

WS 2024 lecture 8

[Automata and Logic](http://cl-informatik.uibk.ac.at/teaching/ws24/al)

[Aart Middeldorp](http://cl-informatik.uibk.ac.at/~ami) and Johannes Niederhauser

Outline

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Infinite Strings](#page-11-0)**
- **3. [Büchi Automata](#page-23-0)**
- **4. [Intermezzo](#page-65-0)**
- **5. [Closure Properties](#page-67-0)**
- **6. [Further Reading](#page-124-0)**

formulas of Presburger arithmetic

$$
\begin{array}{l}\n\varphi\ ::= \ \perp\ \mid\ \neg\varphi\ \mid\ \varphi_1\lor\varphi_2\ \mid\ \exists\,x.\,\varphi\ \mid\ t_1 = t_2\ \mid\ t_1 < t_2 \\
t\ ::= \ 0\ \mid\ 1\ \mid\ t_1 + t_2\ \mid\ x\n\end{array}
$$

Abbreviations

$$
\varphi \land \psi := \neg(\neg \varphi \lor \neg \psi) \qquad \varphi \to \psi := \neg \varphi \lor \psi \qquad \top := \neg \bot
$$

\n
$$
\forall x. \varphi := \neg \exists x. \neg \varphi \qquad t_1 \leq t_2 := t_1 < t_2 \lor t_1 = t_2
$$

\n
$$
n := \underbrace{1 + \dots + 1}_{n} \qquad \qquad nx := \underbrace{x + \dots + x}_{n} \qquad \text{for } n > 1
$$

- \triangleright assignment α is mapping from first-order variables to N
- ► extension to terms: $\alpha(0) = 0$ $\alpha(1) = 1$ $\alpha(t_1 + t_2) = \alpha(t_1) + \alpha(t_2)$

assignment α satisfies formula φ ($\alpha \models \varphi$):

$$
\alpha \nvDash \bot
$$
\n
$$
\alpha \vDash \neg \varphi \iff \alpha \nvDash \varphi
$$
\n
$$
\alpha \vDash \varphi_1 \lor \varphi_2 \iff \alpha \vDash \varphi_1 \text{ or } \alpha \vDash \varphi_2
$$
\n
$$
\alpha \vDash \exists x. \varphi \iff \alpha[x \mapsto n] \vDash \varphi \text{ for some } n \in \mathbb{N}
$$
\n
$$
\alpha \vDash t_1 = t_2 \iff \alpha(t_1) = \alpha(t_2)
$$
\n
$$
\alpha \vDash t_1 < t_2 \iff \alpha(t_1) < \alpha(t_2)
$$

Remark

every $t_1 = t_2$ can be written as $a_1x_1 + \cdots + a_nx_n = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

- \blacktriangleright quantifier elimination
- ▶ automata techniques
- ▶ translation to WMSO

Definition (Representation)

 \triangleright sequence of n natural numbers is represented as string over

$$
\Sigma_n = \{ (b_1 \cdots b_n)^T \mid b_1, \ldots, b_n \in \{0, 1\} \}
$$

$$
\triangleright x = \begin{pmatrix} b_1^1 \\ \vdots \\ b_n^1 \end{pmatrix} \begin{pmatrix} b_1^2 \\ \vdots \\ b_n^2 \end{pmatrix} \cdots \begin{pmatrix} b_1^m \\ \vdots \\ b_n^m \end{pmatrix} \in \Sigma_n^* \text{ represents } x_1 = (b_1^m \cdots b_1^2 b_1^1)_2, \dots, x_n = (b_n^m \cdots b_n^2 b_n^1)_2
$$

 \blacktriangleright $x = (x_1, \ldots, x_n)$

for Presburger arithmetic formula φ with $FV(\varphi) = (x_1, \ldots, x_n)$

$$
L(\varphi) = \{x \in \Sigma_n^* \mid \underline{x} \models \varphi\}
$$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Proof Sketch

- **►** construct finite automaton A_{φ} for every Presburger arithmetic formula φ
- \blacktriangleright induction on φ
- \blacktriangleright $L(A_{\varphi}) = L(\varphi)$

Definition (Automaton for Atomic Formula)

finite automaton $A_{\varphi} = (Q, \Sigma_n, \delta, s, F)$ for $\varphi(x_1, \ldots, x_n)$: $a_1x_1 + \cdots + a_nx_n = b$ $\blacktriangleright Q \subseteq \{i \mid |i| \leq |b| + |a_1| + \cdots + |a_n| \} \cup \{\perp\}$ $\blacktriangleright \delta(i, (b_1 \cdots b_n)^T) =$ $\sqrt{ }$ $\left\langle \right\rangle$ \mathcal{L} $i - (a_1b_1 + \cdots + a_nb_n)$ $\frac{1}{2} \quad \text{if } i - (a_1b_1 + \dots + a_nb_n) \text{ is even}$ ► $s = b$ \downarrow if $i - (a_1b_1 + \cdots + a_nb_n)$ is odd or $i = \perp$ \triangleright $F = \{0\}$

Lemma

$$
\text{if } \delta(i, (b_1 \cdots b_n)^T) = j \text{ then } a_1x_1 + \cdots + a_nx_n = j \iff a_1(2x_1 + b_1) + \cdots + a_n(2x_n + b_n) = i
$$

Theorem

- \blacktriangleright A_{φ} is well-defined
- \blacktriangleright $L(A_{\varnothing}) = L(\varphi)$

Boolean Operations

Definition (Cylindrification)

 $\mathsf{C}_i(\mathsf{R})\subseteq \mathsf{\Sigma}_{n+1}^*$ is defined for $\mathsf{R}\subseteq \mathsf{\Sigma}_n^*$ and index $1\leqslant i\leqslant n+1$ as

$$
C_i(R) = \{x_1 \cdots x_m \in \Sigma_{n+1}^* \mid \text{drop}_i(x_1) \cdots \text{drop}_i(x_m) \in R\}
$$

with drop $_{i}((b_{1}\cdots b_{n+1})^{\intercal})=(b_{1}\cdots b_{i-1}b_{i+1}\cdots b_{n+1})^{\intercal}$

