-admissible string *x* induces assignment \underline{x}

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

- every *m*-admissible string *x* induces assignment \underline{x}
- every assignment is induced by (not necessarily unique) m-admissible string

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

- every *m*-admissible string *x* induces assignment <u>x</u>
- every assignment is induced by (not necessarily unique) *m*-admissible string: if x is *m*-admissible then $x\mathbf{0}$ is *m*-admissible and $x = x\mathbf{0}$

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

- every *m*-admissible string *x* induces assignment \underline{x}
- every assignment is induced by (not necessarily unique) *m*-admissible string: if x is *m*-admissible then $x\mathbf{0}$ is *m*-admissible and $x = x\mathbf{0}$
- if $x, y \in (\{0, 1\}^{m+n})^*$ induce same assignment then $x = y \mathbf{0} \cdots \mathbf{0}$ or $y = x \mathbf{0} \cdots \mathbf{0}$

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

- every *m*-admissible string *x* induces assignment \underline{x}
- every assignment is induced by (not necessarily unique) *m*-admissible string: if *x* is *m*-admissible then $x\mathbf{0}$ is *m*-admissible and $\underline{x} = \underline{x}\mathbf{0}$
- if $x, y \in (\{0,1\}^{m+n})^*$ induce same assignment then $x = y \mathbf{0} \cdots \mathbf{0}$ or $y = x \mathbf{0} \cdots \mathbf{0}$
- $\epsilon \in (\{0,1\}^{m+n})^*$ is *m*-admissible if and only if m = 0

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

- every *m*-admissible string *x* induces assignment \underline{x}
- every assignment is induced by (not necessarily unique) *m*-admissible string: if *x* is *m*-admissible then $x\mathbf{0}$ is *m*-admissible and $\underline{x} = \underline{x}\mathbf{0}$
- if $x, y \in (\{0,1\}^{m+n})^*$ induce same assignment then $x = y \mathbf{0} \cdots \mathbf{0}$ or $y = x \mathbf{0} \cdots \mathbf{0}$
- $\epsilon \in (\{0,1\}^{m+n})^*$ is *m*-admissible if and only if m = 0
- if $\underline{x} = (i, I)$ then |x| > k for all $k \in \{i_1, \dots, i_m\} \cup I_1 \cup \dots \cup I_n$

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

Remarks

- every *m*-admissible string *x* induces assignment \underline{x}
- every assignment is induced by (not necessarily unique) *m*-admissible string: if *x* is *m*-admissible then $x\mathbf{0}$ is *m*-admissible and $\underline{x} = \underline{x}\mathbf{0}$
- if $x, y \in (\{0,1\}^{m+n})^*$ induce same assignment then $x = y \mathbf{0} \cdots \mathbf{0}$ or $y = x \mathbf{0} \cdots \mathbf{0}$
- $\epsilon \in (\{0,1\}^{m+n})^*$ is *m*-admissible if and only if m = 0
- if $\underline{x} = (i, I)$ then |x| > k for all $k \in \{i_1, \dots, i_m\} \cup I_1 \cup \dots \cup I_n$

Lemma

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability

3. Intermezzo

- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

Furticify with session ID 8020 8256

Question

Consider the following three strings over $\{0,1\}^{1+2}$. Which statements hold ?

	0	1	2		0	1	2		0	1	2	3
<i>x</i> ₁	0	1	0		0	0	0		0	1	0	0
<i>X</i> ₁	1	0	0		1	0	0		1	0	0	0
<i>X</i> ₂	0	1	1		0	1	1		0	1	1	0

- A the first and third string induce the same assignment
- B the second string is 1-admissible
- **C** $X_2(x_1) \rightarrow X_1(x_1)$ is satisfied by the first string's induced assignment
- **D** the third string induces the assignment $i_1 = 1$, $I_1 = \{0\}$, $I_2 = \{1, 2\}$

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo

4. WMSO Definability

- 5. MONA
- 6. Further Reading

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

Proof (construction)

define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

- define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with
- (1) $\Sigma = \{0,1\}^{m+n}$

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

- define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with
- (1) $\Sigma = \{0,1\}^{m+n}$
- 2 $Q = 2^{\{1,...,m\}} \cup \{\bot\}$

