

WS 2024 lecture 7

[Automata and Logic](http://cl-informatik.uibk.ac.at/teaching/ws24/al)

[Aart Middeldorp](http://cl-informatik.uibk.ac.at/~ami) and Johannes Niederhauser

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Presburger Arithmetic](#page-7-0)**
- **3. [Intermezzo](#page-17-0)**
- **4. [Presburger Arithmetic](#page-19-0)**
- **5. [WMSO](#page-31-0)**
- **6. [Further Reading](#page-35-0)**

Definitions

- \blacktriangleright FV(\varnothing) denotes list of free variables in \varnothing in fixed order with first-order variables preceding second-order ones
- \triangleright assignment for φ with $FV(\varphi) = (x_1, \ldots, x_m, X_1, \ldots, X_n)$ is tuple $(i_1, \ldots, i_m, I_1, \ldots, I_n)$ such that i_1, \ldots, i_m are elements of N and i_1, \ldots, i_n are finite subsets of N
- \blacktriangleright assignments are identified with strings over $\set{0,1}^{m+n}$
- ► string over $\{0,1\}^{m+n}$ is m-admissible if first m rows contain exactly one 1 each

Remarks

- \rightarrow every *m*-admissible string x induces assignment x
- **every assignment is induced by (not necessarily unique)** m -admissible string: if x is m-admissible then $x0$ is m-admissible and $x = x0$

Lemma

set of m -admissible strings over $\,\{0,1\}^{m+n}\,$ is regular and accepted by DFA $\,{\cal A}_{m,n}\,$

Definition

$$
L_a(\varphi) = \{ x \in (\{0,1\}^{m+n})^* \mid x \text{ is } m\text{-admissible and } \underline{x} \models \varphi \}
$$

Theorem

 $L_a(\varphi)$ is regular for every WMSO formula φ

Definitions

- ► homomorphism $\mathsf{drop}_i\colon (\{0,1\}^k)^* \to (\{0,1\}^{k-1})^*$ is defined for $1 \leqslant i \leqslant k$ by dropping *i*-th component from vectors in $\{0,1\}^k$
- ► stz(A) = $\{x \mid x \mathbf{0} \cdots \mathbf{0} \in A\} \supseteq A$ for $A \subseteq (\{0, 1\}^{m+n})^*$

" shorten trailing zeros "

Lemma

$\mathsf{A}\subseteq (\set{0,1}^k)^*$ is regular $\quad\Longrightarrow\quad \mathsf{stz}(\mathsf{A})$ is regular

Final Task

transform $L_a(\varphi)$ into $L(\varphi)$ for WMSO formula φ with $\mathsf{FV}(\varphi)=\{P_a\ |\ a\in\Sigma^*\}$ using regularity preserving operations

Procedure

- $\mathfrak D$ eliminate assignments which do not correspond to string in Σ^*
- 2 map strings in 0*10* to elements of Σ using homorphism h : $\{0,1\}^{|\Sigma|} \to \Sigma$ which maps 0^k10^l to $k+1$ -th element of Σ

Lemma

 $\mathsf{L}(\varphi)=\mathsf{h}(\mathsf{L}_\mathsf{a}(\varphi)\cap\{\mathsf{0}^k\mathsf{1}\mathsf{0}^l\ |\ k+1+l=|\mathsf{\Sigma}|\}^*)$ is regular

Corollary

WMSO definable sets are regular

MONA

- ▶ MONA is state-of-the-art tool that implements decision procedures for WS1S and WS2S
- \triangleright WS1S is weak monadic second-order theory of 1 successor = WMSO

Automata

- ▶ (deterministic, non-deterministic, alternating) finite automata
- \blacktriangleright regular expressions
- ▶ (alternating) Büchi automata

Logic

- ▶ (weak) monadic second-order logic
- ▶ Presburger arithmetic
- ▶ linear-time temporal logic

1. [Summary of Previous Lecture](#page-2-0)

2. [Presburger Arithmetic](#page-7-0)

3. [Intermezzo](#page-17-0)

- **4. [Presburger Arithmetic](#page-19-0)**
- **5. [WMSO](#page-31-0)**
- **6. [Further Reading](#page-35-0)**

