

WS 2024 lecture 6

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- **1. Summary of Previous Lecture**
- **2. WMSO Definability**
- **3. Intermezzo**
- **4. WMSO Definability**
- **5. MONA**
- **6. Further Reading**

universität WS 2024 Automata and Logic lecture 6

AM

Definition

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows: $x \equiv_M y \iff \hat{\delta}(s, x) = \hat{\delta}(s, y)$

Lem[mata](#page-1-0)

- $ightharpoonup$ \equiv_M is [right congru](#page-2-0)ent: for all $x, y \in \Sigma^*$ $x \equiv_M y$ \implies for all $a \in \Sigma$ $xa \equiv_M ya$
- \blacktriangleright \equiv_M refines $L(M)$:
- for all $x, y \in \Sigma^*$ $x \equiv_M y$ \implies either $x, y \in L(M)$ or $x, y \notin L(M)$
- $\triangleright \equiv_M$ is of [finite index:](#page-2-0) \equiv_M has finitely many equivalence classes

Definition

[Myhill–Nerode relation](http://cl-informatik.uibk.ac.at/teaching/ws24/al) for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

AM.

Definition

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

 $x \equiv_L y \iff \text{for all } z \in \Sigma^* \quad (xz \in L \iff yz \in L)$

Theorem

1 for every regular set $L \subseteq \Sigma^*$

there exists one-to-one correspondence (up to isomorphism of automata) between

- \triangleright DFAs for L with input alphabet Σ and without inaccessible states
- \triangleright Myhill–Nerode relations for L
- **2** for every set $L \subseteq \Sigma^*$

```
L is regular \iff L admits Myhill–Nerode relation \iff \equiv is of finite index
```
³ regular sets are WMSO definable

universität [WS 2024 Automata and Logic](http://cl-informatik.uibk.ac.at/~ami) lecture 6 1. **Summary of Previous Lecture**

Automata

▶ (deterministic, non-deterministic, alternating) finite automata

WS 2024 Automata and Logic lecture 6 1. **Summary of Previous Lecture** Contents 5

- \blacktriangleright regular expressions
- ▶ (alternating) Büchi automata

Logic

- \triangleright (weak) monadic second-order logic
- \blacktriangleright Presburger arithmetic
- \blacktriangleright linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. WMSO Definability

- **3. Intermezzo**
- **4. WMSO Definability**
- **5. MONA**
- **6. Further Reading**

Definitions

universität

- \blacktriangleright FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones
- **E** as[signment for](#page-0-0) φ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, i_1, \ldots, i_n)$ such that i_1, \ldots, i_m [are elem](#page-1-0)ents of N and i_1, \ldots, i_n are finite subsets of N

$\varphi = \exists X. X(x) \rightarrow \exists y. x < y \land Y(y)$ FV $(\varphi) = (x, Y)$

Nota[tion](#page-5-0) $\begin{pmatrix} 0 \\ \vdots \end{pmatrix}$ \setminus (*i*,*I*) for $(i_1, \ldots, i_m, i_1, \ldots, i_n)$ 0 AM universität WS 2024 Automata and Logic lecture 6 2. WMSO Definability

Remark

assignments are identified with strings over $\{0,1\}^{m+n}$ (here $k = m + n$)

AM.

Definition

string over $\{0,1\}^{m+n}$ is $m\text{-admissible}$ if first m rows contain exactly one 1 each

Remarks

- \triangleright every *m*-admissible string *x* induces assignment *x*
- \triangleright every assignment is induced by (not necessarily unique) m-admissible string: if x is m-admissible then $x0$ is m-admissible and $x = x0$
- ► if $x, y \in (\{0,1\}^{m+n})^*$ induce same assignment then $x = y \mathbf{0} \cdots \mathbf{0}$ or $y = x \mathbf{0} \cdots \mathbf{0}$
- $\blacktriangleright \epsilon \in (\{0,1\}^{m+n})^*$ is m-admissible if and only if $m=0$
- **►** if $x = (i,1)$ then $|x| > k$ for all $k \in \{i_1, \ldots, i_m\} \cup I_1 \cup \cdots \cup I_n$

Outline

- **1. Summary of Previous Lecture**
- **2. WMSO Definability**

3. Intermezzo

- **4. WMSO Definability**
- **5. MONA**

Outline

6. Further Reading

Lemma

set of m-admissible strings over $\{0,1\}^{m+n}$ is regular

universität WS 2024 Automata and Logic lecture 6 2. **WMSO Definability** 9/25

universität WS 2024 Automata and Logic lecture 6 3. Intermezzo

1. Summary of Previous Lecture

2. WMSO Definability

4. WMSO Definability

6. Further Reading

3. Intermezzo

5. MONA

AM.

Exticify [wit](https://ars.uibk.ac.at/p/80208256)h session ID 802[0 8256](https://ars.uibk.ac.at/p/80208256)

Question

Consi[der the following three strings over](#page-0-0) $\{0,1\}^{1+2}$. Which statements hold ?

