

WS 2024 lecture 8

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings
- 3. Büchi Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Definition

formulas of Presburger arithmetic

$$\begin{array}{l} \varphi \ ::= \ \bot \ \mid \ \neg \varphi \ \mid \ \varphi_1 \lor \varphi_2 \ \mid \ \exists \, x. \varphi \ \mid \ t_1 = t_2 \ \mid \ t_1 < t_2 \\ t \ ::= \ 0 \ \mid \ 1 \ \mid \ t_1 + t_2 \ \mid \ x \end{array}$$

Abbreviations

$$\begin{array}{lll} \varphi \wedge \psi := \neg (\neg \varphi \vee \neg \psi) & \varphi \rightarrow \psi := \neg \varphi \vee \psi & \top := \neg \bot \\ \forall x. \varphi := \neg \exists x. \neg \varphi & t_1 \leqslant t_2 := t_1 < t_2 \vee t_1 = t_2 \\ n := \underbrace{1 + \dots + 1}_{n} & n x := \underbrace{x + \dots + x}_{n} & \text{for } n > 1 \end{array}$$

Definitions

- \blacktriangleright assignment α is mapping from first-order variables to $\mathbb N$
- extension to terms: $\alpha(0) = 0$ $\alpha(1) = 1$ $\alpha(t_1 + t_2) = \alpha(t_1) + \alpha(t_2)$

Definition

assignment α satisfies formula φ ($\alpha \vDash \varphi$):

Remark

every $t_1 = t_2$ can be written as $a_1x_1 + \cdots + a_nx_n = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

- quantifier elimination
- automata techniques
- translation to WMSO

Definition (Representation)

sequence of n natural numbers is represented as string over

$$\Sigma_n = \{ (b_1 \cdots b_n)^{\mathsf{T}} \mid b_1, \dots, b_n \in \{0, 1\} \}$$

•
$$x = \begin{pmatrix} b_1^1 \\ \vdots \\ b_n^1 \end{pmatrix} \begin{pmatrix} b_1^2 \\ \vdots \\ b_n^2 \end{pmatrix} \cdots \begin{pmatrix} b_n^m \\ \vdots \\ b_n^m \end{pmatrix} \in \Sigma_n^* \text{ represents } x_1 = (b_1^m \cdots b_1^2 b_1^1)_2, \dots, x_n = (b_n^m \cdots b_n^2 b_n^1)_2$$

• $\underline{x} = (x_1, \ldots, x_n)$

Definition

for Presburger arithmetic formula φ with $FV(\varphi) = (x_1, \ldots, x_n)$

$$L(\varphi) = \{ x \in \Sigma_n^* \mid \underline{x} \vDash \varphi \}$$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Proof Sketch

- construct finite automaton A_{φ} for every Presburger arithmetic formula φ
- induction on φ
- ► $L(A_{\varphi}) = L(\varphi)$

Definition (Automaton for Atomic Formula)

finite automaton
$$A_{\varphi} = (Q, \Sigma_n, \delta, s, F)$$
 for $\varphi(x_1, \dots, x_n)$: $a_1x_1 + \dots + a_nx_n = b$
• $Q \subseteq \{i \mid |i| \leq |b| + |a_1| + \dots + |a_n|\} \cup \{\bot\}$
• $\delta(i, (b_1 \dots b_n)^{\mathsf{T}}) = \begin{cases} \frac{i - (a_1b_1 + \dots + a_nb_n)}{2} & \text{if } i - (a_1b_1 + \dots + a_nb_n) \text{ is even} \\ \bot & \text{if } i - (a_1b_1 + \dots + a_nb_n) \text{ is odd or } i = \bot \end{cases}$
• $F = \{0\}$

Lemma

$$\text{if } \delta(i,(b_1\cdots b_n)^{\mathsf{T}})=j \text{ then } a_1x_1+\cdots+a_nx_n=j \iff a_1(2x_1+b_1)+\cdots+a_n(2x_n+b_n)=i$$

Theorem

- A_{φ} is well-defined
- $\blacktriangleright L(A_{\varphi}) = L(\varphi)$

Boolean Operations

boolean operation	automata construction	
	complement	С
\wedge	intersection	Ι
\vee	union	U

Definition (Cylindrification)

