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Definitions

▶ FV(φ) denotes list of free variables in φ in fixed order with first-order variables preceding

second-order ones

▶ assignment for φ with FV(φ) = (x1, . . . , xm, X1, . . . , Xn) is tuple (i1, . . . , im, I1, . . . , In)

such that i1, . . . , im are elements of N and I1, . . . , In are finite subsets of N

▶ assignments are identified with strings over {0,1}m+n

▶ string over {0,1}m+n is m-admissible if first m rows contain exactly one 1 each

Remarks

▶ every m-admissible string x induces assignment x

▶ every assignment is induced by (not necessarily unique) m-admissible string:

if x is m-admissible then x000 is m-admissible and x = x000
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Lemma

set of m-admissible strings over {0,1}m+n is regular and accepted by DFA Am,n

Definition

La(φ) = {x ∈ ({0,1}m+n)∗ | x is m-admissible and x ⊨ φ}

Theorem

La(φ) is regular for every WMSO formula φ

Definitions

▶ homomorphism drop i : ({0,1}k)∗ → ({0,1}k−1)∗ is defined for 1 ⩽ i ⩽ k by dropping i-th

component from vectors in {0,1}k

▶ stz(A) = {x | x000 · · ·000 ∈ A} ⊇ A for A ⊆ ({0,1}m+n)∗ " shorten trailing zeros "
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Lemma

A ⊆ ({0,1}k)∗ is regular =⇒ stz(A) is regular

Final Task

transform La(φ) into L(φ) for WMSO formula φ with FV(φ) = {Pa | a ∈ Σ∗} using regularity

preserving operations

Procedure

1 eliminate assignments which do not correspond to string in Σ∗

2 map strings in 0∗10∗ to elements of Σ using homorphism h : {0,1}|Σ| → Σ which maps

0k10l to k+1-th element of Σ

Lemma

L(φ) = h(La(φ) ∩ {0k10l | k + 1 + l = |Σ|}∗) is regular
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Corollary

WMSO definable sets are regular

MONA

▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S

▶ WS1S is weak monadic second-order theory of 1 successor = WMSO
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Automata

▶ (deterministic, non-deterministic, alternating) finite automata

▶ regular expressions

▶ (alternating) Büchi automata

Logic

▶ (weak) monadic second-order logic

▶ Presburger arithmetic

▶ linear-time temporal logic
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Definition

formulas of Presburger arithmetic

φ ::= ⊥ | ¬φ | φ1 ∨ φ2 | ∃ x. φ | t1 = t2 | t1 < t2

t ::= 0 | 1 | t1 + t2 | x

Examples

1 ∃ y. x = y+ y+ y+ 1

2 ∀ x. (∃ y. x = y+ y) ∨ (∃ y. x+ 1 = y+ y)

Abbreviations

φ ∧ ψ := ¬(¬φ ∨ ¬ψ) φ→ ψ := ¬φ ∨ ψ ⊤ := ¬⊥
∀ x. φ := ¬∃ x.¬φ t1 ⩽ t2 := t1 < t2 ∨ t1 = t2

n := 1 + · · ·+ 1︸ ︷︷ ︸
n

n x := x+ · · ·+ x︸ ︷︷ ︸
n

for n > 1

WS 2024 Automata and Logic lecture 7 2. Presburger Arithmetic 9/37



Definitions

▶ assignment α is mapping from first-order variables to N

▶ extension to terms: α(0) = 0 α(1) = 1 α(t1 + t2) = α(t1) + α(t2)

▶ assignment α satisfies formula φ (α ⊨ φ):

α ⊭ ⊥
α ⊨ ¬φ ⇐⇒ α ⊭ φ

α ⊨ φ1 ∨ φ2 ⇐⇒ α ⊨ φ1 or α ⊨ φ2

α ⊨ ∃ x. φ ⇐⇒ α [ x 7→ n ] ⊨ φ for some n ∈ N

α ⊨ t1 = t2 ⇐⇒ α(t1) = α(t2)

α ⊨ t1 < t2 ⇐⇒ α(t1) < α(t2)

Remark

t1 < t2 can be modeled as ∃ x. x ̸= 0 ∧ t1 + x = t2
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Remark

every t1 = t2 can be written as a1x1 + · · ·+ anxn = b with a1, . . . , an, b ∈ Z