Definition

formulas of Presburger arithmetic

$$
\varphi \ ::= \ \perp \ | \ \neg \varphi \ | \ \varphi_1 \vee \varphi_2 \ | \ \exists \ x. \ \varphi \ | \ t_1 = t_2 \ | \ t_1 < t_2
$$
\n
$$
t \ ::= \ 0 \ | \ 1 \ | \ t_1 + t_2 \ | \ x
$$

Examples

$$
3y. x = y + y + y + 1
$$

$$
x \forall x. (\exists y. x = y + y) \vee (\exists y. x + 1 = y + y)
$$

Abbreviations

$$
\varphi \land \psi := \neg(\neg \varphi \lor \neg \psi) \qquad \varphi \to \psi := \neg \varphi \lor \psi \qquad \top := \neg \bot
$$

\n
$$
\forall x. \varphi := \neg \exists x. \neg \varphi \qquad t_1 \leq t_2 := t_1 < t_2 \lor t_1 = t_2
$$

\n
$$
n := \underbrace{1 + \dots + 1}_{n} \qquad \qquad n x := \underbrace{x + \dots + x}_{n} \qquad \text{for } n > 1
$$

Definitions

- \triangleright assignment α is mapping from first-order variables to N
- \triangleright extension to terms: $\alpha(0) = 0$ $\alpha(1) = 1$ $\alpha(t_1 + t_2) = \alpha(t_1) + \alpha(t_2)$
- \triangleright assignment α satisfies formula φ ($\alpha \models \varphi$):

$$
\alpha \nvDash \bot
$$
\n
$$
\alpha \vDash \neg \varphi \qquad \Longleftrightarrow \qquad \alpha \nvDash \varphi
$$
\n
$$
\alpha \vDash \varphi_1 \lor \varphi_2 \qquad \Longleftrightarrow \qquad \alpha \vDash \varphi_1 \text{ or } \alpha \vDash \varphi_2
$$
\n
$$
\alpha \vDash \exists x. \varphi \qquad \Longleftrightarrow \qquad \alpha[x \mapsto n] \vDash \varphi \text{ for some } n \in \mathbb{N}
$$
\n
$$
\alpha \vDash t_1 = t_2 \qquad \Longleftrightarrow \qquad \alpha(t_1) = \alpha(t_2)
$$
\n
$$
\alpha \vDash t_1 < t_2 \qquad \Longleftrightarrow \qquad \alpha(t_1) < \alpha(t_2)
$$

Remark

 $t_1 < t_2$ can be modeled as $\exists x. x \neq 0 \land t_1 + x = t_2$

Remark

every
$$
t_1 = t_2
$$
 can be written as $a_1x_1 + \cdots + a_nx_n = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$

Side Remark

Presburger arithmetic admits complete first-order axiomatization:

- $\blacktriangleright \forall x. x + 1 \neq 0$
- $\triangleright \forall x. \forall y. x + 1 = y + 1 \rightarrow x = y$
- \blacktriangleright induction

$$
\psi(0) \wedge \forall x. (\psi(x) \rightarrow \psi(x+1)) \rightarrow \forall x. \psi(x)
$$

for every formula $\psi(x)$ with single free variable x

 $\triangleright \forall x. x + 0 = x$

$$
\blacktriangleright \forall x. \forall y. x + (y + 1) = (x + y) + 1
$$

$$
\mathcal{AM}_{_{11/37}}
$$

Example [\(Frobenius Coin Problem\)](https://en.wikipedia.org/wiki/Coin_problem)

given natural numbers $a_1, \ldots, a_n > 0$

 $(\forall y. x < y \rightarrow \exists x_1. \ldots \exists x_n. a_1x_1 + \cdots + a_nx_n = y) \land \neg (\exists x_1. \ldots \exists x_n. a_1x_1 + \cdots + a_nx_n = x)$

expresses largest number x that does not satisfy $a_1x_1 + \cdots + a_nx_n = x$ for some $x_1, \ldots, x_n \in \mathbb{N}$

WS 2024 Automata and Logic lecture 7 2. **[Presburger Arithmetic](#page-7-0)** 12/37

$$
\underset{12/37}{\text{AM}}
$$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