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

- define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with
- (1) $\Sigma = \{0, 1\}^{m+n}$
- (2) $Q = 2^{\{1,...,m\}} \cup \{\bot\}$
- 3 $s = \{1, ..., m\}$

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

- define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with
- (1) $\Sigma = \{0, 1\}^{m+n}$
- (2) $Q = 2^{\{1,...,m\}} \cup \{\bot\}$
- 3) $s = \{1, ..., m\}$

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

- define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with
- (1) $\Sigma = \{0, 1\}^{m+n}$
- (2) $Q = 2^{\{1,...,m\}} \cup \{\bot\}$
- 3) $s = \{1, ..., m\}$

$$\begin{array}{ll} \textcircled{4} & F = \{ \varnothing \} \\ \fbox{6} & \delta(q,a) = \begin{cases} q-l & \text{if } q \subseteq \{1,\ldots,m\} \text{ and } l \subseteq q \\ \bot & \text{if } q \subseteq \{1,\ldots,m\} \text{ and } l \nsubseteq q \\ \bot & \text{if } q = \bot \\ \end{array} \\ \text{with } l = \{i \in \{1,\ldots,m\} \mid a_i = 1\} \end{array}$$

Example

DFA $\mathcal{A}_{2,1}$
DFA $A_{2,1}$ with $A = \{1,2\}$, $B = \{1\}$, $C = \{2\}$, $D = \emptyset$

$L_{a}(\varphi) = \{x \in (\{0,1\}^{m+n})^{*} \mid x \text{ is } m \text{-admissible and } \underline{x} \vDash \varphi\}$

$L_a(\varphi) = \{x \in (\{0,1\}^{m+n})^* \mid x \text{ is } m\text{-admissible and } \underline{x} \vDash \varphi\}$

Example

$$\blacktriangleright \ \varphi(x,X) = \forall y.y < x \rightarrow X(y)$$

$L_a(\varphi) = \{ x \in (\{0,1\}^{m+n})^* \mid x \text{ is } m \text{-admissible and } x \vDash \varphi \}$

Example

- $\blacktriangleright \varphi(x, X) = \forall y. y < x \rightarrow X(y)$
- $L_{a}(\varphi) = {\binom{0}{1}}^{*} \left[{\binom{1}{0}} + {\binom{1}{1}} \right] \left[{\binom{0}{0}} + {\binom{0}{1}} \right]^{*}$

$L_a(\varphi) = \{x \in (\{0,1\}^{m+n})^* \mid x \text{ is } m\text{-admissible and } \underline{x} \vDash \varphi\}$

Example

- $\blacktriangleright \varphi(x,X) = \forall y. y < x \rightarrow X(y)$
- $\triangleright \ L_a(\varphi) = \left(\begin{smallmatrix} 0\\1 \end{smallmatrix}\right)^* \left[\left(\begin{smallmatrix} 1\\0 \end{smallmatrix}\right) + \left(\begin{smallmatrix} 1\\1 \end{smallmatrix}\right) \right] \left[\left(\begin{smallmatrix} 0\\0 \end{smallmatrix}\right) + \left(\begin{smallmatrix} 0\\1 \end{smallmatrix}\right) \right]^*$

Theorem

 $L_a(\varphi)$ is regular for every WMSO formula φ

induction on $\,\varphi\,$

induction on $\,\varphi\,$

- $\blacktriangleright \ \varphi = \bot$
- ▶ φ = x < y</p>
- $\varphi = X(x)$
- $\blacktriangleright \ \varphi = \neg \, \psi$

 $\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$

induction on $\,\varphi\,$

$$\blacktriangleright \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$$

- ▶ φ = x < y</p>
- $\varphi = X(x)$
- $\blacktriangleright \ \varphi = \neg \, \psi$

 $\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$

induction on $\,\varphi\,$

$$\blacktriangleright \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$$

 $\blacktriangleright \varphi = \mathbf{X} < \mathbf{y} \implies L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^*$

•
$$\varphi = X(x)$$

 $\blacktriangleright \ \varphi = \neg \, \psi$

$$\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$$

induction on $\,\varphi\,$

$$\blacktriangleright \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$$

• $\varphi = x < y \implies L_a(\varphi) = {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{1}} {\binom{0}{0}}^* \text{ or } L_a(\varphi) = {\binom{0}{0}}^* {\binom{0}{1}} {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^*$