 $\mathsf{C}_i(R)\subseteq \Sigma^*_{n+1}$ is defined for $R\subseteq \Sigma^*_n$ and index $1\leqslant i\leqslant n+1$ as

$$\mathsf{C}_i(\mathsf{R}) = \left\{ x_1 \cdots x_m \in \Sigma_{n+1}^* \mid \mathsf{drop}_i(x_1) \cdots \, \mathsf{drop}_i(x_m) \in \mathsf{R} \right\}$$

with drop_i $((b_1 \cdots b_{n+1})^T) = (b_1 \cdots b_{i-1} b_{i+1} \cdots b_{n+1})^T$

Lemma

if $R \subseteq \Sigma_n^*$ is regular then $C_i(R) \subseteq \Sigma_{n+1}^*$ is regular for every $1 \leqslant i \leqslant n+1$

Definition (Projection)

$\Pi_i(R) \subseteq \Sigma_n^*$ is defined for $R \subseteq \Sigma_{n+1}^*$ and index $1 \leqslant i \leqslant n+1$ as

$$\Pi_i(R) = \{ \operatorname{drop}_i(x_1) \cdots \operatorname{drop}_i(x_m) \in \Sigma_n^* \mid x_1 \cdots x_m \in R \}$$

Lemma

if $R \subseteq \Sigma_{n+1}^*$ is regular then $\prod_i (R) \subseteq \Sigma_n^*$ is regular for every $1 \leqslant i \leqslant n+1$

Translation from Presburger Arithmetic to WMSO

- map variables in Presburger arithmetic formula to second-order variables in WMSO
- ▶ *n* is represented as set of "1" positions in reverse binary notation of *n*
- ▶ 0 and 1 in Presburger arithmetic formulas are translated into ZERO and ONE with

$$\forall x. \neg \mathsf{ZERO}(x) \qquad \qquad \forall x. \mathsf{ONE}(x) \leftrightarrow x = 0$$

 \blacktriangleright + in Presburger arithmetic formula is translated into ternary predicate P_+ with

$$egin{aligned} P_+(X,Y,Z) &:= \exists \ C. \
eg C(0) \land \ ig(orall \ x. \ C(x+1) \ \leftrightarrow \ X(x) \land Y(x) \lor X(x) \land C(x) \lor Y(x) \land C(x) ig) \land \ ig(orall \ x. \ Z(x) \ \leftrightarrow \ X(x) \land Y(x) \land C(x) \lor X(x) \land
eg Y(x) \land
eg C(x) \lor \
eg X(x) \land Y(x) \land C(x) \lor X(x) \land
eg Y(x) \land
eg C(x) \lor \
eg X(x) \land Y(x) \land
eg Y($$

Automata

- (deterministic, non-deterministic, alternating) finite automata
- regular expressions
- (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. Infinite Strings

- 3. Büchi Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Definitions

- infinite string over alphabet Σ is function $x \colon \mathbb{N} \to \Sigma$
- Σ^{ω} denotes set of all infinite strings over Σ
- ▶ $|x|_a$ for $x \in \Sigma^{\omega}$ and $a \in \Sigma$ denotes number of occurrences of a in x

Example $x(i) = \begin{cases} a & \text{if } i \text{ is even} \\ b & \text{if } i \text{ is odd} \end{cases}$ $x = ababab \cdots = (ab)^{\omega}$

Remarks

- infinite string x is identified with infinite sequence $x(0)x(1)x(2)\cdots$
- $|x|_a = \infty$ for at least one $a \in \Sigma$

Definitions

- left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^{\omega}$ is denoted by $u \cdot v \in \Sigma^{\omega}$
- left-concatenation of $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^\omega$

 $U \cdot V = \{ u \cdot v \mid u \in U \text{ and } v \in V \}$

- $\sim V = \Sigma^{\omega} V$ is complement of $V \subseteq \Sigma^{\omega}$
- $U^{\omega} = \{u_0 \cdot u_1 \cdot \cdots \mid u_i \in U \{\epsilon\} \text{ for all } i \in \mathbb{N}\}$ is ω -iteration of $U \subseteq \Sigma^*$

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings

3. Büchi Automata

- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Definitions

- ▶ nondeterministic Büchi automaton (NBA) is NFA $M = (Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of *M* on input $x = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$ is infinite sequence q_0, q_1, \ldots of states such that $q_0 \in S$ and $q_{i+1} \in \Delta(q_i, a_i)$ for $i \ge 0$
- ▶ run $q_0, q_1, ...$ is accepting if $q_i \in F$ for infinitely many *i*
- $L(M) = \{x \in \Sigma^{\omega} \mid x \text{ admits accepting run}\}$