- **A** t[he first an](#page-5-0)d third string induce the same assignment
- **B** the second string is 1-admissible
- $X_2(x_1) \rightarrow X_1(x_1)$ [is sati](#page-5-0)sfied by the first string's induced assignment
- **D** the third string induces the assignment $i_1 = 1$, $i_1 = \{0\}$, $i_2 = \{1, 2\}$

AM.

Lemma

set of m -admissible strings over $\,\{0,1\}^{m+n}\,$ is regular

Proof (construction)

define DFA $\mathcal{A}_{m,n} = (0, \Sigma, \delta, s, F)$ with \mathbf{D} $\Sigma = \{0, 1\}^{m+n}$ **2** $Q = 2^{1,...,m}$ ∪ $\{\perp\}$ **3** $s = \{1, ..., m\}$ Φ $F = \{ \varnothing \}$ $\left\{ q - l \mid \text{if } q \subseteq \{1, \ldots, m\} \text{ and } l \subseteq q \right\}$ **5** $\delta(q, a) = \begin{cases} 1 & \text{if } q \geq 0 \\ 0 & \text{if } q \geq 0 \end{cases}$ $\left\lfloor \cdot \right\rfloor$ \perp if $q \subseteq \{1, \ldots, m\}$ and $l \nsubseteq q$ \perp if $q = \perp$ with $I = \{i \in \{1, ..., m\} | a_i = 1\}$

 \blacksquare universität WS 2024 Automata and Logic lecture 6 4. **WMSO Definability** 13/25

AM

 AM

Example

DFA $A_{2,1}$ with $A = \{1, 2\}$, $B = \{1\}$, $C = \{2\}$, $D = \emptyset$

Definition

 $L_{a}(\varphi) = \{x \in (\{0, 1\}^{m+n})^* \mid x \text{ is } m\text{-admissible and } \underline{x} \models \varphi\}$

Example

 $\blacktriangleright \varphi(x, X) = \forall y. y < x \rightarrow X(y)$

 \blacktriangleright $L_a(\varphi) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}^*$

Theorem

 $L_a(\varphi)$ is regular for every WMSO formula φ

Proof

induction on φ

 $\triangleright \varphi = \bot \implies L_a(\varphi) = \varnothing$

- ► $\varphi = x < y \implies L_a(\varphi) = \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \text{ or } L_a(\varphi) = \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)^* \left(\begin{smallmatrix} 1 \\ 0 \end$
- ► $\varphi = X(x)$ \implies $L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- $\triangleright \varphi = \neg \psi \implies L_a(\psi)$ is regular $\implies \neg L_a(\psi)$ is regular

 \implies $L_a(\varphi) = \neg L_a(\psi) \cap L(\mathcal{A}_{m,n})$ is regular (for suitable m and n)

 $\triangleright \varphi = \varphi_1 \vee \varphi_2$ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular but may be defined over different alphabets because φ_1 and φ_2 may have less free variables than φ

applications of inverse homomorphism drop⁻¹ to $L_a(\varphi_1)$ and $L_a(\varphi_2)$ yield regular sets $L_1, L_2 \subseteq (\{0,1\}^{m+n})^*$ such that $L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{m,n})$

Example

- $\varphi = x < y \lor X(x)$ with $FV(\varphi) = (x, y, x)$
- ► L_a(x < y) = $\binom{0}{0}$ ^{*} $\binom{1}{0}$ $\binom{0}{0}$ ^{*} $\binom{0}{1}$ $\binom{0}{0}$ ^{*}
- \blacktriangleright $L_a(X(x)) = \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix}^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix}^*$
- ► L₁ = drop $_3^{-1}$ $\left(\binom{0}{0}^{*} \binom{1}{0} \binom{0}{0}^{*} \binom{0}{1} \binom{0}{0}^{*} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\bigg)^{*}$ $\begin{pmatrix} 1 \\ 0 \\ * \end{pmatrix}$ $\Bigg) \Bigg(\begin{smallmatrix} 0 \ 0 \ 0 \ * \end{smallmatrix}$ $\bigg)^{*}$ $\begin{pmatrix} 0 \\ 1 \\ * \end{pmatrix}$ $\Bigg) \Bigg(\begin{smallmatrix} 0 \ 0 \ 0 \ * \end{smallmatrix}$ ∗

WS 2024 Automata and Logic lecture 6 4. WMSO Definability

- ► L₂ = drop $^{-1}_{2}([{0 \choose 0} + {0 \choose 1}]^*({1 \choose 1}[{0 \choose 0} + {0 \choose 1}]^*) =$ $\left[{0 \choose 0}$ $+$ $\binom{0}{1}$ $\bigg)\bigg]^{*}\begin{pmatrix}1\\ *\\ 1\end{pmatrix}$ $\Bigg) \Bigg[\Bigg(\begin{smallmatrix} 0 \ * \ * \ 0 \end{smallmatrix}$ $+$ $\binom{0}{1}$ [∗]
- \blacktriangleright $L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{2,1})$