Lemma

if $R\subseteq \Sigma_n^*$ is regular then $\,{\sf C}_i(R)\subseteq \Sigma_{n+1}^*$ is regular for every $\,1\leqslant i\leqslant n+1$

Definition (Projection)

 $\Pi_i(R) \subseteq \Sigma_n^*$ is defined for $R \subseteq \Sigma_{n+1}^*$ and index $1 \leqslant i \leqslant n+1$ as

$$
\Pi_i(R) = \{ \text{drop}_i(x_1) \cdots \text{drop}_i(x_m) \in \Sigma_n^* \mid x_1 \cdots x_m \in R \}
$$

Lemma

if $R\subseteq \Sigma^*_{n+1}$ is regular then $\Pi_i(R)\subseteq \Sigma^*_n$ is regular for every $1\leqslant i\leqslant n+1$

Translation from Presburger Arithmetic to WMSO

- map variables in Presburger arithmetic formula to second-order variables in WMSO
- n is represented as set of "1" positions in reverse binary notation of n
- 0 and 1 in Presburger arithmetic formulas are translated into ZERO and ONE with

$$
\forall x. \neg \mathsf{ZERO}(x) \qquad \qquad \forall x. \mathsf{ONE}(x) \leftrightarrow x = 0
$$

in Presburger arithmetic formula is translated into ternary predicate P_+ with

$$
P_{+}(X,Y,Z) := \exists C. \neg C(0) \land (\forall x. C(x + 1) \leftrightarrow X(x) \land Y(x) \lor X(x) \land C(x) \lor Y(x) \land C(x)) \land (\forall x. Z(x) \leftrightarrow X(x) \land Y(x) \land C(x) \lor X(x) \land \neg Y(x) \land \neg C(x) \lor \neg X(x) \land Y(x) \land Y(x) \land \neg Y(x) \land C(x))
$$

Automata

- ▶ (deterministic, non-deterministic, alternating) finite automata
- \blacktriangleright regular expressions
- ▶ (alternating) Büchi automata

Logic

- ▶ (weak) monadic second-order logic
- **Presburger arithmetic**
- ▶ linear-time temporal logic

Outline

1. [Summary of Previous Lecture](#page-2-0)

2. [Infinite Strings](#page-11-0)

- **3. [Büchi Automata](#page-23-0)**
- **4. [Intermezzo](#page-65-0)**
- **5. [Closure Properties](#page-67-0)**
- **6. [Further Reading](#page-124-0)**

 \triangleright infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$

 \triangleright infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$

Example

$$
x(i) = \begin{cases} a & \text{if } i \text{ is even} \\ b & \text{if } i \text{ is odd} \end{cases}
$$

$$
\mathcal{AM}_{13/32}
$$

 \triangleright infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$

Example

$$
x(i) = \begin{cases} a & \text{if } i \text{ is even} \\ b & \text{if } i \text{ is odd} \end{cases}
$$

Remarks

 \triangleright infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$

Example

$$
x(i) = \begin{cases} a & \text{if } i \text{ is even} \\ b & \text{if } i \text{ is odd} \end{cases} \qquad x = ababab \cdots
$$

Remarks

$$
\underset{13/32}{\text{AM}}
$$

- \triangleright infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$
- \blacktriangleright Σ^ω denotes set of all infinite strings over Σ

Example

$$
x(i) = \begin{cases} a & \text{if } i \text{ is even} \\ b & \text{if } i \text{ is odd} \end{cases} \qquad x = ababab \cdots
$$

Remarks

- \triangleright infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$
- \blacktriangleright Σ^ω denotes set of all infinite strings over Σ

Example

$$
x(i) = \begin{cases} a & \text{if } i \text{ is even} \\ b & \text{if } i \text{ is odd} \end{cases} x = ababab \cdots = (ab)^{\omega}
$$

Remarks

$$
\underset{13/32}{\text{AM}}
$$

- \triangleright infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$
- \blacktriangleright Σ^ω denotes set of all infinite strings over Σ
- \blacktriangleright |x|_a for $x \in \Sigma^{\omega}$ and $a \in \Sigma$ denotes number of occurrences of a in x

Example $x(i) =$ $\sqrt{ }$ $\left| \right|$ $\overline{\mathcal{L}}$ *a* if *i* is even b if i is odd $\overline{\mathsf{x}} = \mathsf{abab}\mathsf{ab} \dots = (\mathsf{ab})^\omega$

Remarks

- infinite string x is identified with infinite sequence $x(0)x(1)x(2) \cdots$
- \blacktriangleright $|x|_a = \infty$ for at least one $a \in \Sigma$

► left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^\omega$ is denoted by $u \cdot v \in \Sigma^\omega$

- ► left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^\omega$ is denoted by $u \cdot v \in \Sigma^\omega$
- \blacktriangleright left-concatenation of $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^\omega$

 $U \cdot V = \{u \cdot v \mid u \in U \text{ and } v \in V\}$

- ► left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^\omega$ is denoted by $u \cdot v \in \Sigma^\omega$
- $▶$ left-concatenation of $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^{\omega}$

 $U \cdot V = \{u \cdot v \mid u \in U \text{ and } v \in V\}$

 $\blacktriangleright\;\sim V=\Sigma^\omega-V$ is complement of $V\subseteq\Sigma^\omega$

$$
\mathcal{AM}_{\scriptscriptstyle{14/32}}
$$

- ► left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^\omega$ is denoted by $u \cdot v \in \Sigma^\omega$
- $▶$ left-concatenation of $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^{\omega}$

 $U \cdot V = \{u \cdot v \mid u \in U \text{ and } v \in V\}$

 $\blacktriangleright\;\sim V=\Sigma^\omega-V$ is complement of $V\subseteq\Sigma^\omega$

 $\blacktriangleright\; \; U^\omega = \{u_0\cdot u_1\cdot\cdots\mid u_i\in U-\{\epsilon\}\; \text{for all}\; i\in\mathbb{N}\} \, \text{ is }\, \omega\text{-iteration of}\; U\subseteq\Sigma^*\}$

Outline

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Infinite Strings](#page-11-0)**

3. [Büchi Automata](#page-23-0)