Example

- ▶ $(ab)^{\omega} \in L(M)$
- ▶ $aab^{\omega} \notin L(M)$
- ▶ $L(M) = \{x \in \{a, b\}^{\omega} \mid |x|_a = \infty\}$

Example

h

►
$$L(M) = \{x \in \{a, b\}^{\omega} \mid |x|_a \neq \infty\} = (a+b)^* b^{\omega}$$

► *M* is not deterministic

Definitions

- ► set $A \subseteq \Sigma^{\omega}$ is ω -regular if A = L(M) for some NBA M
- ► deterministic Büchi automaton (DBA) is NBA $(Q, \Sigma, \Delta, S, F)$ with

(1)
$$|S| = 1$$

$$\textcircled{2} \mid \Delta(q,a) \mid = 1$$
 for all $q \in Q$ and $a \in \Sigma$

Example

 $\{x \in \{a,b\}^{\omega} \mid |x|_a = |x|_b = \infty\}$ is accepted by DBA

not every $\omega\text{-regular set}$ is accepted by DBA

Proof

 $L = \{x \in \{a, b\}^{\omega} \mid |x|_a \neq \infty\}$ is ω -regular but not accepted by DBA:

► suppose L = L(M) for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $\begin{array}{rcl} x_0 = b^{\omega} \in L & \Longrightarrow & \exists \text{ accepting run } q_0, q_1, \dots & \Longrightarrow & \exists i_0 \ge 0 & \text{ with } q_{i_0} \in F \\ x_1 = b^{i_0} a b^{\omega} \in L & \Longrightarrow & \exists \text{ accepting run } q_0, q_1, \dots & \Longrightarrow & \exists i_1 > i_0 + 1 & \text{ with } q_{i_1} \in F \\ \\ \text{let } l_1 = i_1 - i_0 - 1 & & & \\ x_2 = b^{i_0} a b^{l_1} a b^{\omega} \in L & \Longrightarrow & \exists \text{ accepting run } q_0, q_1, \dots & \Longrightarrow & \exists i_2 > i_1 + 1 & \text{ with } q_{i_2} \in F \\ \\ \\ \dots & & \\ \exists i_1 < k & \text{ such that } q_{i_1} = q_{i_k} \end{array}$

► $x = b^{i_0} a b^{l_1} \cdots a b^{l_j} (a b^{l_j+1} \cdots a b^{l_k})^{\omega}$ admits accepting run but $x \notin L$

Lemma

every $\omega\text{-regular set}$ is accepted by NBA with one start state

Proof

- A = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$
- ▶ define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \uplus \{s\}$ and

$$\Delta'(p,a) = egin{cases} \Delta(p,a) & ext{if } p
eq s \ \{q \in Q \mid q \in \Delta(p',a) ext{ for some } p' \in S \} & ext{if } p = s \end{cases}$$

• L(N) = A: $x \in A$

$$\begin{array}{ll} \in A & \Longleftrightarrow & \exists \ \operatorname{run} \ q_0, q_1, q_2, \dots \ \operatorname{in} \ M \ \text{with} \ q_0 \in S \ \text{and} \ q_i \in F \ \text{for infinitely many} \ i \geq 0 \\ & \Leftrightarrow & \exists \ \operatorname{run} \ q_0, q_1, q_2, \dots \ \operatorname{in} \ M \ \text{with} \ q_0 \in S \ \text{and} \ q_i \in F \ \text{for infinitely many} \ i > 0 \\ & \Leftrightarrow & \exists \ \operatorname{run} \ s, q_1, q_2, \dots \ \operatorname{in} \ N \ \text{with} \ q_i \in F \ \text{for infinitely many} \ i > 0 \\ & \Leftrightarrow & x \in L(N) \end{array}$$

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings
- 3. Büchi Automata

4. Intermezzo

- 5. Closure Properties
- 6. Further Reading

Furticify with session ID 8020 8256

Question

Which statement about the following NBA M is true ?