- \blacktriangleright quantifier elimination
- ▶ automata techniques
- ▶ translation to WMSO

Presburger arithmetic formula φ : $x + 2y - 3z = 2$

some accepted strings:

►
$$
\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
$$
 $x = 0$ $y = 1$ $z = 0$
\n► $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $x = (10)_2 = 2$ $y = (11)_2 = 3$ $z = (10)_2 = 2$
\n► $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ $x = (0101)_2 = 5$ $y = (1111)_2 = 15$ $z = (1011)_2 = 11$

some rejected strings:

►
$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
 $x = 0$ $y = 0$ $z = 0$
\n► $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ $x = (010)_2 = 2$ $y = (101)_2 = 5$ $z = (110)_2 = 6$

Example (cont'd)

Definition (Representation)

 \triangleright sequence of n natural numbers is represented as string over

$$
\Sigma_n = \{ (b_1 \cdots b_n)^T \mid b_1, \ldots, b_n \in \{0, 1\} \}
$$

$$
\triangleright x = \begin{pmatrix} b_1^1 \\ \vdots \\ b_n^1 \end{pmatrix} \begin{pmatrix} b_1^2 \\ \vdots \\ b_n^2 \end{pmatrix} \cdots \begin{pmatrix} b_1^m \\ \vdots \\ b_n^m \end{pmatrix} \in \Sigma_n^* \text{ represents } x_1 = (b_1^m \cdots b_1^2 b_1^1)_2, \dots, x_n = (b_n^m \cdots b_n^2 b_n^1)_2
$$

$$
\triangleright \underline{x} = (x_1, \dots, x_n)
$$

Example

$$
\begin{array}{lll}\n\ast & \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} & \text{represents } x_1 = 10, x_2 = 7, x_3 = 6 \\
\ast & x_1 = 1, x_2 = 2, x_3 = 3 \text{ is represented by } \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \dots\n\end{array}
$$

Definition

for Presburger arithmetic formula φ with $FV(\varphi) = (x_1, \ldots, x_n)$

$$
L(\varphi) = \{x \in \Sigma_n^* \mid \underline{x} \models \varphi\}
$$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Proof Sketch

- **►** construct finite automaton A_{φ} for every Presburger arithmetic formula φ
- \blacktriangleright induction on φ
- \blacktriangleright $L(A_{\varphi}) = L(\varphi)$

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Presburger Arithmetic](#page-7-0)**

3. [Intermezzo](#page-17-0)

- **4. [Presburger Arithmetic](#page-19-0)**
- **5. [WMSO](#page-31-0)**
- **6. [Further Reading](#page-35-0)**

Exticify with session ID [8020 8256](https://ars.uibk.ac.at/p/80208256)

Question

Consider the following automaton A:

$$
\begin{pmatrix} * \\ * \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} * \\ * \end{pmatrix} \begin{pmatrix} * \\ * \end{pmatrix}
$$

For which of the following formulas φ does $L(A) = L(\varphi)$ hold?

- $\mathbf{A} \quad x = y$
- **B** $x + y > 0$
- **C** $\exists z. x + y = 2z$
- **D** $(\exists z. x = 2z \land \forall z. \neg (y = 2z)) \lor (\exists z. y = 2z \land \forall z. \neg (x = 2z))$

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Presburger Arithmetic](#page-7-0)**
- **3. [Intermezzo](#page-17-0)**

4. [Presburger Arithmetic](#page-19-0)

[Atomic Formulas](#page-19-0) [Boolean Operations](#page-24-0) [Quantifiers](#page-28-0)

- **5. [WMSO](#page-31-0)**
- **6. [Further Reading](#page-35-0)**

Definition (Automaton for Atomic Formula)

DFA
$$
A_{\varphi} = (Q, \Sigma_n, \delta, s, F)
$$
 for $\varphi(x_1, \ldots, x_n)$: $a_1x_1 + \cdots + a_nx_n = b$