- **4. [Intermezzo](#page-65-0)**
- **5. [Closure Properties](#page-67-0)**
- **6. [Further Reading](#page-124-0)**

▶ nondeterministic Büchi automaton (NBA) is NFA $M=(Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}

$$
\underset{16/32}{\text{AM}}
$$

- ▶ nondeterministic Büchi automaton (NBA) is NFA $M=(Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of M on input $x = a_0 a_1 a_2 \cdots \in \Sigma^\omega$ is infinite sequence q_0, q_1, \ldots of states such that $q_0\in\mathcal{S}$ and $q_{i+1}\in\Delta(q_i,\overline{a}_i)$ for $i\geqslant 0$

- ▶ nondeterministic Büchi automaton (NBA) is NFA $M=(Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of M on input $x = a_0 a_1 a_2 \cdots \in \Sigma^\omega$ is infinite sequence q_0, q_1, \ldots of states such that $q_0\in\mathcal{S}$ and $q_{i+1}\in\Delta(q_i,\overline{a}_i)$ for $i\geqslant 0$
- ▶ run q_0, q_1, \ldots is accepting if $q_i \in F$ for infinitely many i

- ▶ nondeterministic Büchi automaton (NBA) is NFA $M=(Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of M on input $x = a_0 a_1 a_2 \cdots \in \Sigma^\omega$ is infinite sequence q_0, q_1, \ldots of states such that $q_0\in\mathcal{S}$ and $q_{i+1}\in\Delta(q_i,\overline{a}_i)$ for $i\geqslant 0$
- ▶ run q_0, q_1, \ldots is accepting if $q_i \in F$ for infinitely many i

- ▶ nondeterministic Büchi automaton (NBA) is NFA $M=(Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of M on input $x = a_0 a_1 a_2 \cdots \in \Sigma^\omega$ is infinite sequence q_0, q_1, \ldots of states such that $q_0\in\mathcal{S}$ and $q_{i+1}\in\Delta(q_i,\overline{a}_i)$ for $i\geqslant 0$
- ▶ run q_0, q_1, \ldots is accepting if $q_i \in F$ for infinitely many i

- ▶ nondeterministic Büchi automaton (NBA) is NFA $M=(Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of M on input $x = a_0 a_1 a_2 \cdots \in \Sigma^\omega$ is infinite sequence q_0, q_1, \ldots of states such that $q_0\in\mathcal{S}$ and $q_{i+1}\in\Delta(q_i,\overline{a}_i)$ for $i\geqslant 0$
- ▶ run q_0, q_1, \ldots is accepting if $q_i \in F$ for infinitely many i
- \blacktriangleright $L(M) = \{x \in \Sigma^{\omega} \mid x \text{ admits accepting run}\}$

- ▶ nondeterministic Büchi automaton (NBA) is NFA $M=(Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of M on input $x = a_0 a_1 a_2 \cdots \in \Sigma^\omega$ is infinite sequence q_0, q_1, \ldots of states such that $q_0\in\mathcal{S}$ and $q_{i+1}\in\Delta(q_i,\overline{a}_i)$ for $i\geqslant 0$
- ▶ run q_0, q_1, \ldots is accepting if $q_i \in F$ for infinitely many i
- ► $L(M) = \{x \in \Sigma^{\omega} \mid x \text{ admits accepting run}\}\$

universität
Innsbruck WS 2024 Automata and Logic lecture 8 3. **[Büchi Automata](#page-23-0)** 17/32

 \blacktriangleright $L(M) = \{x \in \{a, b\}^\omega \mid |x|_a \neq \infty\}$

$$
\underset{17/32}{\text{AM}}
$$

$$
\blacktriangleright L(M) = \{x \in \{a,b\}^\omega \mid |x|_a \neq \infty\} = (a+b)^*b^\omega
$$

WS 2024 Automata and Logic lecture 8 3. **[Büchi Automata](#page-23-0)** 17/32

$$
\underset{17/32}{\text{AM}}
$$

$$
\blacktriangleright L(M) = \{x \in \{a,b\}^\omega \mid |x|_a \neq \infty\} = (a+b)^*b^\omega
$$

Definitions

► set $A \subseteq \Sigma^\omega$ is ω -regular if $A = L(M)$ for some NBA M

$$
\blacktriangleright L(M) = \{x \in \{a,b\}^\omega \mid |x|_a \neq \infty\} = (a+b)^*b^\omega
$$

- ► set $A \subseteq \Sigma^\omega$ is ω -regular if $A = L(M)$ for some NBA M
- ► deterministic Büchi automaton (DBA) is NBA $(Q, \Sigma, \Delta, S, F)$ with

$$
|S| = 1
$$

$$
\textcircled{2} \ | \Delta(q,a) | = 1 \text{ for all } q \in Q \text{ and } a \in \Sigma
$$
Example

- ► L(M) = { $x \in \{a, b\}^{\omega}$ | $|x|_a \neq \infty$ } = $(a + b)^*b^{\omega}$
- \triangleright *M* is not deterministic

Definitions

- ► set $A \subseteq \Sigma^\omega$ is ω -regular if $A = L(M)$ for some NBA M
- \triangleright deterministic Büchi automaton (DBA) is NBA (Q, Σ , Δ , S, F) with

 $|S| = 1$

2 $|\Delta(q, a)| = 1$ for all $q \in Q$ and $a \in \Sigma$

Example

 $\{x \in \{a,b\}^\omega \mid |x|_a = |x|_b = \infty\}$ is accepted by DBA

$$
\underset{18/32}{\text{AM}}
$$

not every ω -regular set is accepted by DBA

$$
\underset{19/32}{\text{AM}}
$$

not every ω -regular set is accepted by DBA

Proof

$$
L = \{x \in \{a,b\}^\omega \mid |x|_a \neq \infty\}
$$

not every ω -regular set is accepted by DBA

Proof

 $\mathsf{L}=\{\mathsf{x}\in\{\mathsf{a},\mathsf{b}\}^\omega~|~|\mathsf{x}|_\mathsf{a}\neq\infty\}$ is ω -regular

