

WS 2024 lecture 6

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

universitat WS 2024 Automata and Logic lecture 6

Definition

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows: $x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$

Lemmata

- ► \equiv_M is right congruent: for all $x, y \in \Sigma^*$ $x \equiv_M y$ \implies for all $a \in \Sigma$ $xa \equiv_M ya$
- $\blacktriangleright \equiv_M$ refines L(M):
- L(M): for all $x, y \in \Sigma^*$ $x \equiv_M y \implies$ either $x, y \in L(M)$ or $x, y \notin L(M)$
- ▶ \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

Definition

Myhill–Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

__A_M__

Definition

for any set $L \subseteq \Sigma^*$ equivalence relation \equiv_L on Σ^* is defined as follows:

 $x \equiv_L y \iff$ for all $z \in \Sigma^*$ $(xz \in L \iff yz \in L)$

Theorem

1 for every regular set $L \subseteq \Sigma^*$

there exists one-to-one correspondence (up to isomorphism of automata) between

- DFAs for *L* with input alphabet Σ and without inaccessible states
- Myhill–Nerode relations for L
- **2** for every set $L \subseteq \Sigma^*$

```
L is regular \iff L admits Myhill–Nerode relation \iff \equiv_L is of finite index
```

8 regular sets are WMSO definable

Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

Logic

(weak) monadic second-order logic

WS 2024 Automata and Logic lecture 6

- Presburger arithmetic
- linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. WMSO Definability

- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

A.M						A.M.	
5/25	universität innsbruck	WS 2024	Automata and Logic	lecture 6	2. WMSO Definability	6/25	

Definitions

universität

 FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding second-order ones

1. Summary of Previous Lecture Contents

► assignment for φ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, I_1, \ldots, I_n)$ such that i_1, \ldots, i_m are elements of \mathbb{N} and I_1, \ldots, I_n are finite subsets of \mathbb{N}

Example								
		0	1	2	3	4	5	induced assignment
	x_1	0	0	0	1	0	0	<i>i</i> ₁ = 3
	X_1	1	0	1	0	1	0	$I_1 = \{0, 2, 4\}$
	X ₂	0	0	0	0	0	0	$I_2 = \emptyset$

Example

 $\varphi = \exists X. X(x) \rightarrow \exists y. x < y \land Y(y)$

 $\mathsf{FV}(\varphi) = (\mathbf{X}, \mathbf{Y})$

Notation (i, I) for $(i_1, \dots, i_m, l_1, \dots, l_n)$ $\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ universität WS 2024 Automata and Logic Exture 6 2. WMSO Definability 7/25

Remark

assignments are identified with strings over $\{0,1\}^{m+n}$ (here k = m+n)

a ₁₁	a ₂₁	• • •	$a_{\ell 1}$		$\left(a_{11}\right)$	(a_{21}	$\left(a_{\ell 1}\right)$
÷	÷		÷	\approx	÷		÷	 :
a _{1k}	a_{2k}		$a_{\ell k}$		$\left(a_{1k}\right)$		a _{2k})	$\left(a_{\ell k}\right)$

Definition

string over $\{0,1\}^{m+n}$ is *m*-admissible if first *m* rows contain exactly one 1 each

Remarks

- every *m*-admissible string *x* induces assignment \underline{x}
- every assignment is induced by (not necessarily unique) *m*-admissible string: if *x* is *m*-admissible then $x\mathbf{0}$ is *m*-admissible and $\underline{x} = x\mathbf{0}$
- ▶ if $x, y \in (\{0, 1\}^{m+n})^*$ induce same assignment then $x = y \mathbf{0} \cdots \mathbf{0}$ or $y = x \mathbf{0} \cdots \mathbf{0}$
- $\epsilon \in (\{0,1\}^{m+n})^*$ is *m*-admissible if and only if m = 0
- ▶ if $\underline{x} = (i, I)$ then |x| > k for all $k \in \{i_1, \dots, i_m\} \cup I_1 \cup \dots \cup I_n$

Lemma

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

universitat
 WS 2024 Automata and Logic lecture 6
 2. WMSO Definability
 innsbruck

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability

3. Intermezzo

- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

universität WS 2024 Automata and Logic lecture 6 3. Intermezzo Innsbruck _A.M_

Furticify with session ID 8020 8256

Question

Consider the following three strings over $\{0,1\}^{1+2}$. Which statements hold ?