\n▶ Q ⊆ {*i* | *i* | ≤ |*b*| + |*a*1| + \cdots + |*a*_n|} ∪ {⊥}

\n▶ δ(*i*, (*b*₁ ··· *b*_n)^T) =
$$
\begin{cases} \frac{i - (a_1b_1 + \cdots + a_nb_n)}{2} & \text{if } i - (a_1b_1 + \cdots + a_nb_n) \text{ is even} \\ \bot & \text{if } i - (a_1b_1 + \cdots + a_nb_n) \text{ is odd or } i = \bot \end{cases}
$$

\n▶ F = {0}

Lemma

$$
\text{if } \delta(i, (b_1 \cdots b_n)^T) = j \text{ then } a_1x_1 + \cdots + a_nx_n = j \iff a_1(2x_1 + b_1) + \cdots + a_n(2x_n + b_n) = i
$$

Theorem

- \bullet A_{\circ} is well-defined
- **2** $L(A_{\varphi}) = L(\varphi)$

 $\varphi(x, y) : x + 2y = 3$ $\rightarrow Q = \{3, \perp, 1, 0, -1, -2\}$ $s = 3$ $F = \{0\}$ \triangleright $\delta(3, \begin{pmatrix} 0 \\ 0 \end{pmatrix})$ $\bigg)) = \delta(3, \left(\begin{smallmatrix} 0 \ 1 \end{smallmatrix}\right))$ $\bigg)\bigg) = \perp \quad \delta(3, \begin{pmatrix} 1 \\ 0 \end{pmatrix})$ $\delta(\mathsf{3}, \left(\begin{smallmatrix}1\ 1\ 1\end{smallmatrix}\right)) = \mathsf{1} \quad \delta(\mathsf{3}, \left(\begin{smallmatrix}1\ 1\ 1\end{smallmatrix}\right))$ $()$ = 0 \triangleright $\delta(\perp, \begin{pmatrix} 0 \\ 0 \end{pmatrix})$ $\bigg)\bigg) = \delta(\perp, \left(\begin{smallmatrix}0\1\1\end{smallmatrix}\right)$ $\bigg)\bigg) = \delta(\perp, \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right)$ $\bigg)\bigg) = \delta(\perp,\left(\begin{smallmatrix}1\1\1\end{smallmatrix}\right)$ $)) = \perp$ \triangleright $\delta(1, {0 \choose 0}$ $\bigg)) = \delta(1, \Bigl(\begin{smallmatrix} 0 \ 1 \end{smallmatrix} \Bigr)$ $\bigg)\bigg) = \bot \hspace{0.25cm} \delta(\mathbf{1}, \Bigl(\begin{smallmatrix} 1 \ 0 \end{smallmatrix} \Bigr)$ $\delta(1,\left(\begin{smallmatrix}1\1\1\end{smallmatrix}\right))=0\quad\delta(1,\left(\begin{smallmatrix}1\1\end{smallmatrix}\right))$ $\langle \rangle) = -1$ \triangleright $\delta(0, \begin{pmatrix} 1 \\ 0 \end{pmatrix})$ $\bigg)\big) = \delta(0, \left(\begin{smallmatrix} 1 \ 1 \ 1 \end{smallmatrix}\right)$ $\bigg)\bigg) = \perp \quad \delta(0, \begin{pmatrix} 0 \\ 0 \end{pmatrix})$ $\delta(0, 0) = 0 \quad \delta(0, 0)$ $)) = -1$ $\triangleright \ \ \delta(-1, \begin{pmatrix} 0 \ 0 \end{pmatrix}$ $\bigg)\big) = \delta(-1, \left(\begin{smallmatrix} 0 \ 1 \end{smallmatrix}\right)$ $\delta(-1,\left(\begin{smallmatrix}1\ 1\ 0\end{smallmatrix}\right))=\bot\quad\delta(-1,\left(\begin{smallmatrix}1\ 1\ 0\end{smallmatrix}\right)$ $\delta(-1,\left(\begin{smallmatrix}1\ 1\ 1\end{smallmatrix}\right))=-1\quad\delta(-1,\left(\begin{smallmatrix}1\ 1\ 1\end{smallmatrix}\right)$ \cdot $) = -2$ \triangleright $\delta(-2, \begin{pmatrix} 1 \\ 0 \end{pmatrix})$) = δ(−2, $\binom{1}{1}$ $) = ⊥ \delta(-2, {0 \choose 0}$ $\delta(-2,\Bigl(\begin{smallmatrix} 0\ 1 \end{smallmatrix}\Bigr)$ $\hat{ })$ = -2