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{\pmb{\mathsf{x}}\in\{\pmb{\mathsf{a}},\pmb{\mathsf{b}}\}^\omega~|~|\pmb{\mathsf{x}}|_{\pmb{\mathsf{a}}}\neq\infty\}$ is ω -regular but not accepted by DBA

not every ω -regular set is accepted by DBA

Proof

- $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:
- \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

not every ω -regular set is accepted by DBA

Proof

- $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:
- \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega}$

not every ω -regular set is accepted by DBA

Proof

- $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:
- \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$
	- $\mathsf{x}_0 = \mathsf{b}^{\omega} \in \mathsf{L} \qquad \qquad \Longrightarrow \quad \exists \text{ accepting run } q_0, q_1, \ldots$

not every ω -regular set is accepted by DBA

Proof

- $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:
- \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$
	- $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$

 $x_1=b^{i_0}ab^{\omega}$

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$ $x_1 = b^{i_0}$ ab $\omega \in L$

not every ω -regular set is accepted by DBA

Proof

- $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:
- \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$

 $\mathsf{x}_{1}=\mathsf{b}^{\, \mathsf{i}_{0}}\mathsf{a} \mathsf{b}^{\, \omega} \in \mathsf{L} \qquad \implies \quad \exists \text{ accepting run } q_{0}, q_{1}, \ldots$

not every ω -regular set is accepted by DBA

Proof

- $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:
- \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$

$$
x_1 = b^{i_0}ab^{\omega} \in L
$$
 \implies \exists accepting run $q_0, q_1,...$ \implies $\exists i_1 > i_0 + 1$ with $q_{i_1} \in F$

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$

 $\mathsf{x}_1 = b^{\,i_0}\mathsf{a} b^{\,\omega} \in \mathsf{L} \qquad \implies \quad \exists \text{ accepting run } q_0, q_1, \ldots \quad \implies \quad \exists \, i_1 > i_0 + 1 \, \text{ with } \, q_{i_1} \in \mathsf{F}$

let $l_1 = i_1 - i_0 - 1$ $x_2=b^{i_0}$ ab l_1 ab $^{\omega}$

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$

 $\mathsf{x}_1 = b^{\,i_0}\mathsf{a} b^{\,\omega} \in \mathsf{L} \qquad \implies \quad \exists \text{ accepting run } q_0, q_1, \ldots \quad \implies \quad \exists \, i_1 > i_0 + 1 \, \text{ with } \, q_{i_1} \in \mathsf{F}$

let $l_1 = i_1 - i_0 - 1$

 $x_2=b^{i_0}ab^{l_1}ab^{\omega}\in L\;\;\implies\;\;\exists\; \text{accepting run}\;\,q_0,q_1,\cdots\;\;\implies\;\;\exists\;l_2>l_1+1\;\;\text{with}\;\,q_{l_2}\in F$

not every ω -regular set is accepted by DBA

Proof

· · ·

let $l_1 = i_1 - i_0 - 1$

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$ $\mathsf{x}_1 = b^{\,i_0}\mathsf{a} b^{\,\omega} \in \mathsf{L} \qquad \implies \quad \exists \text{ accepting run } q_0, q_1, \ldots \quad \implies \quad \exists \, i_1 > i_0 + 1 \, \text{ with } \, q_{i_1} \in \mathsf{F}$

$$
x_2 = b^{i_0}ab^{l_1}ab^{\omega} \in L \implies \exists \text{ accepting run } q_0,q_1,\cdots \implies \exists i_2 > i_1+1 \text{ with } q_{i_2} \in F
$$

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$ $\alpha_1=b^{i_0}$ a $b^\omega\in L\qquad\Longrightarrow\quad \exists$ accepting run $q_0,q_1,\ldots\quad\Longrightarrow\quad \exists\ i_1>i_0+1$ with $\bm{q}_{i_1}\in F$ let $l_1 = i_1 - i_0 - 1$ $x_2=b^{i_0}ab^{l_1}ab^{\omega}\in L\;\;\implies\;\;\exists\; \text{accepting run}\;\,q_0,q_1,\cdots\;\;\implies\;\;\exists\;l_2>l_1+1\;\;\text{with}\;\bm{q}_{l_2}\in F$ · · · $\exists j < k$ such that $q_{i_k} = q_{i_k}$

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$ $\mathsf{x}_1 = b^{\,i_0}\mathsf{a} b^{\,\omega} \in \mathsf{L} \qquad \implies \quad \exists \text{ accepting run } q_0, q_1, \ldots \quad \implies \quad \exists \, i_1 > i_0 + 1 \, \text{ with } \, q_{i_1} \in \mathsf{F}$ let $l_1 = i_1 - i_0 - 1$ $x_2=b^{i_0}ab^{l_1}ab^{\omega}\in L\;\;\implies\;\;\exists\; \text{accepting run}\;\,q_0,q_1,\cdots\;\;\implies\;\;\exists\;l_2>l_1+1\;\;\text{with}\;\,q_{l_2}\in F$ · · · $\exists j < k$ such that $q_{i_k} = q_{i_k}$

 \blacktriangleright $x = b^{i_0}ab^{l_1}\cdots ab^{l_j}(ab^{l_j+1}\cdots ab^{l_k})^{\omega}$

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$ $\mathsf{x}_1 = b^{\,i_0}\mathsf{a} b^{\,\omega} \in \mathsf{L} \qquad \implies \quad \exists \text{ accepting run } q_0, q_1, \ldots \quad \implies \quad \exists \, i_1 > i_0 + 1 \, \text{ with } \, q_{i_1} \in \mathsf{F}$ let $l_1 = i_1 - i_0 - 1$ $x_2=b^{i_0}ab^{l_1}ab^{\omega}\in L\;\;\implies\;\;\exists\; \text{accepting run}\;\,q_0,q_1,\cdots\;\;\implies\;\;\exists\;l_2>l_1+1\;\;\text{with}\;\,q_{l_2}\in F$ · · · $\exists j < k$ such that $q_{i_k} = q_{i_k}$

 \blacktriangleright $x=b^{i_0}ab^{l_1}\cdots ab^{l_j}(ab^{l_j+1}\cdots ab^{l_k})^{\omega}$ admits accepting run