	0	1	2	0	1	2		0	1	2	3
<i>x</i> ₁	0	1	0	0	0	0		0	1	0	0
<i>X</i> ₁	1	0	0	1	0	0		1	0	0	0
X ₂	0	1	1	0	1	1		0	1	1	0

- A the first and third string induce the same assignment
- **B** the second string is 1-admissible
- **C** $X_2(x_1) \rightarrow X_1(x_1)$ is satisfied by the first string's induced assignment
- **D** the third string induces the assignment $i_1 = 1$, $I_1 = \{0\}$, $I_2 = \{1, 2\}$

11/25

A.M_

9/25

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo

4. WMSO Definability

- 5. MONA
- 6. Further Reading

Lemma

set of *m*-admissible strings over $\{0,1\}^{m+n}$ is regular

Proof (construction)

define DFA $\mathcal{A}_{m,n} = (Q, \Sigma, \delta, s, F)$ with (1) $\Sigma = \{0, 1\}^{m+n}$ (2) $Q = 2^{\{1,...,m\}} \cup \{\bot\}$ (3) $s = \{1, ..., m\}$ (4) $F = \{\varnothing\}$ (5) $\delta(q, a) = \begin{cases} q - I & \text{if } q \subseteq \{1, ..., m\} \text{ and } I \subseteq q \\ \bot & \text{if } q \subseteq \{1, ..., m\} \text{ and } I \nsubseteq q \\ \bot & \text{if } q = \bot \end{cases}$ with $I = \{i \in \{1, ..., m\} \mid a_i = 1\}$

universität WS 2024 Automata and Logic lecture 6 4. WMSO Definability

Example

DFA $A_{2,1}$ with $A = \{1, 2\}, B = \{1\}, C = \{2\}, D = \emptyset$

Definition

 $L_{a}(\varphi) = \{ x \in (\{0,1\}^{m+n})^{*} \mid x \text{ is } m \text{-admissible and } \underline{x} \vDash \varphi \}$

Example

 $\blacktriangleright \varphi(x,X) = \forall y. y < x \rightarrow X(y)$

 $\succ L_{a}(\varphi) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{*} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right] \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^{*}$

Theorem

 $L_a(\varphi)$ is regular for every WMSO formula φ

A.M_ 15/25

A.M_

13/25

Proof

induction on φ

- $\blacktriangleright \varphi = \bot \qquad \Longrightarrow \quad L_{\mathsf{a}}(\varphi) = \varnothing$
- $\varphi = x < y \implies L_{a}(\varphi) = {\binom{0}{0}}^{*} {\binom{1}{0}} {\binom{0}{0}}^{*} {\binom{0}{1}} {\binom{0}{0}}^{*} \text{ or } L_{a}(\varphi) = {\binom{0}{0}}^{*} {\binom{0}{1}} {\binom{0}{0}}^{*} {\binom{1}{0}} {\binom{0}{0}}^{*}$
- $\varphi = X(x) \implies L_a(\varphi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \left(\begin{smallmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- $\varphi = \neg \psi \implies L_a(\psi)$ is regular $\implies \sim L_a(\psi)$ is regular

 \implies $L_a(\varphi) = \sim L_a(\psi) \cap L(\mathcal{A}_{m,n})$ is regular (for suitable *m* and *n*)

• $\varphi = \varphi_1 \lor \varphi_2$ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$

 $L_a(\varphi_1)$ and $L_a(\varphi_2)$ are regular but may be defined over different alphabets because φ_1 and φ_2 may have less free variables than φ

applications of inverse homomorphism drop_i⁻¹ to $L_a(\varphi_1)$ and $L_a(\varphi_2)$ yield regular sets $L_1, L_2 \subseteq (\{0, 1\}^{m+n})^*$ such that $L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{m,n})$

Example

- $\varphi = x < y \lor X(x)$ with $FV(\varphi) = (x, y, X)$
- $L_a(x < y) = {\binom{0}{0}}^* {\binom{1}{0}} {\binom{0}{0}}^* {\binom{0}{0}}^* {\binom{0}{0}}^*$
- $\succ L_a(X(x)) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- ► $L_1 = \operatorname{drop}_3^{-1}(\begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \\ * \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \\ * \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}^*$

lecture 6

 $\blacktriangleright L_2 = \operatorname{drop}_2^{-1}(\left[\begin{pmatrix}0\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}\right]^* \begin{pmatrix}1\\1\end{pmatrix}\left[\begin{pmatrix}0\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}\right]^*\right) = \left[\begin{pmatrix}0*\\0\end{pmatrix} + \begin{pmatrix}0*\\1\end{pmatrix}\right]^* \begin{pmatrix}1*\\1\end{pmatrix}\left[\begin{pmatrix}0*\\0\end{pmatrix} + \begin{pmatrix}0*\\1\end{pmatrix}\right]^*$

