

WS 2024 lecture 6

[Automata and Logic](http://cl-informatik.uibk.ac.at/teaching/ws24/al)

[Aart Middeldorp](http://cl-informatik.uibk.ac.at/~ami) and Johannes Niederhauser

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [WMSO Definability](#page-5-0)**
- **3. [Intermezzo](#page-9-0)**
- **4. [WMSO Definability](#page-11-0)**
- **5. [MONA](#page-21-0)**
- **6. [Further Reading](#page-23-0)**

equivalence relation \equiv_M on Σ^* for DFA $M=(Q,\Sigma,\delta,s,F)$ is defined as follows:

$$
x \equiv_M y \iff \hat{\delta}(s,x) = \hat{\delta}(s,y)
$$

Lemmata

- \blacktriangleright \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $\chi \equiv_M y$ \implies for all $a \in \Sigma$ $xa \equiv_M ya$
- \blacktriangleright \equiv _M refines L(M): for all $x, y \in \Sigma^*$ $x \equiv_M y$ \implies either $x, y \in L(M)$ or $x, y \notin L(M)$

 $\triangleright \equiv_M$ is of finite index: \equiv_M has finitely many equivalence classes

Definition

Myhill–Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

for any set $L \subset \Sigma^*$ [∗] equivalence relation \equiv _{*L*} on Σ ^{*} is defined as follows:

$$
x \equiv_L y \iff \text{ for all } z \in \Sigma^* \ (xz \in L \iff yz \in L)
$$

Theorem

1 for every regular set $L \subseteq \Sigma^*$

there exists one-to-one correspondence (up to isomorphism of automata) between

- **► DFAs for L with input alphabet** $Σ$ **and without inaccessible states**
- ▶ Myhill–Nerode relations for L
- **²** for every set L ⊆ Σ ∗

L is regular \iff L admits Myhill–Nerode relation \iff \equiv_L is of finite index

3 regular sets are WMSO definable

Automata

- ▶ (deterministic, non-deterministic, alternating) finite automata
- \blacktriangleright regular expressions
- ▶ (alternating) Büchi automata

Logic

■ universitat **Innsbruck**

- ▶ (weak) monadic second-order logic
- \blacktriangleright Presburger arithmetic
- ▶ linear-time temporal logic

1. [Summary of Previous Lecture](#page-2-0)

2. [WMSO Definability](#page-5-0)

- **3. [Intermezzo](#page-9-0)**
- **4. [WMSO Definability](#page-11-0)**
- **5. [MONA](#page-21-0)**
- **6. [Further Reading](#page-23-0)**

- \blacktriangleright FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones
- \triangleright assignment for φ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, I_1, \ldots, I_n)$ such that i_1, \ldots, i_m are elements of N and i_1, \ldots, i_n are finite subsets of N

Example
\n
$$
\varphi = \exists X. X(x) \rightarrow \exists y. x < y \land Y(y)
$$
\n
$$
FV(\varphi) = (x, Y)
$$

Notation

$$
(i, l)
$$
 for $(i_1, ..., i_m, i_1, ..., i_n)$ 0 =

$$
\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
$$

Remark

assignments are identified with strings over $\{0,1\}^{m+n}$ (here $k=m+n)$

a¹¹ a²¹ · · · aℓ¹ a1^k a2^k · · · aℓ^k ≈ a¹¹ . . . a1^k a²¹ . . . a2^k · · · aℓ¹ . . . aℓ^k

string over $\{0,1\}^{m+n}$ is $\bm{m}\text{-admissible}$ if first m rows contain exactly one 1 each

Remarks

- \rightarrow every *m*-admissible string x induces assignment x
- \triangleright every assignment is induced by (not necessarily unique) m-admissible string: if x is m-admissible then $x0$ is m-admissible and $x = x0$
- ► if $x, y \in (\{0,1\}^{m+n})^*$ induce same assignment then $x = y0 \cdots 0$ or $y = x0 \cdots 0$
- $\blacktriangleright \epsilon \in (\{0,1\}^{m+n})^*$ is m-admissible if and only if $m=0$
- \triangleright if $x = (i, l)$ then $|x| > k$ for all $k \in \{i_1, \ldots, i_m\} \cup I_1 \cup \cdots \cup I_n$

Lemma

set of m -admissible strings over $\set{0,1}^{m+n}$ is regular

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [WMSO Definability](#page-5-0)**

3. [Intermezzo](#page-9-0)

- **4. [WMSO Definability](#page-11-0)**
- **5. [MONA](#page-21-0)**
- **6. [Further Reading](#page-23-0)**

Exticify with session ID [8020 8256](https://ars.uibk.ac.at/p/80208256)

Question

Consider the following three strings over $\{0,1\}^{1+2}$. Which statements hold ?