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$ $\mathsf{x}_1 = b^{\,i_0}\mathsf{a} b^{\,\omega} \in \mathsf{L} \qquad \implies \quad \exists \text{ accepting run } q_0, q_1, \ldots \quad \implies \quad \exists \, i_1 > i_0 + 1 \, \text{ with } \, q_{i_1} \in \mathsf{F}$ let $l_1 = i_1 - i_0 - 1$ $x_2=b^{i_0}ab^{l_1}ab^{\omega}\in L\;\;\implies\;\;\exists\; \text{accepting run}\;\,q_0,q_1,\cdots\;\;\implies\;\;\exists\;l_2>l_1+1\;\;\text{with}\;\,q_{l_2}\in F$ · · · $\exists j < k$ such that $q_{i_k} = q_{i_k}$

 \blacktriangleright $x=b^{i_{0}}ab^{l_{1}}\cdots ab^{l_{l}}(ab^{l_{j}+1}\cdots ab^{l_{k}})^{\omega}$ admits accepting run but $x\notin L$

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{ \pmb{\mathsf{x}} \in \{ \pmb{a}, \pmb{b} \}^\omega \mid |\pmb{\mathsf{x}}|_{\pmb{a}} \neq \infty \}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geqslant 0$ with $q_{i_0} \in F$ $\mathsf{x}_1 = b^{\,i_0}\mathsf{a} b^{\,\omega} \in \mathsf{L} \qquad \implies \quad \exists \text{ accepting run } q_0, q_1, \ldots \quad \implies \quad \exists \, i_1 > i_0 + 1 \, \text{ with } \, q_{i_1} \in \mathsf{F}$ let $l_1 = i_1 - i_0 - 1$ $x_2=b^{i_0}ab^{l_1}ab^{\omega}\in L\;\;\implies\;\;\exists\; \text{accepting run}\;\,q_0,q_1,\cdots\;\;\implies\;\;\exists\;l_2>l_1+1\;\;\text{with}\;\,q_{l_2}\in F$ · · · $\exists j < k$ such that $q_{i_k} = q_{i_k}$

every ω -regular set is accepted by NBA with one start state

$$
\underset{20/32}{\text{AM}}
$$

every ω -regular set is accepted by NBA with one start state

Proof

- \blacktriangleright A = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \uplus \{s\}$ and

$$
\Delta'(p, a) = \begin{cases} \Delta(p, a) & \text{if } p \neq s \\ \{q \in Q \mid q \in \Delta(p', a) \text{ for some } p' \in S \} & \text{if } p = s \end{cases}
$$

every ω -regular set is accepted by NBA with one start state

Proof

- \blacktriangleright A = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \uplus \{s\}$ and

$$
\Delta'(p, a) = \begin{cases} \Delta(p, a) & \text{if } p \neq s \\ \{q \in Q \mid q \in \Delta(p', a) \text{ for some } p' \in S \} & \text{if } p = s \end{cases}
$$

 \blacktriangleright $L(N) = A$

every ω -regular set is accepted by NBA with one start state

Proof

- $A = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \uplus \{s\}$ and

$$
\Delta'(p, a) = \begin{cases} \Delta(p, a) & \text{if } p \neq s \\ \{q \in Q \mid q \in \Delta(p', a) \text{ for some } p' \in S \} & \text{if } p = s \end{cases}
$$

 \blacktriangleright $L(N) = A$:

 $x \in A \iff \exists$ run q_0, q_1, q_2, \ldots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i \geq 0$

every ω -regular set is accepted by NBA with one start state

Proof

- $A = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \uplus \{s\}$ and

$$
\Delta'(p, a) = \begin{cases} \Delta(p, a) & \text{if } p \neq s \\ \{q \in Q \mid q \in \Delta(p', a) \text{ for some } p' \in S \} & \text{if } p = s \end{cases}
$$

 \blacktriangleright $L(N) = A$:

 $x \in A \iff \exists$ run q_0, q_1, q_2, \dots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i \ge 0$ $\iff \exists$ run q_0, q_1, q_2, \ldots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i > 0$

every ω -regular set is accepted by NBA with one start state

Proof

- $A = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \uplus \{s\}$ and

$$
\Delta'(p, a) = \begin{cases} \Delta(p, a) & \text{if } p \neq s \\ \{q \in Q \mid q \in \Delta(p', a) \text{ for some } p' \in S \} & \text{if } p = s \end{cases}
$$

 \blacktriangleright $L(N) = A$:

 $x \in A \iff \exists$ run q_0, q_1, q_2, \ldots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i \geq 0$ $\iff \exists$ run q_0, q_1, q_2, \ldots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i > 0$ \iff \exists run s, q_1, q_2, \dots in N with $q_i \in F$ for infinitely many $i > 0$

every ω -regular set is accepted by NBA with one start state

Proof

- $A = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \uplus \{s\}$ and

$$
\Delta'(p, a) = \begin{cases} \Delta(p, a) & \text{if } p \neq s \\ \{q \in Q \mid q \in \Delta(p', a) \text{ for some } p' \in S \} & \text{if } p = s \end{cases}
$$

 \blacktriangleright $L(N) = A$:

 $x \in A \iff \exists$ run q_0, q_1, q_2, \ldots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i \geq 0$ $\iff \exists$ run q_0, q_1, q_2, \ldots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i > 0$ \iff \exists run s, q_1, q_2, \dots in N with $q_i \in F$ for infinitely many $i > 0$ $\iff x \in L(N)$

Outline

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Infinite Strings](#page-11-0)**
- **3. [Büchi Automata](#page-23-0)**

4. [Intermezzo](#page-65-0)

- **5. [Closure Properties](#page-67-0)**
- **6. [Further Reading](#page-124-0)**

Exticify with session ID [8020 8256](https://ars.uibk.ac.at/p/80208256)

Question

Which statement about the following NBA M is true ?

