

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

equivalence relation \equiv_{M} on Σ^{*} for DFA $M=(Q,\Sigma,\delta,s,F)$ is defined as follows:

$$x \equiv_{\mathbf{M}} y \iff \widehat{\delta}(s,x) = \widehat{\delta}(s,y)$$

Lemmata

- ▶ \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y$ \Longrightarrow for all $a \in \Sigma$ $xa \equiv_M ya$
- ▶ \equiv_M refines L(M): for all $x, y \in \Sigma^*$ $x \equiv_M y$ \Longrightarrow either $x, y \in L(M)$ or $x, y \notin L(M)$
- $ightharpoonup \equiv_M$ is of finite index: \equiv_M has finitely many equivalence classes

Definition

Myhill-Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_{ℓ} on Σ^* is defined as follows:

$$x \equiv_{L} y \iff \text{for all } z \in \Sigma^{*} \quad (xz \in L \iff yz \in L)$$

Theorem

- for every regular set $L \subseteq \Sigma^*$ there exists one-to-one correspondence (up to isomorphism of automata) between
 - DFAs for L with input alphabet Σ and without inaccessible states
 - Myhill-Nerode relations for L
- for every set $L \subset \Sigma^*$ L is regular \iff L admits Myhill-Nerode relation \iff \equiv_i is of finite index
 - regular sets are WMSO definable

Automata

- ► (deterministic, non-deterministic, alternating) finite automata
- ▶ regular expressions
- ▶ (alternating) Büchi automata

Logic

- ▶ (weak) monadic second-order logic
- Presburger arithmetic
- ► linear-time temporal logic

1. Summary of Previous Lecture

2. WMSO Definability

- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

- ightharpoonup FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones
- ▶ assignment for φ with $\mathsf{FV}(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, I_1, \ldots, I_n)$ such that i_1, \ldots, i_m are elements of \mathbb{N} and I_1, \ldots, I_n are finite subsets of \mathbb{N}

Example

$$\varphi = \exists X. X(x) \to \exists y. x < y \land Y(y)$$

 $\mathsf{FV}(\varphi) = (\mathsf{x},\mathsf{Y})$

Notation

$$(i, I)$$
 for $(i_1, \ldots, i_m, I_1, \ldots, I_n)$

 $\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \end{pmatrix}$

Example

Remark

assignments are identified with strings over $\{0,1\}^{m+n}$ (here k=m+n)

string over $\{0,1\}^{m+n}$ is m-admissible if first m rows contain exactly one 1 each

Remarks

- every m-admissible string x induces assignment x
- every assignment is induced by (not necessarily unique) m-admissible string: if x is m-admissible then $x\mathbf{0}$ is m-admissible and $x=x\mathbf{0}$
- if $x, y \in (\{0,1\}^{m+n})^*$ induce same assignment then $x = y \mathbf{0} \cdots \mathbf{0}$ or $y = x \mathbf{0} \cdots \mathbf{0}$
- \bullet $\epsilon \in (\{0,1\}^{m+n})^*$ is *m*-admissible if and only if m=0
- if x = (i, I) then |x| > k for all $k \in \{i_1, \dots, i_m\} \cup I_1 \cup \dots \cup I_n$

Lemma

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

Question

Consider the following three strings over $\{0,1\}^{1+2}$. Which statements hold?

	0	1	2	0	1	2	0	1	2	3
<i>x</i> ₁	0	1	0	0	0	0	0	1	0	0
X_1	1	0	0	1	0	0	1	0	0	0
X_2	0	1	1	0	1	1	0	1	1	0

- the first and third string induce the same assignment
- b the second string is 1-admissible
- **C** $X_2(x_1) \rightarrow X_1(x_1)$ is satisfied by the first string's induced assignment
- the third string induces the assignment $i_1 = 1$, $I_1 = \{0\}$, $I_2 = \{1,2\}$

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

Lemma

set of m-admissible strings over $\{0,1\}^{m+n}$ is regular

Proof (construction)

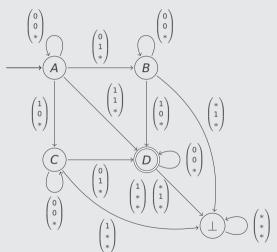
define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with

- ① $\Sigma = \{0,1\}^{m+n}$
- ② $Q = 2^{\{1,...,m\}} \cup \{\bot\}$
- $s = \{1, \dots, m\}$
- - with $I = \{i \in \{1, ..., m\} \mid a_i = 1\}$

WS 2024

Example

DFA $\mathcal{A}_{2,1}$ with $A=\{1,2\}$, $B=\{1\}$, $C=\{2\}$, $D=\varnothing$



$$L_a(\varphi) = \{x \in (\{0,1\}^{m+n})^* \mid x \text{ is } m\text{-admissible and } \underline{x} \models \varphi\}$$

Example

$$L_{a}(\varphi) = \binom{0}{1}^{*} \left[\binom{1}{0} + \binom{1}{1} \right] \left[\binom{0}{0} + \binom{0}{1} \right]^{*}$$