$$
\underset{22/37}{\text{AM}}
$$

 $\varphi(x, y)$: $x + 2y = 3$

$$
\underset{23/37}{\text{AM}}
$$

Theorem

- \bullet A_{\circ} is well-defined
- **2** $L(A_{\varphi}) = L(\varphi)$

Proof

- ► $q \in Q \subseteq \{i \mid |i| \leqslant |b| + |a_1| + \cdots + |a_n|\} \cup \{\perp\}$ and $b' = (b_1 \cdots b_n)^T \in \Sigma_n$
- \blacktriangleright if $q=\bot$ or $i-(a_1b_1+\cdots+a_nb_n)$ is odd then $\delta(q,b')=\bot$
- ► suppose $q = i$ with $|i| \leq |b| + |a_1| + \cdots + |a_n|$ and $i (a_1b_1 + \cdots + a_nb_n)$ is even

$$
\delta(i,b') = \frac{i - (a_1b_1 + \dots + a_nb_n)}{2} \in Q
$$

$$
|i - (a_1b_1 + \dots + a_nb_n)| \le |i| + |a_1b_1| + \dots + |a_nb_n|
$$

$$
\le |i| + |a_1| + \dots + |a_n|
$$

$$
\le 2(|b| + |a_1| + \dots + |a_n|)
$$

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Presburger Arithmetic](#page-7-0)**
- **3. [Intermezzo](#page-17-0)**

4. [Presburger Arithmetic](#page-19-0)

[Atomic Formulas](#page-19-0) **[Boolean Operations](#page-24-0)** [Quantifiers](#page-28-0)

- **5. [WMSO](#page-31-0)**
- **6. [Further Reading](#page-35-0)**

Presburger arithmetic formula

$$
\neg ((x + 2y - 3z \neq 2 \ \wedge \ 2x - y + z = 3) \ \vee \ x - 3y - z \neq 1))
$$

is implemented as

$$
C(U(1(C(A_{x+2y-3z=2}),A_{2x-y+z=3}),C(A_{x-3y-z=1})))
$$

Presburger arithmetic formula

 $x + 2y - 3z = 2 \land x + 2y = 3$

- ► $A_{x+2y-3z=2}$ operates on alphabet $\Sigma_3 = (\{0,1\}^3)^T$
- \blacktriangleright $A_{x+2y=3}$ operates on alphabet $\Sigma_2 = (\{0,1\}^2)^\intercal$
- before intersection can be computed $A_{x+2y=3}$ needs to operate on Σ_3

Definition (Cylindrification)

 $\mathsf{C}_i(\mathsf{R})\subseteq \mathsf{\Sigma}_{n+1}^*$ is defined for $\mathsf{R}\subseteq \mathsf{\Sigma}_n^*$ and index $1\leqslant i\leqslant n+1$ as

$$
C_i(R) = \{x_1 \cdots x_m \in \sum_{n+1}^* |\text{drop}_i(x_1) \cdots \text{drop}_i(x_m) \in R\}
$$

with drop $_{i}((b_{1}\cdots b_{n+1})^{\intercal})=(b_{1}\cdots b_{i-1}b_{i+1}\cdots b_{n+1})^{\intercal}$

$$
\underset{27/37}{\text{AM}}
$$

$$
L(A_{x+2y=3}) = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}^*
$$

\n
$$
L(C_3(A_{x+2y=3})) = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}^*
$$

Lemma

if $R\subseteq \Sigma_n^*$ is regular then $\textsf{C}_i(R)\subseteq \Sigma_{n+1}^*$ is regular for every $\,1\leqslant i\leqslant n+1$

Remark

- ► drop_i is homomorphism from Σ_{n+1}^* to Σ_n^*
- \blacktriangleright C_i(R) = drop⁻¹(R)