A $L(M) = \varnothing$

$$
\mathbf{B} \quad L(M) = \{ x \mid |x|_b = \infty \text{ and } |x|_c = \infty \}
$$

c
$$
L(M) = \{x \mid |x|_a \neq \infty \text{ or } |x|_a = |x|_b = \infty \}
$$

D $L(M) = \Sigma^{\omega}$

Outline

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Infinite Strings](#page-11-0)**
- **3. [Büchi Automata](#page-23-0)**
- **4. [Intermezzo](#page-65-0)**

5. [Closure Properties](#page-67-0)

6. [Further Reading](#page-124-0)

 ω -regular sets are effectively closed under union

 ω -regular sets are effectively closed under union

Proof (construction)

 \blacktriangleright A = L(M₁) for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

 $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

 ω -regular sets are effectively closed under union

Proof (construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

 $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

 \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$

 ω -regular sets are effectively closed under union

Proof (construction)

 \blacktriangleright A = $L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

 $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$
- \blacktriangleright A \cup B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with
ω -regular sets are effectively closed under union

Proof (construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

 $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

 \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$

```
\blacktriangleright A \cup B = L(M) for NBA M = (Q, \Sigma, \Delta, S, F) with
      1 Q = Q_1 \cup Q_2
```
 ω -regular sets are effectively closed under union

Proof (construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

 $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

 \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$

```
\blacktriangleright A \cup B = L(M) for NBA M = (Q, \Sigma, \Delta, S, F) with
     1 Q = Q_1 \cup Q_22 S = S_1 \cup S_2
```
 ω -regular sets are effectively closed under union

Proof (construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

 $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$
- \blacktriangleright A \cup B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with
	- **1** $Q = Q_1 \cup Q_2$
	- **2** $S = S_1 \cup S_2$
	- **3** $F = F_1 \cup F_2$

 ω -regular sets are effectively closed under union

Proof (construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

 $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$
- \blacktriangleright A \cup B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with
	- **1** $Q = Q_1 \cup Q_2$
	- **2** $S = S_1 \cup S_2$

$$
\circledast \ \ F=F_1\cup F_2
$$

$$
\textcircled{4} \quad \Delta(q,a) = \begin{cases} \Delta_1(q,a) & \text{if } q \in Q_1 \\ \Delta_2(q,a) & \text{if } q \in Q_2 \end{cases}
$$

 ω -regular sets are effectively closed under intersection

 ω -regular sets are effectively closed under intersection

Remark

product construction needs to be modified

 ω -regular sets are effectively closed under intersection

Remark

product construction needs to be modified

 ω -regular sets are effectively closed under intersection

Remark

product construction needs to be modified

$$
M_1: \quad \longrightarrow \quad \textcircled{1} \quad \textcircled{2}
$$

$$
L(M_1) = a(ba)^{\omega} = (ab)^{\omega}
$$

 ω -regular sets are effectively closed under intersection

Remark

product construction needs to be modified

Example

$$
L(M_1) = a(ba)^{\omega} = (ab)^{\omega} \qquad L(M_2) = (aa^*b)^{\omega}
$$

 \blacksquare universität WS 2024 Automata and Logic lecture 8 5. [Closure Properties](#page-67-0) **25/32 Automatic 25/32** 25/32

 ω -regular sets are effectively closed under intersection

Remark

product construction needs to be modified

Example

 $L(M_1) = a(ba)^{\omega} = (ab)^{\omega}$ $L(M_2)=(aa^*b)^{\omega}$ $L(M_1) \cap L(M_2) = (ab)^{\omega}$

 ω -regular sets are effectively closed under intersection

Remark

product construction needs to be modified

Example

 $L(M_1) = a(ba)^\omega = (ab)^\omega$ $L(M_2) = (aa^*b)^\omega$ $L(M_1) \cap L(M_2) = (ab)^{\omega}$

WS 2024 Automata and Logic lecture 8 5. **[Closure Properties](#page-67-0)** 25/32

a

 ω -regular sets are effectively closed under intersection

Proof (modified product construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

 ω -regular sets are effectively closed under intersection

- $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \blacktriangleright A \cap B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

 ω -regular sets are effectively closed under intersection

- $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \blacktriangleright A \cap B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with
	- **1** $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$

 ω -regular sets are effectively closed under intersection

- $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \triangleright A \cap B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with
	- **1** $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$
	- **2** $S = S_1 \times S_2 \times \{0\}$

 ω -regular sets are effectively closed under intersection

- $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \triangleright A \cap B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with
	- **1** $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$
	- **2** $S = S_1 \times S_2 \times \{0\}$
	- 3 $F = Q_1 \times Q_2 \times \{2\}$

 ω -regular sets are effectively closed under intersection

- $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \blacktriangleright A \cap B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

$$
\textcircled{\tiny{1}}\quad Q=Q_1\times Q_2\times\{0,1,2\}
$$

- **2** $S = S_1 \times S_2 \times \{0\}$
- **3** $F = Q_1 \times Q_2 \times \{2\}$
- $\varPhi\in\Delta((\rho,q,i),\overline{a})=\{(\rho',q',j)\ |\ \rho'\in\Delta_1(\rho,\overline{a})\ \text{and}\ \overline{q}'\in\Delta_2(\overline{q},\overline{a})\}$

 ω -regular sets are effectively closed under intersection

Proof (modified product construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

▶ A ∩ B = L(M) for NBA
$$
M = (Q, \Sigma, \Delta, S, F)
$$
 with

\n
$$
Q = Q_1 \times Q_2 \times \{0, 1, 2\}
$$
\n
$$
Q = S_1 \times S_2 \times \{0\}
$$
\n
$$
S = S_1 \times S_2 \times \{2\}
$$
\n
$$
Q = \Delta((p, q, i), a) = \{(p', q', j) \mid p' \in \Delta_1(p, a) \text{ and } q' \in \Delta_2(q, a)\} \text{ with}
$$
\n
$$
j = \begin{cases} 1 & \text{if } i = 0 \text{ and } p' \in F_1 \text{ or } i = 1 \text{ and } q' \notin F_2 \\ 0 & \text{if } i = 0 \text{ and } p' \in F_1 \text{ or } i = 1 \text{ and } q' \notin F_2 \end{cases}
$$