Side Remark

Presburger arithmetic admits complete first-order axiomatization:

▶ ∀ x. x+ 1 ̸= 0

▶ ∀ x.∀ y. x+ 1 = y+ 1 → x = y

▶ induction

ψ(0) ∧ ∀ x. (ψ(x) → ψ(x+ 1)) → ∀ x. ψ(x)

for every formula ψ(x) with single free variable x

▶ ∀ x. x+ 0 = x

▶ ∀ x.∀ y. x+ (y+ 1) = (x+ y) + 1
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Example (Frobenius Coin Problem)

given natural numbers a1, . . . , an > 0

(∀ y. x < y → ∃ x1. . . .∃ xn. a1x1 + · · ·+ anxn = y) ∧ ¬(∃ x1. . . .∃ xn. a1x1 + · · ·+ anxn = x)

expresses largest number x that does not satisfy a1x1 + · · ·+anxn = x for some x1, . . . , xn ∈ N
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Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

▶ quantifier elimination

▶ automata techniques

▶ translation to WMSO
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Example

Presburger arithmetic formula φ : x+ 2y− 3z = 2

some accepted strings:

▶

0
1
0

 x = 0 y = 1 z = 0

▶

0
1
0


1

1
1

 x = (10)2 = 2 y = (11)2 = 3 z = (10)2 = 2

▶

1
1
1


0

1
1


1

1
0


0

1
1

 x = (0101)2 = 5 y = (1111)2 = 15 z = (1011)2 = 11

some rejected strings:

▶

0
0
0

 x = 0 y = 0 z = 0

▶

0
1
0


1

0
1


0

1
1

 x = (010)2 = 2 y = (101)2 = 5 z = (110)2 = 6
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Example (cont’d)

x+ 2y− 3z = 2 x+ 2y− 3z = 0 x+ 2y− 3z = − 2

x+ 2y− 3z = 1 x+ 2y− 3z = − 1

1
0
1

 0
1
0



0
0
0


1

1
1



0
0
0


1

1
1



0
0
1



0
1
1



1
1
0


0

0
1



1
1
0


0

0
0


1

1
1



0
1
0

1
0
1



1
0
0



1
0
1



1
0
0


0

1
0



0
1
1
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Definition (Representation)

▶ sequence of n natural numbers is represented as string over

Σn = {(b1 · · · bn)T | b1, . . . , bn ∈ {0,1}}

▶ x =


b1

1

...

b1
n



b2

1

...

b2
n

 · · ·


bm1
...

bmn

 ∈ Σ∗
n represents x1 = (bm1 · · · b2

1b
1
1)2, . . . , xn = (bmn · · · b2

nb
1
n)2

▶ x = (x1, . . . , xn)

Example

▶

0
1
0


1

1
1


0

1
1


1

0
0

 represents x1 = 10, x2 = 7, x3 = 6

▶ x1 = 1, x2 = 2, x3 = 3 is represented by

1
0
1


0

1
1

,

1
0
1


0

1
1


0

0
0

, . . .
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Definition

for Presburger arithmetic formula φ with FV(φ) = (x1, . . . , xn)

L(φ) = {x ∈ Σ∗
n | x ⊨ φ}

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Proof Sketch

▶ construct finite automaton Aφ for every Presburger arithmetic formula φ

▶ induction on φ

▶ L(Aφ) = L(φ)
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with session ID 8020 8256

Question

Consider the following automaton A:

1 23

(
0
0

) (
1
1

)(
0
1

) (
1
0

)
(
∗
∗

)(
∗
∗

)

For which of the following formulas φ does L(A) = L(φ) hold ?

A x = y

B x+ y > 0

C ∃ z. x+ y = 2z

D
(
∃ z. x = 2z ∧ ∀ z.¬(y = 2z)

)
∨
(
∃ z. y = 2z ∧ ∀ z.¬(x = 2z)

)
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Definition (Automaton for Atomic Formula)

DFA Aφ = (Q,Σn, δ, s, F) for φ(x1, . . . , xn) : a1x1 + · · ·+ anxn = b

▶ Q ⊆ { i | | i | ⩽ |b|+ |a1|+ · · ·+ |an|} ∪ {⊥}

▶ δ(i, (b1 · · ·bn)T) =


i− (a1b1 + · · ·+ anbn)