•
$$\varphi = X(x)$$

 $\blacktriangleright \ \varphi = \neg \, \psi$

$$\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$$

induction on $\,\varphi\,$

$$\blacktriangleright \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$$

- $\varphi = x < y \implies L_a(\varphi) = {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{1}} {\binom{0}{0}}^* \text{ or } L_a(\varphi) = {\binom{0}{0}}^* {\binom{0}{1}} {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^*$
- $\blacktriangleright \varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- $\blacktriangleright \ \varphi = \neg \, \psi$

$\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$

induction on $\,\varphi\,$

$$\blacktriangleright \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$$

- $\blacktriangleright \varphi = \mathbf{x} < \mathbf{y} \implies L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \text{ or } L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^*$
- $\bullet \ \varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- $\varphi = \neg \psi \implies L_a(\psi)$ is regular

 $\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$

induction on $\,\varphi\,$

 $\blacktriangleright \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$

• $\varphi = x < y \implies L_a(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \text{ or } L_a(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^*$

 $\blacktriangleright \varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$

 $\blacktriangleright \ \varphi = \neg \psi \qquad \Longrightarrow \quad L_a(\psi) \text{ is regular } \implies \quad \sim L_a(\psi) \text{ is regular}$

 $\blacktriangleright \varphi = \varphi_1 \lor \varphi_2$

induction on $\,\varphi\,$

 $\blacktriangleright \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$

 $\blacktriangleright \varphi = \mathbf{x} < \mathbf{y} \implies L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \text{ or } L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^*$

- $\blacktriangleright \varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- $\begin{array}{ll} \bullet \ \varphi = \neg \psi & \Longrightarrow & L_a(\psi) \text{ is regular } \implies & \sim L_a(\psi) \text{ is regular} \\ & \implies & L_a(\varphi) = \sim L_a(\psi) \cap L(\mathcal{A}_{m,n}) \text{ is regular (for suitable } m \text{ and } n) \end{array}$

 $\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$

induction on $\,\varphi\,$

 $\blacktriangleright \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$

 $\blacktriangleright \varphi = \mathbf{x} < \mathbf{y} \implies L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \text{ or } L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^*$

- $\bullet \ \varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- $\begin{array}{ll} \bullet \ \varphi = \neg \psi & \implies \ L_a(\psi) \text{ is regular } \implies \ \sim L_a(\psi) \text{ is regular} \\ & \implies \ L_a(\varphi) = \sim L_a(\psi) \cap L(\mathcal{A}_{m,n}) \text{ is regular (for suitable } m \text{ and } n) \end{array}$

 $\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular

induction on $\,\varphi\,$

 $\blacktriangleright \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$

 $\blacktriangleright \varphi = \mathbf{x} < \mathbf{y} \implies L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \text{ or } L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \end{pmatrix}^*$

- $\bullet \ \varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$

 $\blacktriangleright \ \varphi = \varphi_1 \lor \varphi_2$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular but may be defined over different alphabets because φ_1 and φ_2 may have less free variables than φ

induction on $\,\varphi\,$

 $\blacktriangleright \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$

 $\blacktriangleright \varphi = \mathbf{X} < \mathbf{y} \implies L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \text{ or } L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^*$

 $\bullet \ \varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$

•
$$\varphi = \varphi_1 \lor \varphi_2$$
 with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular but may be defined over different alphabets because φ_1 and φ_2 may have less free variables than φ

 $\varphi = x < y \lor X(x)$

 $\varphi = x < y \lor X(x)$ with $FV(\varphi) = (x, y, X)$

- $\varphi = x < y \lor X(x)$ with $FV(\varphi) = (x, y, X)$
- $L_a(x < y) = {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{0}}^* {\binom{0}{0}}^*$