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Presburger Arithmetic](#page-7-0)**
- **3. [Intermezzo](#page-17-0)**

4. [Presburger Arithmetic](#page-19-0)

[Atomic Formulas](#page-19-0) [Boolean Operations](#page-24-0) [Quantifiers](#page-28-0)

- **5. [WMSO](#page-31-0)**
- **6. [Further Reading](#page-35-0)**

Definition (Projection)

$\Pi_i(R) \subseteq \Sigma_n^*$ is defined for $R \subseteq \Sigma_{n+1}^*$ and index $1 \leqslant i \leqslant n+1$ as

$$
\Pi_i(R) = \{ \text{drop}_i(x_1) \cdots \text{drop}_i(x_m) \in \Sigma_n^* \mid x_1 \cdots x_m \in R \}
$$

Lemma

if
$$
R \subseteq \sum_{n+1}^*
$$
 is regular then $\Pi_i(R) \subseteq \sum_n^*$ is regular for every $1 \leq i \leq n+1$

Example

- **50 solutions of ∃ y. x + 2y − 3z = 2 correspond to** $\text{stz}(\Pi_2(A_{x+2y-3z=2}))$
- **2** solutions of $\forall y$. $x + 2y 3z = 2$ correspond to C(stz($\Pi_2(C(A_{x+2y-3z=2})))$)

$$
AM_{30/37}
$$

AM.

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Presburger Arithmetic](#page-7-0)**
- **3. [Intermezzo](#page-17-0)**
- **4. [Presburger Arithmetic](#page-19-0)**

5. [WMSO](#page-31-0)

6. [Further Reading](#page-35-0)

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

- \blacktriangleright quantifier elimination
- ▶ automata techniques
- ▶ translation to WMSO

Procedure

- \triangleright map variables in Presburger arithmetic formula to second-order variables in WMSO
- \triangleright n is represented as set of "1" positions in reverse binary notation of n
- \triangleright 0 and 1 in Presburger arithmetic formulas are translated into ZERO and ONE with

$$
\forall x. \neg \mathsf{ZERO}(x) \qquad \qquad \forall x. \mathsf{ONE}(x) \leftrightarrow x = 0
$$

in Presburger arithmetic formula is translated into ternary predicate P_+ with

$$
P_{+}(X,Y,Z) := \exists C. \neg C(0) \land (\forall x. C(x + 1) \leftrightarrow X(x) \land Y(x) \lor X(x) \land C(x) \lor Y(x) \land C(x)) \land (\forall x. Z(x) \leftrightarrow X(x) \land Y(x) \land C(x) \lor X(x) \land \neg Y(x) \land \neg C(x) \lor \neg X(x) \land Y(x) \land \neg Y(x) \land C(x))
$$

Example

26 is represented by $\{1, 3, 4\}$ since $(26)_2 = 11010$

Presburger arithmetic formula $\exists y \cdot x = y + y + 1$ is transformed into WMSO formula

 $(\forall x. \, \mathsf{ONE}(x) \leftrightarrow x = 0) \land \exists Y. \exists Z. P_{+}(Y, Y, Z) \land P_{+}(Z, \mathsf{ONE}, X)$

Corollary

Presburger arithmetic is decidable

WS 2024 Automata and Logic lecture 7 5. **[WMSO](#page-31-0)** 35/37

$$
\underset{35/37}{\text{AM}}
$$

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Presburger Arithmetic](#page-7-0)**
- **3. [Intermezzo](#page-17-0)**
- **4. [Presburger Arithmetic](#page-19-0)**
- **5. [WMSO](#page-31-0)**
- **6. [Further Reading](#page-35-0)**

Boudet and Comon

▶ [Diophantine Equations, Presburger Arithmetic and Finite Automata, Proc. 21st International](https://doi.org/10.1007/3-540-61064-2_27) [Colloquium on Trees in Algebra and Programming, LNCS 1059, pp. 30 – 43, 1996](https://doi.org/10.1007/3-540-61064-2_27)

Esparza and Blondin

 \triangleright Chapter 9 of [Automata Theory: An Algorithmic Approach](https://mitpress.mit.edu/9780262048637/automata-theory/) (MIT Press 2023)