2
if i− (a1b1 + · · ·+ anbn) is even

⊥ if i− (a1b1 + · · ·+ anbn) is odd or i = ⊥
▶ s = b

▶ F = {0}

Lemma

if δ(i, (b1 · · ·bn)T) = j then a1x1 + · · ·+ anxn = j ⇐⇒ a1(2x1 + b1) + · · ·+ an(2xn + bn) = i

Theorem

1 Aφ is well-defined

2 L(Aφ) = L(φ)
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Example

φ(x, y) : x+ 2y = 3

▶ Q = {3,⊥,1,0,−1,−2 } s = 3 F = {0}

▶ δ(3,
(

0
0

)
) = δ(3,

(
0
1

)
) = ⊥ δ(3,

(
1
0

)
) = 1 δ(3,

(
1
1

)
) = 0

▶ δ(⊥,
(

0
0

)
) = δ(⊥,

(
0
1

)
) = δ(⊥,

(
1
0

)
) = δ(⊥,

(
1
1

)
) = ⊥

▶ δ(1,
(

0
0

)
) = δ(1,

(
0
1

)
) = ⊥ δ(1,

(
1
0

)
) = 0 δ(1,

(
1
1

)
) = −1

▶ δ(0,
(

1
0

)
) = δ(0,

(
1
1

)
) = ⊥ δ(0,

(
0
0

)
) = 0 δ(0,

(
0
1

)
) = −1

▶ δ(−1,
(

0
0

)
) = δ(−1,

(
0
1

)
) = ⊥ δ(−1,

(
1
0

)
) = −1 δ(−1,

(
1
1

)
) = −2

▶ δ(−2,
(

1
0

)
) = δ(−2,

(
1
1

)
) = ⊥ δ(−2,

(
0
0

)
) = −1 δ(−2,

(
0
1

)
) = −2
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Example

φ(x, y) : x+ 2y = 3

3 1

0 −1 −2

(
1
0

)

(
1
1

)

(
0
0

)

(
1
0

)

(
0
1

)

(
1
1

)

(
1
0

)

(
1
1

)

(
0
0

)
(

0
1

)
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Theorem

1 Aφ is well-defined

2 L(Aφ) = L(φ)

Proof

▶ q ∈ Q ⊆ { i | | i | ⩽ |b|+ |a1|+ · · ·+ |an|} ∪ {⊥} and b′ = (b1 · · ·bn)T ∈ Σn

▶ if q = ⊥ or i− (a1b1 + · · ·+ anbn) is odd then δ(q,b′) = ⊥

▶ suppose q = i with | i | ⩽ |b|+ |a1|+ · · ·+ |an| and i− (a1b1 + · · ·+ anbn) is even

δ(i,b′) =
i− (a1b1 + · · ·+ anbn)

2
∈ Q

| i− (a1b1 + · · ·+ anbn)| ⩽ | i |+ |a1b1|+ · · ·+ |anbn|
⩽ | i |+ |a1|+ · · ·+ |an|
⩽ 2(|b|+ |a1|+ · · ·+ |an|)
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Boolean Operations

boolean operation automata construction

¬ complement C

∧ intersection I

∨ union U

Example

Presburger arithmetic formula

¬ ((x+ 2y− 3z ̸= 2 ∧ 2x− y+ z = 3) ∨ x− 3y− z ̸= 1))

is implemented as

C(U(I(C(A x+2y−3z=2),A 2x−y+z=3),C(A x−3y−z=1)))

WS 2024 Automata and Logic lecture 7 4. Presburger Arithmetic Boolean Operations 26/37



Example

Presburger arithmetic formula

x+ 2y− 3z = 2 ∧ x+ 2y = 3

▶ A x+2y−3z=2 operates on alphabet Σ3 = ({0,1}3)T

▶ A x+2y=3 operates on alphabet Σ2 = ({0,1}2)T

▶ before intersection can be computed A x+2y=3 needs to operate on Σ3

Definition (Cylindrification)

C i (R) ⊆ Σ∗
n+1 is defined for R ⊆ Σ∗

n and index 1 ⩽ i ⩽ n+ 1 as

C i (R) =
{
x1 · · · xm ∈ Σ∗

n+1

∣∣ drop i (x1) · · · drop i (xm) ∈ R
}

with drop i

(
(b1 · · ·bn+1)