- $arphi = x < y \lor X(x)$ with $\mathsf{FV}(arphi) = (x, y, X)$
- $L_a(x < y) = {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{1}} {\binom{0}{0}}^*$
- $\succ L_{a}(X(x)) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$

homomorphism

drop_i:
$$({0,1}^k)^* \to ({0,1}^{k-1})^*$$

is defined for $1 \leq i \leq k$ by dropping *i*-th component from vectors in $\{0,1\}^k$

homomorphism

drop_i:
$$(\{0,1\}^k)^* \to (\{0,1\}^{k-1})^*$$

is defined for $1 \leq i \leq k$ by dropping *i*-th component from vectors in $\{0,1\}^k$

$$\operatorname{drop}_{i}\begin{pmatrix}a_{1}\\\vdots\\a_{l}\\\vdots\\a_{k}\end{pmatrix}=\begin{pmatrix}a_{1}\\\vdots\\\vdots\\a_{k}\end{pmatrix}$$

homomorphism

drop_i:
$$({0,1}^k)^* \to ({0,1}^{k-1})^*$$

is defined for $1 \leq i \leq k$ by dropping *i*-th component from vectors in $\{0,1\}^k$

$$\operatorname{drop}_{i}\begin{pmatrix}a_{1}\\\vdots\\a_{i}\\\vdots\\a_{k}\end{pmatrix}=\begin{pmatrix}a_{1}\\\vdots\\\vdots\\a_{k}\end{pmatrix}$$

Lemmata

►
$$A \subseteq (\{0,1\}^k)^*$$
 is regular \implies drop_i $(A) \subseteq (\{0,1\}^{k-1})^*$ is regular

homomorphism

drop_i:
$$({0,1}^k)^* \to ({0,1}^{k-1})^*$$

is defined for $1 \leq i \leq k$ by dropping *i*-th component from vectors in $\{0,1\}^k$

$$\operatorname{drop}_{i}\begin{pmatrix}a_{1}\\\vdots\\a_{i}\\\vdots\\a_{k}\end{pmatrix}=\begin{pmatrix}a_{1}\\\vdots\\\vdots\\a_{k}\end{pmatrix}$$

Lemmata

- ▶ $A \subseteq (\{0,1\}^k)^*$ is regular \implies drop_i(A) $\subseteq (\{0,1\}^{k-1})^*$ is regular
- ▶ $B \subseteq (\{0,1\}^{k-1})^*$ is regular \implies drop $_i^{-1}(B) \subseteq (\{0,1\}^k)^*$ is regular

- $arphi = x < y \lor X(x)$ with $\mathsf{FV}(arphi) = (x, y, X)$
- $\blacktriangleright L_a(x < y) = {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{1}} {\binom{0}{0}}^*$
- $\triangleright \ L_a(X(x)) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- $L_1 = drop_3^{-1}(\binom{0}{0}^*\binom{1}{0}\binom{0}{0}^*\binom{0}{1}\binom{0}{0}^*)$

- $arphi = x < y \lor X(x)$ with $\mathsf{FV}(arphi) = (x,y,X)$
- $L_a(x < y) = {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{1}} {\binom{0}{0}}^*$
- $\triangleright \ L_a(X(x)) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$

$$L_1 = drop_3^{-1}(\binom{0}{0}^*\binom{1}{0}\binom{0}{0}^*\binom{0}{1}\binom{0}{0}^*) = \binom{0}{\binom{0}{*}}^*\binom{1}{\binom{0}{*}}\binom{0}{\binom{0}{*}}^*\binom{0}{\binom{1}{*}}\binom{0}{\binom{0}{*}}^*$$

$$arphi = x < y \lor X(x)$$
 with $\mathsf{FV}(arphi) = (x, y, X)$

•
$$L_a(x < y) = {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{0}}^* {\binom{0}{0}}^*$$

$$\succ L_{a}(X(x)) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$$

•
$$L_1 = drop_3^{-1}({\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{1}} {\binom{0}{0}}^*) = {\binom{0}{0}}_*^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{0}}_*^* {\binom{0}{1}} {\binom{0}{0}}^*$$

 $\blacktriangleright L_2 = \operatorname{drop}_2^{-1}(\left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix}\left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right]^*)$

$$\varphi = x < y \lor X(x) \text{ with } FV(\varphi) = (x, y, X)$$

$$L_a(x < y) = \binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^*$$

$$L_a(X(x)) = \left[\binom{0}{0} + \binom{0}{1}\right]^* \binom{1}{1} \left[\binom{0}{0} + \binom{0}{1}\right]^*$$

$$L_1 = drop_3^{-1} \binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^* = \binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^*$$

$$L_2 = drop_2^{-1} (\left[\binom{0}{0} + \binom{0}{1}\right]^* \binom{1}{1} \left[\binom{0}{0} + \binom{0}{1}\right]^* = \left[\binom{0}{0}^* + \binom{0}{1}^* \right]^* \binom{1}{1} \left[\binom{0}{0}^* + \binom{0}{1}^* \right]^*$$