4. WMSO Definability

 $\blacktriangleright L_a(\varphi) = (L_1 \cup L_2) \cap L(\mathcal{A}_{2,1})$

Definition

homomorphism

drop_i:
$$(\{0,1\}^k)^* \to (\{0,1\}^{k-1})^*$$

is defined for $1 \le i \le k$ by dropping *i*-th component from vectors in $\{0,1\}^k$

$$\operatorname{drop}_{i}\begin{pmatrix}a_{1}\\\vdots\\a_{i}\\\vdots\\a_{k}\end{pmatrix}=\begin{pmatrix}a_{1}\\\vdots\\\vdots\\a_{k}\end{pmatrix}$$

Lemmata

$A \subseteq (\{0,1\}^k)^*$ is regular	\implies	$drop_i(A) \subseteq (\{0,1\}^{k-1})^*$ is regular
		1

 $\blacktriangleright B \subseteq (\{0,1\}^{k-1})^* \text{ is regular} \implies \operatorname{drop}_i^{-1}(B) \subseteq (\{0,1\}^k)^* \text{ is regular}$

					A.M.
universität innsbruck	WS 2024	Automata and Logic	lecture 6	4. WMSO Definability	18/25

Proof (cont'd)

universität innsbruck

• $\varphi = \exists x. \psi \implies L_a(\psi)$ is regular

WS 2024 Automata and Logic

- \implies drop_i(L_a(ψ)) is regular where *i* is position of *x* in FV(ψ)
- \implies $L_a(\varphi) = \operatorname{stz}(\operatorname{drop}_i(L_a(\psi)))$ is regular
- $\varphi = \exists X. \psi \implies L_a(\psi)$ is regular
 - \implies drop_i(L_a(ψ)) is regular where *i* is position of *X* in FV(ψ)
 - $\implies L_a(\varphi) = \operatorname{stz}(\operatorname{drop}_i(L_a(\psi)))$ is regular

Example

 $\varphi = \exists X. \psi \text{ with } \psi = X(x) \land \exists y. x < y \land X(y)$

- $L_a(\psi) = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$
- ► drop₂($L_a(\psi)$) = (0 + 0)*1(0 + 0)*0(0 + 0)* = 0*100* ≠ 0*10* = $L_a(\varphi)$

AM_

17/25

Definition			
$stz(A) = \{x \mid x0\cdots0 \in A\}$	for A	\subseteq ({0,1}	^{m+n})*

" shorten trailing zeros "

Lemma

 $A \subseteq (\{0,1\}^k)^*$ is regular \implies stz(A) is regular

Proof

- ▶ DFA $M = (Q, \Sigma, \delta, s, F)$ with L(M) = A
- construct DFA $M' = (Q, \Sigma, \delta, s, F')$ with $F' = \{q \in Q \mid \widehat{\delta}(q, x) \in F \text{ for some } x \in \mathbf{0}^*\}$
- L(M') = stz(A)

Final Task

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with free variables in $\{P_a \mid a \in \Sigma\}$ using regularity preserving operations

Procedure

- 1 eliminate assignments which do not correspond to string in Σ^*
- (2) map strings in 0*10* to elements of Σ using homomorphismm $h: \{0^k 10^l | k + 1 + l = |\Sigma|\} \rightarrow \Sigma$ which maps $0^k 10^l$ to k+1-th element of Σ

Lemma

 $L(\varphi) = h(L_a(\varphi) \cap \{0^k 10^l \mid k+1+l = |\Sigma|\}^*)$ is regular

Corollary

WMSO definable sets are regular

universität WS 2024 Automata and Logic lecture 6 4. WMSO Definability Innsbruck

Outline

- **1. Summary of Previous Lecture**
- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability

5. MONA

6. Further Reading

universität WS 2024 Automata and Logic lecture 6 5. MONA

__A_M__ 22/25

MONA

- MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- WS1S is weak monadic second-order theory of 1 successor = WMSO
- MONA translates WS1S formulas into minimum-state DFAs
- MONA confirms validity or produces counterexample

Outline

1. Summary of Previous Lecture

6. Further Reading

- 2. WMSO Definability
- 3. Intermezzo
- 4. WMSO Definability
- 5. MONA
- 6. Further Reading

https://www.brics.dk/mona/

A.M_ 23/25

A.M.

21/25

Ebbinghaus, Flum and Thomas

• Section 10.9 of Einführung in die mathematische Logik (Springer Spektrum 2018)

Klarlund and Møller

Section 3 of MONA Version 1.4 User Manual (2001)

Importan	t Concepts			
► drop _i		▶ <i>m</i> -admissible	► stz	
► L _a (φ)		MONA	► WS1S	
		homework for November 15		
universität	WS 2024 Automata and Logic le	cture 6 6. Further Reading		A.M 25/25