- **A** the first and third string induce the same assignment
- **B** the second string is 1-admissible
- **C** $X_2(x_1) \rightarrow X_1(x_1)$ is satisfied by the first string's induced assignment
- **D** the third string induces the assignment $i_1 = 1$, $i_1 = \{0\}$, $i_2 = \{1, 2\}$

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [WMSO Definability](#page-5-0)**
- **3. [Intermezzo](#page-9-0)**

4. [WMSO Definability](#page-11-0)

- **5. [MONA](#page-21-0)**
- **6. [Further Reading](#page-23-0)**

Lemma

set of m -admissible strings over $\,\{0,1\}^{m+n}\,$ is regular

Proof (construction)

- define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with
- $\mathfrak{D} \quad \mathsf{\Sigma} = \{\mathsf{0},\mathsf{1}\}^{m+n}$
- $\mathsf{Q} = \mathsf{2}^{\{1,...,m\}} \cup \{\bot\}$
- **3** $s = \{1, ..., m\}$

\n
$$
\begin{aligned}\n\text{②} \quad F &= \{ \varnothing \} \\
\text{③} \quad \delta(q, a) &= \begin{cases}\n q - I & \text{if } q \subseteq \{1, \ldots, m\} \text{ and } I \subseteq q \\
 \perp & \text{if } q \subseteq \{1, \ldots, m\} \text{ and } I \nsubseteq q \\
 \perp & \text{if } q = \perp\n \end{cases} \\
\text{with } I &= \{i \in \{1, \ldots, m\} \mid a_i = 1\}\n\end{aligned}
$$
\n

Example

DFA $A_{2,1}$ with $A = \{1,2\}$, $B = \{1\}$, $C = \{2\}$, $D = \emptyset$

$\mathcal{L}_{\mathsf{a}}(\varphi) = \{ \mathsf{x} \in (\set{0,1}^{m+n})^* \mid \mathsf{x} \text{ is m-admissible and } \underline{\mathsf{x}} \vDash \varphi \}$

Example

$$
\blacktriangleright \varphi(x,X) = \forall y. y < x \rightarrow X(y)
$$

$$
\blacktriangleright L_a(\varphi) = \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right)^* \left[\left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right) + \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right)\right] \left[\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right) + \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right)\right]^*
$$

Theorem

 $L_a(\varphi)$ is regular for every WMSO formula φ

$$
\underset{15/25}{\text{AM}}
$$

Proof

induction on φ

$$
\bullet \ \varphi = \bot \qquad \Longrightarrow \quad L_a(\varphi) = \varnothing
$$

▶ φ = x < y =⇒ La(φ) = 0 0 [∗] 1 0 ⁰ 0 [∗] 0 1 ⁰ 0 ∗ or La(φ) = 0 0 [∗] 0 1 ⁰ 0 [∗] 1 0 ⁰ 0 ∗

 $\blacktriangleright \varphi = X(x) \implies L_a(\varphi) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\binom{0}{1}$ ^{*} $\binom{1}{1}$ $\binom{1}{1}$ $\left[\binom{0}{0} + \binom{0}{1}\right]$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} * & * \\ * & * \end{bmatrix}$

$$
\triangleright \varphi = \neg \psi \quad \implies \quad L_a(\psi) \text{ is regular} \quad \implies \quad \sim L_a(\psi) \text{ is regular}
$$

 \implies L_a(φ) = ∼ L_a(ψ) ∩ L($\mathcal{A}_{m,n}$) is regular (for suitable m and n)

$$
\blacktriangleright \varphi = \varphi_1 \vee \varphi_2 \text{ with } \mathsf{FV}(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)
$$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular but may be defined over different alphabets because φ_1 and φ_2 may have less free variables than φ

applications of inverse homomorphism drop $_i^{-1}$ to $L_a(\varphi_1)$ and $L_a(\varphi_2)$ yield regular sets $\mathcal{L}_1, \mathcal{L}_2 \subseteq (\{0,1\}^{m+n})^*$ such that $\mathcal{L}_a(\varphi) = (\mathcal{L}_1 \cup \mathcal{L}_2) \cap \mathcal{L}(\mathcal{A}_{m,n})$

Example

$$
\varphi = x < y \lor X(x) \text{ with } \text{FV}(\varphi) = (x, y, X)
$$
\n
$$
\triangleright L_a(x < y) = \binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^*
$$
\n
$$
\triangleright L_a(X(x)) = \left[\binom{0}{0} + \binom{0}{1} \right]^* \binom{1}{1} \left[\binom{0}{0} + \binom{0}{1} \right]^*
$$
\n
$$
\triangleright L_1 = \text{drop}_3^{-1} \left(\binom{0}{0}^* \binom{1}{0} \binom{0}{0}^* \binom{0}{1} \binom{0}{0}^* \right) = \binom{0}{x}^* \binom{1}{x} \binom{0}{x}^* \binom{0}{x} \binom{0}{x}^*
$$
\n
$$
\triangleright L_2 = \text{drop}_2^{-1} \left(\left[\binom{0}{0} + \binom{0}{1} \right]^* \left[\binom{1}{1} \left[\binom{0}{0} + \binom{0}{1} \right]^* \right) = \left[\binom{0}{x} + \binom{0}{x} \right]^* \binom{1}{x} \left[\binom{0}{0} + \binom{0}{1} \right]^*
$$
\n
$$
\triangleright L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{2,1})
$$

homomorphism

drop_i:
$$
({0,1}^k)^* \rightarrow ({0,1}^{k-1})^*
$$

is defined for $1\leqslant i\leqslant k$ by dropping *i*-th component from vectors in $\{0,1\}^{k}$

$$
\text{drop}_i\begin{pmatrix}a_1\\ \vdots\\ a_i\\ \vdots\\ a_k\end{pmatrix}=\begin{pmatrix}a_1\\ \vdots\\ \vdots\\ a_k\end{pmatrix}
$$