 ω -regular sets are effectively closed under intersection

Proof (modified product construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

$$
\blacktriangleright A \cap B = L(M) \text{ for NBA } M = (Q, \Sigma, \Delta, S, F) \text{ with}
$$

$$
\textcircled{\small 1} \quad Q = Q_1 \times Q_2 \times \{0,1,2\}
$$

$$
\textcircled{2}\ \ S=S_1\times S_2\times \{0\}
$$

$$
\textcircled{\$} \ \ F=Q_1\times Q_2\times \{2\}
$$

 $\widehat{\Phi} \mid \Delta((\rho, q, i), a) = \{ (p', q', j) \mid p' \in \Delta_1(\rho, a) \text{ and } q' \in \Delta_2(q, a) \}$ with

$$
j = \begin{cases} 1 & \text{if } i = 0 \text{ and } p' \in F_1 \text{ or } i = 1 \text{ and } q' \notin F_2 \\ 2 & \text{if } i = 1 \text{ and } q' \in F_2 \end{cases}
$$

WS 2024 Automata and Logic lecture 8 5. **[Closure Properties](#page-67-0)** 26/32

 ω -regular sets are effectively closed under intersection

Proof (modified product construction)

 $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

$$
\blacktriangleright A \cap B = L(M) \text{ for NBA } M = (Q, \Sigma, \Delta, S, F) \text{ with}
$$

$$
Q = Q_1 \times Q_2 \times \{0, 1, 2\}
$$

$$
\textcircled{2}\ \ S=S_1\times S_2\times \{0\}
$$

$$
\textcircled{\small 3}\ \ F=Q_1\times Q_2\times \{2\}
$$

 $\widehat{\Phi} \mid \Delta((\rho, q, i), a) = \{ (p', q', j) \mid p' \in \Delta_1(\rho, a) \text{ and } q' \in \Delta_2(q, a) \}$ with

$$
j = \begin{cases} 1 & \text{if } i = 0 \text{ and } p' \in F_1 \text{ or } i = 1 \text{ and } q' \notin F_2 \\ 2 & \text{if } i = 1 \text{ and } q' \in F_2 \\ 0 & \text{otherwise} \end{cases}
$$

WS 2024 Automata and Logic lecture 8 5. **[Closure Properties](#page-67-0)** 26/32

 $\mathsf L (M_1) = \mathsf a(\mathsf{b}\mathsf{a})^\omega = (\mathsf{a}\mathsf{b})^\omega$ $\mathsf L (M_2) = (\mathsf{a}\mathsf{a}^*\mathsf{b})^\omega$ $\mathsf L (M_1) \cap \mathsf L (M_2) = (\mathsf{a}\mathsf{b})^\omega$

WS 2024 Automata and Logic lecture 8 5. **[Closure Properties](#page-67-0)** 27/32

$$
\underset{27/32}{\text{AM}}
$$

 $A N$

 $A N$

$$
\underset{27/32}{\text{AM}}
$$

A M

left-concatenation of regular set and ω -regular set is ω -regular

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

 $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

- $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

- $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$
- \blacktriangleright $A \cdot B = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

1 $Q = Q_1 \cup Q_2$

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

- $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$

$$
\blacktriangleright A \cdot B = L(M) \text{ for NBA } M = (Q, \Sigma, \Delta, S, F) \text{ with }
$$

$$
\begin{aligned}\n\textcircled{1} \quad Q &= Q_1 \cup Q_2 \\
\textcircled{2} \quad S &= \begin{cases}\nS_1 & \text{if } F_1 \cap S_1 = \varnothing \\
S_1 \cup S_2 & \text{otherwise}\n\end{cases}\n\end{aligned}
$$

$$
\underset{28/32}{\text{AM}}
$$

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

- $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$

$$
\blacktriangleright A \cdot B = L(M) \text{ for NBA } M = (Q, \Sigma, \Delta, S, F) \text{ with }
$$

$$
Q = Q_1 \cup Q_2
$$
\n
$$
Q = \begin{cases} S_1 & \text{if } F_1 \cap S_1 = \emptyset \\ S_1 \cup S_2 & \text{otherwise} \end{cases}
$$
\n
$$
Q = \begin{cases} S_1 & \text{if } F_1 \cap S_1 = \emptyset \\ S_1 \cup S_2 & \text{otherwise} \end{cases}
$$

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

- $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$
- \blacktriangleright $\mathsf{A} \cdot \mathsf{B} = \mathsf{L}(\mathsf{M})$ for NBA $\mathsf{M} = (Q, \Sigma, \Delta, S, F)$ with

$$
\begin{aligned}\n\textcircled{1} \quad Q &= Q_1 \cup Q_2 \\
\textcircled{2} \quad S &= \begin{cases}\nS_1 & \text{if } F_1 \cap S_1 = \varnothing \\
S_1 \cup S_2 & \text{otherwise}\n\end{cases}\n\end{aligned}
$$

3 $F = F_2$

 φ $\Delta = \Delta_1 \cup \Delta_2 \cup \{(p, a, q) \mid (p, a, f) \in \Delta_1 \text{ for some } f \in F_1 \text{ and } q \in S_2\}$

$$
\underset{28/32}{\text{AM}}
$$
ω -iteration of regular set is ω -regular

 \blacksquare universität

 ω -iteration of regular set is ω -regular

Proof (construction)

 \blacktriangleright A = L(M) for NFA $M = (Q, \Sigma, \Delta, S, F)$

 ω -iteration of regular set is ω -regular

Proof (construction)

- \blacktriangleright A = L(M) for NFA $M = (Q, \Sigma, \Delta, S, F)$
- ► without loss of generality $\epsilon \notin A$

 ω -iteration of regular set is ω -regular

Proof (construction)

- $A = L(M)$ for NFA $M = (Q, \Sigma, \Delta, S, F)$
- ► without loss of generality $\epsilon \notin A$
- ▶ NFA $M' = (Q \cup \{s\}, \Sigma, \Delta', \{s\}, F)$ with

$$
\Delta' = \Delta \cup \{(s, a, q) | (p, a, q) \in \Delta \text{ for some } p \in S\}
$$

 $\triangle M$

 ω -iteration of regular set is ω -regular

Proof (construction)