/

$$\varphi = x < y \lor X(x) \text{ with } \mathsf{FV}(\varphi) = (x, y, X)$$

$$L_a(x < y) = \binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^*$$

$$L_a(X(x)) = \left[\binom{0}{0} + \binom{0}{1}\right]^* \binom{1}{1} \left[\binom{0}{0} + \binom{0}{1}\right]^*$$

$$L_1 = \operatorname{drop}_3^{-1} \left(\binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^* \right) = \left(\binom{0}{0}^* \binom{1}{*} \binom{0}{\binom{0}{*}}^* \binom{0}{1} \binom{0}{\binom{0}{*}}^* \binom{1}{1} \binom{0}{\binom{0}{*}}^*$$

. . . .

$$\blacktriangleright L_2 = \operatorname{drop}_2^{-1}\left(\left[\begin{pmatrix}0\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}\right]^* \begin{pmatrix}1\\1\end{pmatrix}\left[\begin{pmatrix}0\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}\right]^*\right) = \left[\begin{pmatrix}0*\\0\end{pmatrix} + \begin{pmatrix}0*\\1\end{pmatrix}\right]^* \begin{pmatrix}1*\\1\end{pmatrix}\left[\begin{pmatrix}0*\\1\end{pmatrix}\right]^* \begin{pmatrix}1*\\1\end{pmatrix}\left[\begin{pmatrix}0*\\0\end{pmatrix} + \begin{pmatrix}0*\\1\end{pmatrix}\right]^*$$

$$\blacktriangleright L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{2,1})$$

induction on $\,\varphi\,$

 $\blacktriangleright \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing$

 $\blacktriangleright \varphi = \mathbf{x} < \mathbf{y} \implies L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \text{ or } L_{\mathbf{a}}(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^*$

 $\bullet \ \varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$

•
$$\varphi = \varphi_1 \lor \varphi_2$$
 with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular but may be defined over different alphabets because φ_1 and φ_2 may have less free variables than φ

applications of inverse homomorphism drop_i⁻¹ to $L_a(\varphi_1)$ and $L_a(\varphi_2)$ yield regular sets $L_1, L_2 \subseteq (\{0, 1\}^{m+n})^*$ such that $L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{m,n})$

 $\blacktriangleright \varphi = \exists \mathbf{X}. \psi$

$\blacktriangleright \varphi = \exists X. \psi$

universität WS 2024 Automata and Logic lecture 6 4. WMSO Definability innsbruck

• $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular

• $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular

• $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular

 \implies drop_i($L_a(\psi)$) is regular where *i* is position of *x* in FV(ψ)

• $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of X in FV(ψ)

• $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of *x* in FV(ψ)

• $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of X in FV(ψ)

Example

$$\varphi = \exists X. \psi$$
 with $\psi = X(x) \land \exists y. x < y \land X(y)$

• $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of *x* in FV(ψ)

• $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of X in FV(ψ)

Example

$$\varphi = \exists X. \psi \text{ with } \psi = X(x) \land \exists y. x < y \land X(y)$$

$$L_{a}(\psi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$$
• $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of *x* in FV(ψ)

• $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of X in FV(ψ)

Example

$$\varphi = \exists X. \psi$$
 with $\psi = X(x) \land \exists y. x < y \land X(y)$

- $\blacktriangleright L_{a}(\psi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$
- drop₂($L_a(\psi)$) = (0 + 0)*1(0 + 0)*0(0 + 0)*

• $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of *x* in FV(ψ)

• $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of X in FV(ψ)

Example

$$\varphi = \exists X. \psi \text{ with } \psi = X(x) \land \exists y. x < y \land X(y)$$

- $\succ L_{a}(\psi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$
- drop₂($L_a(\psi)$) = (0 + 0)*1(0 + 0)*0(0 + 0)* = 0*100*

• $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of *x* in FV(ψ)