Lemmata

- \blacktriangleright $A\subseteq (\{0,1\}^{k})^*$ is regular $\implies\;\; \mathsf{drop}_i(A)\subseteq (\{0,1\}^{k-1})^*$ is regular
- \blacktriangleright $B\subseteq (\{0,1\}^{k-1})^*$ is regular \implies drop $^{-1}_i(B)\subseteq (\{0,1\}^{k})^*$ is regular

Proof (cont'd)

- $\triangleright \varphi = \exists x. \psi \implies L_a(\psi)$ is regular
	- $\implies\;\;$ drop $_{i}({\mathcal L}_{\mathsf{a}}(\psi))$ is regular where i is position of x in FV (ψ)
	- $\implies \;\; \mathsf{L}_\mathsf{a}(\varphi) = \mathsf{stz}(\mathsf{drop}_i(\mathsf{L}_\mathsf{a}(\psi)))$ is regular
- $\triangleright \varphi = \exists X. \psi \implies L_a(\psi)$ is regular
	- $\implies\;\;$ drop $_{i}$ ($L_{a}(\psi)$) is regular where i is position of X in FV(ψ)
	- $\implies \;\; \mathsf{L}_\mathsf{a}(\varphi) = \mathsf{stz}(\mathsf{drop}_i(\mathsf{L}_\mathsf{a}(\psi)))$ is regular

Example

$$
\varphi = \exists X. \psi \text{ with } \psi = X(x) \land \exists y. x < y \land X(y)
$$

$$
\quad \blacktriangleright \ L_a(\psi) = \big[\big(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \big) + \big(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \big) \big]^* \big(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \big) \big[\big(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \big) + \big(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \big) \big]^* \big(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \big) + \big(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \big) \big]^*
$$

▶ dro $p_2(L_a(\psi)) = (0+0)^*1(0+0)^*0(0+0)^* = 0^*100^* \neq 0^*10^* = L_a(\varphi)$

$$
\underset{19/25}{\text{AM}}
$$

$$
stz(A) = \{x \mid x0 \cdots 0 \in A\} \text{ for } A \subseteq (\{0,1\}^{m+n})^*
$$

" shorten trailing zeros "

Lemma

 $\mathsf{A}\subseteq (\set{0,1}^k)^*$ is regular $\quad\Longrightarrow\quad \mathsf{stz}(\mathsf{A})$ is regular

Proof

- \blacktriangleright DFA $M = (Q, \Sigma, \delta, s, F)$ with $L(M) = A$
- ► construct DFA $M' = (Q, \Sigma, \delta, s, F')$ with $F' = \{q \in Q \mid \hat{\delta}(q, x) \in F \text{ for some } x \in \mathbf{0}^*\}$
- \blacktriangleright $L(M') = \mathsf{stz}(A)$

Final Task

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- \mathfrak{D} eliminate assignments which do not correspond to string in Σ^*
- **2** map strings in 0*10^{*} to elements of Σ using homomorphismm $h \colon \{0^k10^l \mid k+1+l=|\Sigma|\} \to \Sigma$ which maps 0^k10^l to $k+1$ -th element of Σ

Lemma

 $\mathcal{L}(\varphi)=h(\mathcal{L}_\mathit{a}(\varphi)\cap\{\,\mathsf{0}^k\mathsf{1}\mathsf{0}^l\mid k+1+l=|\Sigma|\}^{\ast})$ is regular

Corollary

WMSO definable sets are regular

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [WMSO Definability](#page-5-0)**
- **3. [Intermezzo](#page-9-0)**
- **4. [WMSO Definability](#page-11-0)**

5. [MONA](#page-21-0)

6. [Further Reading](#page-23-0)

MONA

- ▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- \triangleright WS1S is weak monadic second-order theory of 1 successor = WMSO
- ▶ MONA translates WS1S formulas into minimum-state DFAs
- ▶ MONA confirms validity or produces counterexample

Demo

<https://www.brics.dk/mona/>

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [WMSO Definability](#page-5-0)**
- **3. [Intermezzo](#page-9-0)**
- **4. [WMSO Definability](#page-11-0)**
- **5. [MONA](#page-21-0)**
- **6. [Further Reading](#page-23-0)**

▶ Section 10.9 of [Einführung in die mathematische Logik](https://doi.org/10.1007/978-3-662-58029-5) (Springer Spektrum 2018)

Klarlund and Møller

▶ Section 3 of [MONA Version 1.4 User Manual](https://www.brics.dk/mona/mona14.pdf) (2001)

[homework for November 15](http://cl-informatik.uibk.ac.at/teaching/ws24/al/exercises/06.pdf)