T
)
= (b1 · · ·bi−1bi+1 · · ·bn+1)

T
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Example

▶ L(A x+2y=3) =

{(
1
1

)
,
(

1
0

)(
1
0

)}{(
0
0

)}∗

▶ L(C3(A x+2y=3)) =

{1
1
0

,
1

1
1

,
1

0
0


1

0
0

,
1

0
0


1

0
1

,
1

0
1


1

0
0

,
1

0
1


1

0
1


} {0

0
0

,
0

0
1


}∗

Lemma

if R ⊆ Σ∗
n is regular then C i (R) ⊆ Σ∗

n+1 is regular for every 1 ⩽ i ⩽ n+ 1

Remark

▶ drop i is homomorphism from Σ∗
n+1 to Σ∗

n

▶ C i (R) = drop−1
i (R)
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Definition (Projection)

Π i (R) ⊆ Σ∗
n is defined for R ⊆ Σ∗

n+1 and index 1 ⩽ i ⩽ n+ 1 as

Π i (R) = {drop i (x1) · · · drop i (xm) ∈ Σ∗
n

∣∣ x1 · · · xm ∈ R}

Lemma

if R ⊆ Σ∗
n+1 is regular then Π i (R) ⊆ Σ∗

n is regular for every 1 ⩽ i ⩽ n+ 1

Example

1 solutions of ∃ y. x+ 2y− 3z = 2 correspond to stz(Π2(A x+2y−3z=2))

2 solutions of ∀ y. x+ 2y− 3z = 2 correspond to C(stz(Π2(C(A x+2y−3z=2))))
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Example

2 0 −2

1 −1

1

0

1

 0

1

0



0

0

0


1

1

1



0

0

0


1

1

1



0

0

1



0

1

1



1

1

0



0

0

1



1

1

0


0

0

0


1

1

1



0

1

0

1

0

1



1

0

0



1

0

1



1

0

0


0

1

0



0

1

1



Π2(A x+2y−3z=2)

WS 2024 Automata and Logic lecture 7 4. Presburger Arithmetic Quantifiers 31/37



Outline

1. Summary of Previous Lecture

2. Presburger Arithmetic

3. Intermezzo

4. Presburger Arithmetic

5. WMSO

6. Further Reading

WS 2024 Automata and Logic lecture 7 5. WMSO 32/37



Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

▶ quantifier elimination

▶ automata techniques

▶ translation to WMSO
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Procedure

▶ map variables in Presburger arithmetic formula to second-order variables in WMSO

▶ n is represented as set of "1" positions in reverse binary notation of n

▶ 0 and 1 in Presburger arithmetic formulas are translated into ZERO and ONE with

∀ x.¬ZERO(x) ∀ x.ONE(x) ↔ x = 0

▶ + in Presburger arithmetic formula is translated into ternary predicate P+ with

P+(X, Y,Z) := ∃ C.¬C(0) ∧
(
∀ x.C(x+ 1) ↔ X(x) ∧ Y(x) ∨ X(x) ∧ C(x) ∨ Y(x) ∧ C(x)

)
∧(

∀ x.Z(x) ↔ X(x) ∧ Y(x) ∧ C(x) ∨ X(x) ∧ ¬Y(x) ∧ ¬C(x)∨
¬X(x) ∧ Y(x) ∧ ¬C(x) ∨ ¬X(x) ∧ ¬Y(x) ∧ C(x)

)
Example

26 is represented by {1,3,4} since (26)2 = 11010
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Example

Presburger arithmetic formula ∃ y. x = y+ y+ 1 is transformed into WMSO formula(
∀ x.ONE(x) ↔ x = 0

)
∧ ∃ Y.∃ Z. P+(Y, Y,Z) ∧ P+(Z,ONE,X)

Corollary

Presburger arithmetic is decidable
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Boudet and Comon

▶ Diophantine Equations, Presburger Arithmetic and Finite Automata, Proc. 21st International

Colloquium on Trees in Algebra and Programming, LNCS 1059, pp. 30 – 43, 1996

Esparza and Blondin

▶ Chapter 9 of Automata Theory: An Algorithmic Approach (MIT Press 2023)

Important Concepts

▶ Aφ ▶ L(φ) ▶ cylindrification ▶ projection ▶ Presburger arithmetic

homework for November 22
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