• $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular

 \implies drop_i(L_a(ψ)) is regular where *i* is position of X in FV(ψ)

Example

$$\varphi = \exists X. \psi$$
 with $\psi = X(x) \land \exists y. x < y \land X(y)$

•
$$L_{a}(\psi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$$

• drop₂($L_a(\psi)$) = (0 + 0)*1(0 + 0)*0(0 + 0)* = 0*100* \neq 0*10* = $L_a(\varphi)$

- $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular
 - \implies drop_i(L_a(ψ)) is regular where *i* is position of *x* in FV(ψ)
 - $\implies L_a(\varphi) = \operatorname{stz}(\operatorname{drop}_i(L_a(\psi)))$
- $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular
 - \implies drop_i(L_a(ψ)) is regular where *i* is position of X in FV(ψ)
 - $\implies L_a(\varphi) = \operatorname{stz}(\operatorname{drop}_i(L_a(\psi)))$

Example

$$\varphi = \exists X. \psi$$
 with $\psi = X(x) \land \exists y. x < y \land X(y)$

•
$$L_{a}(\psi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$$

▶ drop₂($L_a(\psi)$) = (0 + 0)*1(0 + 0)*0(0 + 0)* = 0*100* ≠ 0*10* = $L_a(\varphi)$

$$\mathsf{stz}(A) = \{x \mid x \mathbf{0} \cdots \mathbf{0} \in A\} \text{ for } A \subseteq (\{0, 1\}^{m+n})^*$$

$$\mathsf{stz}(\mathsf{A}) = \{x \mid x \mathbf{0} \cdots \mathbf{0} \in \mathsf{A}\} \text{ for } \mathsf{A} \subseteq (\{0, 1\}^{m+n})^*$$

"shorten trailing zeros"

$$\mathsf{stz}(\mathsf{A}) = \{x \mid x \mathbf{0} \cdots \mathbf{0} \in \mathsf{A}\} \text{ for } \mathsf{A} \subseteq (\{0, 1\}^{m+n})^*$$

" shorten trailing zeros "

Lemma

 $A \subseteq (\{0,1\}^k)^*$ is regular \implies stz(A) is regular

$$\mathsf{stz}(\mathsf{A}) = \{x \mid x \mathbf{0} \cdots \mathbf{0} \in \mathsf{A}\} \text{ for } \mathsf{A} \subseteq (\{0, 1\}^{m+n})^*$$

" shorten trailing zeros "

Lemma

 $A \subseteq (\{0,1\}^k)^*$ is regular \implies stz(A) is regular

Proof

• DFA $M = (Q, \Sigma, \delta, s, F)$ with L(M) = A

$$\mathsf{stz}(\mathsf{A}) = \{x \mid x \mathbf{0} \cdots \mathbf{0} \in \mathsf{A}\} \text{ for } \mathsf{A} \subseteq (\{0, 1\}^{m+n})^*$$

" shorten trailing zeros "

Lemma

 $A \subseteq (\{0,1\}^k)^*$ is regular \implies stz(A) is regular

Proof

- DFA $M = (Q, \Sigma, \delta, s, F)$ with L(M) = A
- ► construct DFA $M' = (Q, \Sigma, \delta, s, F')$ with $F' = \{q \in Q \mid \widehat{\delta}(q, x) \in F \text{ for some } x \in \mathbf{0}^*\}$

$$\mathsf{stz}(\mathsf{A}) = \{x \mid x \mathbf{0} \cdots \mathbf{0} \in \mathsf{A}\} \text{ for } \mathsf{A} \subseteq (\{0, 1\}^{m+n})^*$$

" shorten trailing zeros "

Lemma

 $A \subseteq (\{0,1\}^k)^*$ is regular \implies stz(A) is regular

Proof

- DFA $M = (Q, \Sigma, \delta, s, F)$ with L(M) = A
- ► construct DFA $M' = (Q, \Sigma, \delta, s, F')$ with $F' = \{q \in Q \mid \widehat{\delta}(q, x) \in F \text{ for some } x \in \mathbf{0}^*\}$
- L(M') = stz(A)