- $A = L(M)$ for NFA $M = (Q, \Sigma, \Delta, S, F)$
- ► without loss of generality $\epsilon \notin A$
- ▶ NFA $M' = (Q \cup \{s\}, \Sigma, \Delta', \{s\}, F)$ with

$$
\Delta' = \Delta \cup \{(s, a, q) \mid (p, a, q) \in \Delta \text{ for some } p \in S\}
$$

 \blacktriangleright $L(M') = L(M)$

 ω -iteration of regular set is ω -regular

Proof (construction)

- $A = L(M)$ for NFA $M = (Q, \Sigma, \Delta, S, F)$
- ► without loss of generality $\epsilon \notin A$
- ▶ NFA $M' = (Q \cup \{s\}, \Sigma, \Delta', \{s\}, F)$ with

$$
\Delta' = \Delta \cup \{(s, a, q) | (p, a, q) \in \Delta \text{ for some } p \in S\}
$$

- \blacktriangleright $L(M') = L(M)$
- ▶ NBA $M'' = (Q \cup \{s\}, \Sigma, \Delta'', \{s\}, \{s\})$ with

$$
\Delta'' = \Delta' \cup \{ (p, a, s) \mid (p, a, q) \in \Delta' \text{ for some } q \in F \}
$$

 ω -iteration of regular set is ω -regular

Proof (construction)

- $A = L(M)$ for NFA $M = (Q, \Sigma, \Delta, S, F)$
- ► without loss of generality $\epsilon \notin A$
- ▶ NFA $M' = (Q \cup \{s\}, \Sigma, \Delta', \{s\}, F)$ with

$$
\Delta' = \Delta \cup \{(s, a, q) | (p, a, q) \in \Delta \text{ for some } p \in S\}
$$

- \blacktriangleright $L(M') = L(M)$
- ▶ NBA $M'' = (Q \cup \{s\}, \Sigma, \Delta'', \{s\}, \{s\})$ with

$$
\Delta'' = \Delta' \cup \{ (p, a, s) \mid (p, a, q) \in \Delta' \text{ for some } q \in F \}
$$

 \blacktriangleright $L(M'') = L(M')^{\omega}$

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

$$
A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}
$$

for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

$Proof$ (\leftarrow)

A is ω -regular using closure properties

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

$Proof$ (\leftarrow)

A is ω -regular using closure properties: ω -iteration

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

Proof (\Leftarrow)

A is ω -regular using closure properties: ω -iteration, left-concatenation

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

P roof $($ \Leftarrow $)$

A is ω -regular using closure properties: ω -iteration, left-concatenation, union

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

P roof $($ \Leftarrow $)$

A is ω -regular using closure properties: ω -iteration, left-concatenation, union

Proof (\implies)

 $A = L(M)$ for some NBA $M = (Q, \Sigma, \Delta, S, F)$

$$
\underset{30/32}{\text{AM}}
$$

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

Proof $($ \Leftarrow $)$

A is ω -regular using closure properties: ω -iteration, left-concatenation, union

Proof (\implies)

- $A = L(M)$ for some NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► L_{pq} for $p, q \in Q$ is set of strings $x \in \Sigma^*$ such that $q \in \hat{\Delta}(\{p\}, x)$

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

Proof $($ \Leftarrow $)$

A is ω -regular using closure properties: ω -iteration, left-concatenation, union

Proof (\implies)

- $A = L(M)$ for some NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► L_{pq} for $p, q \in Q$ is set of strings $x \in \Sigma^*$ such that $q \in \hat{\Delta}(\{p\}, x)$
- \blacktriangleright L_{na} is regular for all $p, q \in Q$

$$
\mathsf{set}\ A \subseteq \Sigma^\omega\ \mathsf{is}\ \omega\text{-regular}\quad\Longleftrightarrow\quad
$$

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n\geqslant 0$ and regular $\mathsf{U}_1,\ldots,\mathsf{U}_n,\mathsf{V}_1,\ldots,\mathsf{V}_n\subseteq \Sigma^*$

Proof $($ \Leftarrow $)$

A is ω -regular using closure properties: ω -iteration, left-concatenation, union

Proof (\implies)

- $A = L(M)$ for some NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► L_{pq} for $p, q \in Q$ is set of strings $x \in \Sigma^*$ such that $q \in \hat{\Delta}(\{p\}, x)$
- \blacktriangleright L_{na} is regular for all $p, q \in Q$

$$
\blacktriangleright A = \bigcup_{p \in S, q \in F} L_{pq} \cdot L_{qq}^{\omega}
$$

Outline

- **1. [Summary of Previous Lecture](#page-2-0)**
- **2. [Infinite Strings](#page-11-0)**
- **3. [Büchi Automata](#page-23-0)**
- **4. [Intermezzo](#page-65-0)**
- **5. [Closure Properties](#page-67-0)**
- **6. [Further Reading](#page-124-0)**

▶ Chapter 5 of [Automatentheorie und Logik](https://doi.org/10.1007/978-3-642-18090-3) (Springer, 2011)

$$
\underset{32/32}{\text{AM}}
$$

▶ Chapter 5 of [Automatentheorie und Logik](https://doi.org/10.1007/978-3-642-18090-3) (Springer, 2011)

Esparza and Blondin

▶ Chapter 10 of [Automata Theory: An Algorithmic Approach](https://mitpress.mit.edu/9780262048637/automata-theory/) (MIT Press 2023)

▶ Chapter 5 of [Automatentheorie und Logik](https://doi.org/10.1007/978-3-642-18090-3) (Springer, 2011)

Esparza and Blondin

▶ Chapter 10 of [Automata Theory: An Algorithmic Approach](https://mitpress.mit.edu/9780262048637/automata-theory/) (MIT Press 2023)

WS 2024 Automata and Logic lecture 8 6. **[Further Reading](#page-124-0)** 32/32

▶ Chapter 5 of [Automatentheorie und Logik](https://doi.org/10.1007/978-3-642-18090-3) (Springer, 2011)

Esparza and Blondin

▶ Chapter 10 of [Automata Theory: An Algorithmic Approach](https://mitpress.mit.edu/9780262048637/automata-theory/) (MIT Press 2023)

[homework for November 29](http://cl-informatik.uibk.ac.at/teaching/ws24/al/exercises/08.pdf)