A $L(M) = \emptyset$

B
$$L(M) = \{x \mid |x|_b = \infty \text{ and } |x|_c = \infty\}$$

C
$$L(M) = \{x \mid |x|_a \neq \infty \text{ or } |x|_a = |x|_b = \infty\}$$

D $L(M) = \Sigma^{\omega}$

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings
- 3. Büchi Automata
- 4. Intermezzo

5. Closure Properties

6. Further Reading

 $\omega\operatorname{-regular}$ sets are effectively closed under union

Proof (construction)

•
$$A = L(M_1)$$
 for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

 $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- without loss of generality $Q_1 \cap Q_2 = \varnothing$
- $A \cup B = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

(1)
$$Q = Q_1 \cup Q_2$$

$$egin{array}{cc} (a) & \Delta(q,a) & = egin{array}{cc} \Delta_1(q,a) & ext{if } q \in Q_1 \ \Delta_2(q,a) & ext{if } q \in Q_2 \end{array}$$

 $\omega\operatorname{-regular}$ sets are effectively closed under intersection

Remark

product construction needs to be modified

Example

$$L(M_1) = a(ba)^{\omega} = (ab)^{\omega}$$
 $L(M_2) = (aa^*b)^{\omega}$ $L(M_1) \cap L(M_2) = (ab)^{\omega}$

_A_M_ 25/32

w

 $\omega\operatorname{-regular}$ sets are effectively closed under intersection

Proof (modified product construction)

- ► $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- ▶ $A \cap B = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$ with
 - (1) $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$
 - (2) $S = S_1 \times S_2 \times \{0\}$

 - (④) $\Delta((p,q,i),a) = \{(p',q',j) \mid p' \in \Delta_1(p,a) \text{ and } q' \in \Delta_2(q,a)\}$ with

$$j = \begin{cases} 1 & \text{if } i = 0 \text{ and } p' \in F_1 \text{ or } i = 1 \text{ and } q' \notin F_2 \\ 2 & \text{if } i = 1 \text{ and } q' \in F_2 \\ 0 & \text{otherwise} \end{cases}$$

Example

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

- ► $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- without loss of generality $Q_1 \cap Q_2 = \varnothing$
- $A \cdot B = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

(1)
$$Q = Q_1 \cup Q_2$$

(2) $S = \begin{cases} S_1 & \text{if } F_1 \cap S_1 = \emptyset \\ S_1 \cup S_2 & \text{otherwise} \end{cases}$

(3) $F = F_2$

(4) $\Delta = \Delta_1 \cup \Delta_2 \cup \{(p, a, q) \mid (p, a, f) \in \Delta_1 \text{ for some } f \in F_1 \text{ and } q \in S_2 \}$

 $\omega\text{-}\mathrm{iteration}$ of regular set is $\,\omega\text{-}\mathrm{regular}$

Proof (construction)

- A = L(M) for NFA $M = (Q, \Sigma, \Delta, S, F)$
- without loss of generality $\epsilon \notin A$
- NFA $M' = (Q \cup \{s\}, \Sigma, \Delta', \{s\}, F)$ with

$$\Delta' = \Delta \cup \{(s,a,q) \mid (p,a,q) \in \Delta \text{ for some } p \in S\}$$

- ► L(M') = L(M)
- NBA $M'' = (Q \cup \{s\}, \Sigma, \Delta'', \{s\}, \{s\})$ with

$$\Delta'' = \Delta' \cup \{(p, a, s) \mid (p, a, q) \in \Delta' \text{ for some } q \in F\}$$

► $L(M'') = L(M')^{\omega}$

set
$$A \subseteq \Sigma^{\omega}$$
 is ω -regular \iff

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n \ge 0$ and regular $U_1, \ldots, U_n, V_1, \ldots, V_n \subseteq \Sigma^*$

Proof (⇐)

A is ω -regular using closure properties: ω -iteration, left-concatenation, union

$\mathbf{\hat{P}roof}$ (\Longrightarrow)

- A = L(M) for some NBA $M = (Q, \Sigma, \Delta, S, F)$
- ▶ L_{pq} for $p, q \in Q$ is set of strings $x \in \Sigma^*$ such that $q \in \widehat{\Delta}(\{p\}, x)$
- ▶ L_{pq} is regular for all $p, q \in Q$

$$\bullet \ A = \bigcup_{p \in S, q \in F} L_{pq} \cdot L_{qq}^{\omega}$$

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings
- 3. Büchi Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

Hofmann and Lange

Chapter 5 of Automatentheorie und Logik (Springer, 2011)

Esparza and Blondin

Chapter 10 of Automata Theory: An Algorithmic Approach (MIT Press 2023)

Important Concepts				
 Büchi automaton 	 left-concatenation 	► NBA	• ω -iteration	
► DBA		$\blacktriangleright \Sigma^{\omega}$	$\blacktriangleright \omega$ -regular	

homework for November 29