- $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular
 - \implies drop_i($L_a(\psi)$) is regular where *i* is position of *x* in FV(ψ)
 - $\implies L_a(\varphi) = \operatorname{stz}(\operatorname{drop}_i(L_a(\psi)))$ is regular
- $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular
 - \implies drop_i($L_a(\psi)$) is regular where *i* is position of X in FV(ψ)
 - $\implies L_a(\varphi) = \operatorname{stz}(\operatorname{drop}_i(L_a(\psi)))$ is regular

Example

$$\varphi = \exists X. \psi$$
 with $\psi = X(x) \land \exists y. x < y \land X(y)$

•
$$L_a(\psi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$$

► drop₂($L_a(\psi)$) = (0 + 0)*1(0 + 0)*0(0 + 0)* = 0*100* ≠ 0*10* = $L_a(\varphi)$

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

1 eliminate assignments which do not correspond to string in Σ^*

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

(1) eliminate assignments which do not correspond to string in Σ^*

Lemma

 $\{0^{k}10^{l} | k+1+l = |\Sigma|\}^{*}$ is regular

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

(1) eliminate assignments which do not correspond to string in Σ^*

Lemma

 $L_a(\varphi) \cap \{0^k 10^l \mid k+1+l = |\Sigma|\}^*$ is regular

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- ① eliminate assignments which do not correspond to string in Σ^*
- (2) map strings in 0^*10^* to elements of Σ

Lemma

 $L_a(\varphi) \cap \{ 0^k 10^l \mid k+1+l = |\Sigma| \}^*$ is regular

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- ① eliminate assignments which do not correspond to string in Σ^*
- (2) map strings in 0^*10^* to elements of Σ using homomorphismm $h: \{0^k10^l | k+1+l = |\Sigma|\} \rightarrow \Sigma$ which maps 0^k10^l to k+1-th element of Σ

Lemma

$$L_a(\varphi) \cap \{ 0^k 10^l \mid k+1+l = |\Sigma| \}^*$$
 is regular

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- ① eliminate assignments which do not correspond to string in Σ^*
- (2) map strings in 0^*10^* to elements of Σ using homomorphismm $h: \{0^k10^l | k+1+l = |\Sigma|\} \rightarrow \Sigma$ which maps 0^k10^l to k+1-th element of Σ

Lemma

 $L(\varphi) = h(L_a(\varphi) \cap \{0^k 10^l \mid k+1+l = |\Sigma|\}^*)$ is regular

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- ① eliminate assignments which do not correspond to string in Σ^*
- (2) map strings in 0^*10^* to elements of Σ using homomorphismm $h: \{0^k10^l | k+1+l = |\Sigma|\} \rightarrow \Sigma$ which maps 0^k10^l to k+1-th element of Σ

Lemma

$$L(\varphi) = h(L_a(\varphi) \cap \{0^k 10^l \mid k+1+l = |\Sigma|\}^*)$$
 is regular

Corollary

WMSO definable sets are regular

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability

5. MONA

6. Further Reading

▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S

- MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- WS1S is weak monadic second-order theory of 1 successor

- MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- ▶ WS1S is weak monadic second-order theory of 1 successor = WMSO

- ▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- ▶ WS1S is weak monadic second-order theory of 1 successor = WMSO
- MONA translates WS1S formulas into minimum-state DFAs

- MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- ▶ WS1S is weak monadic second-order theory of 1 successor = WMSO
- MONA translates WS1S formulas into minimum-state DFAs
- MONA confirms validity or produces counterexample

- MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- WS1S is weak monadic second-order theory of 1 successor = WMSO
- MONA translates WS1S formulas into minimum-state DFAs
- MONA confirms validity or produces counterexample

Demo

https://www.brics.dk/mona/

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

Ebbinghaus, Flum and Thomas

► Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

► Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

Klarlund and Møller

Section 3 of MONA Version 1.4 User Manual (2001)

► Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

Klarlund and Møller

Section 3 of MONA Version 1.4 User Manual (2001)

Important Concepts		
► drop _i	▶ <i>m</i> -admissible	▶ stz
\blacktriangleright $L_a(\varphi)$	MONA	► WS1S

► Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

Klarlund and Møller

Section 3 of MONA Version 1.4 User Manual (2001)

Important Concepts		
► drop _i	▶ <i>m</i> -admissible	► stz
\blacktriangleright $L_a(\varphi)$	MONA	► WS1S

homework for November 15