Theorem

 $L_a(\varphi)$ is regular for every WMSO formula φ

Proof

induction on $\, \varphi \,$

$$\blacktriangleright \varphi = \bot \implies L_a(\varphi) = \varnothing$$

•
$$\varphi = \neg \psi$$
 \implies $L_a(\psi)$ is regular $\implies \sim L_a(\psi)$ is regular

$$\implies$$
 $L_a(\varphi) = \sim L_a(\psi) \cap L(\mathcal{A}_{m,n})$ is regular (for suitable m and n)

$$ightharpoonup \varphi = \varphi_1 \lor \varphi_2 \text{ with } \mathsf{FV}(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular but may be defined over different alphabets because φ_1 and φ_2 may have less free variables than φ

applications of inverse homomorphism $\operatorname{drop}_{i}^{-1}$ to $L_{a}(\varphi_{1})$ and $L_{a}(\varphi_{2})$ yield regular sets $L_{1}, L_{2} \subseteq (\{0,1\}^{m+n})^{*}$ such that $L_{a}(\varphi) = (L_{1} \cup L_{2}) \cap L(\mathcal{A}_{m,n})$

Example

$$\varphi = x < y \lor X(x)$$
 with $FV(\varphi) = (x, y, X)$

- $L_a(x < y) = \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^*$
- $L_{a}(X(x)) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$
- $L_1 = \mathsf{drop}_{\mathbf{3}}^{-1} \left(\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right)^* \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right)^* \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right)^* \right) = \left(\begin{smallmatrix} 0 \\ 0 \\ * \end{smallmatrix} \right)^* \left(\begin{smallmatrix} 1 \\ 0 \\ * \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ 0 \\ * \end{smallmatrix} \right)^* \left(\begin{smallmatrix} 0 \\ 1 \\ * \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ 0 \\ * \end{smallmatrix} \right)^*$
- $L_2 = \mathsf{drop}_{\mathbf{2}}^{-1} \big(\big[\big(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \big) + \big(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \big) \big]^* \big(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \big) \big[\big(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \big) + \big(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \big) \big]^* \big) = \left[\left(\begin{smallmatrix} 0 \\ * \\ 0 \end{smallmatrix} \right) + \left(\begin{smallmatrix} 0 \\ * \\ 1 \end{smallmatrix} \right) \right]^* \left(\begin{smallmatrix} 1 \\ * \\ 1 \end{smallmatrix} \right) \left[\left(\begin{smallmatrix} 0 \\ * \\ 0 \end{smallmatrix} \right) + \left(\begin{smallmatrix} 0 \\ * \\ 1 \end{smallmatrix} \right) \right]^* \right]^*$
- $L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{2,1})$

homomorphism

$$drop_i: (\{0,1\}^k)^* \to (\{0,1\}^{k-1})^*$$

is defined for $1 \le i \le k$ by dropping *i*-th component from vectors in $\{0,1\}^k$

$$\mathsf{drop}_{i} \begin{pmatrix} a_{1} \\ \vdots \\ a_{i} \\ \vdots \\ a_{k} \end{pmatrix} = \begin{pmatrix} a_{1} \\ \vdots \\ \vdots \\ a_{k} \end{pmatrix}$$

Lemmata

$$ightharpoonup A\subseteq (\{0,1\}^k)^*$$
 is regular \Longrightarrow drop $_i(A)\subseteq (\{0,1\}^{k-1})^*$ is regular

 $\triangleright B \subseteq (\{0,1\}^{k-1})^*$ is regular \implies drop_i⁻¹(B) $\subseteq (\{0,1\}^k)^*$ is regular

Proof (cont'd)

•
$$\varphi = \exists x. \psi \implies L_a(\psi)$$
 is regular

$$\implies$$
 drop_i($L_a(\psi)$) is regular where i is position of x in FV(ψ)
$$\implies L_a(\varphi) = \text{stz}(\text{drop}_i(L_a(\psi))) \text{ is regular}$$

$$\varphi = \exists X. \psi \implies L_a(\psi) \text{ is regular}$$

$$\implies \text{drop}_i(L_a(\psi)) \text{ is regular where } i \text{ is position of } X \text{ in FV}(\psi)$$

$$\implies L_a(\varphi) = \text{stz}(\text{drop}_i(L_a(\psi))) \text{ is regular}$$

Example

$$\mathsf{drop}_2(L_a(\psi)) = (0+0)^*1(0+0)^*0(0+0)^* = 0^*100^* \neq 0^*10^* = L_a(\varphi)$$

WS 2024

Lemma

$$A \subseteq (\{0,1\}^k)^*$$
 is regular \implies stz(A) is regular

Proof

- ▶ DFA $M = (Q, \Sigma, \delta, s, F)$ with L(M) = A
- ▶ construct DFA $M' = (Q, \Sigma, \delta, s, F')$ with $F' = \{q \in Q \mid \widehat{\delta}(q, x) \in F \text{ for some } x \in \mathbf{0}^*\}$
- $\blacktriangleright L(M') = stz(A)$

Final Task

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- eliminate assignments which do not correspond to string in Σ^*
- map strings in 0*10* to elements of Σ using homomorphismm $h: \{0^k 10^l \mid k+1+l=|\Sigma|\} \to \Sigma$ which maps $0^k 10^l$ to k+1-th element of Σ

Lemma

 $L(\varphi) = h(L_a(\varphi) \cap \{0^k 10^l \mid k+1+l = |\Sigma|\}^*)$ is regular

Corollary

WMSO definable sets are regular

WS 2024

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

MONA

- ▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- ▶ WS1S is weak monadic second-order theory of 1 successor = WMSO
- ▶ MONA translates WS1S formulas into minimum-state DFAs
- MONA confirms validity or produces counterexample

Demo

https://www.brics.dk/mona/

- 1. Summary of Previous Lecture
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

Ebbinghaus, Flum and Thomas

Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

Klarlund and Møller

► Section 3 of MONA Version 1.4 User Manual (2001)

Important Concepts

drop;

► m-admissible MONA

▶ stz

► WS1S

 $\vdash L_a(\varphi)$

homework for November 15