Definition

homomorphism

$$
\mathsf{drop}_i \colon (\{0,1\}^k)^* \to (\{0,1\}^{k-1})
$$

∗

is defined for $1\leqslant i\leqslant k$ by dropping *i*-th component from vectors in $\{0,1\}^{k}$

 drop_i $\sqrt{ }$ $\overline{}$ a_1 \vdots \vdots \vdots ak \setminus $\Bigg) =$ $\sqrt{ }$ $\overline{ }$ a_1 _:
 \vdots
 \vdots a_k \setminus $\Big\}$

Lemmata

- ► $A \subseteq (\{0,1\}^k)^*$ is regular $\qquad \Longrightarrow \quad {\sf drop}_i(\mathcal{A}) \subseteq (\{0,1\}^{k-1})^*$ is regular
- \blacktriangleright $B\subseteq (\{0,1\}^{k-1})^*$ is regular $\implies\;$ drop $^{-1}_i(B)\subseteq (\{0,1\}^k)^*$ is regular
- universität
Linnsbruck WS 2024 Automata and Logic lecture 6 4. WMSO Definability

Proof (cont'd)

 \blacksquare universität

- $\triangleright \varphi = \exists x. \psi \implies L_a(\psi)$ is regular
	- $\implies\;\;{\sf drop}_i({\sf L}_{{\sf a}}(\psi))$ is regular where i is position of x in ${\sf FV}(\psi)$
	- \implies $\;$ $\mathsf{L}_{\mathsf{a}}(\varphi) = \mathsf{stz}(\mathsf{drop}_i(\mathsf{L}_{\mathsf{a}}(\psi)))$ is regular
- $\triangleright \varphi = \exists X. \psi \implies L_a(\psi)$ is regular
	- $\implies\;\;$ drop $_{i}(\mathcal{L}_{\mathsf{a}}(\psi))$ is regular where i is position of X in FV (ψ)
	- \implies $\;$ $\mathsf{L}_{\mathsf{a}}(\varphi) = \mathsf{stz}(\mathsf{drop}_i(\mathsf{L}_{\mathsf{a}}(\psi)))$ is regular

Example

- $\varphi = \exists X. \psi$ with $\psi = X(x) \wedge \exists v. x < v \wedge X(v)$
- ► L_a(ψ) = $\begin{bmatrix} {0 \choose 0} + {0 \choose 1} \end{bmatrix}^* \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} {0 \choose 0} + {0 \choose 1} \end{bmatrix}^* \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix}^*$
- ▶ drop₂(L_a(ψ)) = (0 + 0)*1(0 + 0)*0(0 + 0)* = 0*100* ≠ 0*10* = L_a(φ)

 AM

Definition

 $\mathsf{stz}(A) = \{x \mid x\mathbf{0} \cdots \mathbf{0} \in A\}$ for $A \subseteq (\{0,1\}^{m+n})^*$

" shorten trailing zeros "

Lemma

 $A \subseteq (\{0,1\}^k)^*$ is regular \implies stz (A) is regular

Proof

- \triangleright DFA $M = (Q, \Sigma, \delta, s, F)$ with $L(M) = A$
- ► construct DFA $M' = (Q, \Sigma, \delta, s, F')$ with $F' = \{q \in Q \mid \hat{\delta}(q, x) \in F \text{ for some } x \in \mathbf{0}^*\}$
- \blacktriangleright $L(M') =$ stz(A)

Final Task

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- **¹** eliminate assignments which do not correspond to string in Σ ∗
- **2** map strings in 0*10^{*} to elements of Σ using homomorphismm $h \colon \{0^k10^l \mid k+1+l=|\Sigma|\} \to \Sigma$ which maps 0^k10^l to $k+1$ -th element of Σ

Lemma

 $\mathsf{L}(\varphi)=h(\mathsf{L}_\mathsf{a}(\varphi)\cap\{\mathsf{0}^k\mathsf{1}\mathsf{0}^l\ |\ k+1+l=|\mathsf{\Sigma}|\}^*)$ is regular

Corollary

WMSO definable sets are regular

universität WS 2024 Automata and Logic lecture 6 4. **WMSO Definability** 21/25

Outline

- **1. Summary of Previous Lecture**
- **2. WMSO Definability**
- **3. Intermezzo**
- **4. WMSO Definability**

5. MONA

6. Further Reading

MONA

- ▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- \triangleright WS[1S is weak monadic second-order theo](#page-0-0)ry of 1 successor = WMSO
- ▶ M[ONA translates WS1S form](#page-1-0)ulas into minimum-state DFAs
- ▶ MONA confirms validity or produces counterexample

Outline

- **1. Summary of Previous Lecture**
- **2. WMSO Definability**
- **3. Intermezzo**
- **4. WMSO Definability**
- **5. MONA**
- **6. Further Reading**

http[s://www.brics.dk/mo](#page-5-0)na/

AM_

AM

Ebbinghaus, Flum and Thomas

▶ Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

Klarlund and Møller

▶ Section 3 of MONA Version 1.4 User Manual (2001)

