

WS 2024 lecture 8

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- **1. Summary of Previous Lecture**
- **2. Infinite Strings**
- **3. Büchi Automata**
- **4. Intermezzo**
- **5. Closure Properties**
- **6. Further Reading**

 \blacksquare universität WS 2024 Automata and Logic lecture 8

Definition

formulas of Presburger arithmetic

```
\varphi ::= \perp | \neg \varphi | \varphi_1 \vee \varphi_2 | \exists x. \varphi | t_1 = t_2 | t_1 < t_2t := 0 | 1 | t_1 + t_2 | x
```
Abbr[eviations](#page-2-0)

 $n := 1 + \cdots + 1$ $\overline{}$ n

 $\varphi \wedge \psi := \neg(\neg \varphi \vee \neg \psi)$ $\varphi \wedge \psi := \neg(\neg \varphi \vee \neg \psi)$ $\varphi \wedge \psi := \neg(\neg \varphi \vee \neg \psi)$ $\varphi \rightarrow \psi := \neg \varphi \vee \psi$ $\top := \neg \bot$ $\forall x.\varphi := \neg \exists x.\neg \varphi$ $t_1 \leqslant t_2 := t_1 < t_2 \vee t_1 = t_2$ $nx := x + \cdots + x$ for $n > 1$ $\overline{}$ n

Defi[nitions](#page-7-0)

 \triangleright assignment α [is mapping from first-order va](http://cl-informatik.uibk.ac.at/teaching/ws24/al)riables to N

• extension to terms:
$$
\alpha(0) = 0
$$
 $\alpha(1) = 1$ $\alpha(t_1 + t_2) = \alpha(t_1) + \alpha(t_2)$

universität
Linnsbruck [WS 2024 Automata and Logic](http://cl-informatik.uibk.ac.at/~ami) lecture 8 1. **Summary of Previous Lecture** 3/32

Definition

assignment α satisfies formula φ $(\alpha \models \varphi)$:

Remark

AM

every $t_1 = t_2$ can be written as $a_1x_1 + \cdots + a_nx_n = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

- \blacktriangleright quantifier elimination
- ▶ automata techniques
- ▶ translation to WMSO

Definition (Representation)

 \triangleright sequence of n natural numbers is represented as string over

$$
\Sigma_n = \{(b_1 \cdots b_n)^T \mid b_1, \ldots, b_n \in \{0, 1\}\}
$$
\n
$$
\triangleright x = \begin{pmatrix} b_1^1 \\ \vdots \\ b_n^1 \end{pmatrix} \begin{pmatrix} b_1^2 \\ \vdots \\ b_n^2 \end{pmatrix} \cdots \begin{pmatrix} b_1^m \\ \vdots \\ b_n^m \end{pmatrix} \in \Sigma_n^* \text{ represents } x_1 = (b_1^m \cdots b_1^2 b_1^1)_2, \ldots, x_n = (b_n^m \cdots b_n^2 b_n^1)_2
$$

 \blacktriangleright $X = (X_1, \ldots, X_n)$

U universität WS 2024 Automata and Logic lecture 8 1. **Summary of Previous Lecture**

Definition

for Presburger arithmetic formula φ with $FV(\varphi) = (x_1, \ldots, x_n)$

$$
L(\varphi) = \{x \in \Sigma_n^* \mid \underline{x} \models \varphi\}
$$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Proof Sketch

- **►** construct finite automaton A_{φ} for every Presburger arithmetic formula φ
- \blacktriangleright induction on φ
- \blacktriangleright $L(A_{\varphi}) = L(\varphi)$

 AM

AM

Definition (Automaton for Atomic Formula)

finite automaton $A_{\varphi} = (Q, \Sigma_n, \delta, s, F)$ for $\varphi(x_1, \ldots, x_n)$: $a_1x_1 + \cdots + a_nx_n = b$

▶ $Q \subseteq \{i \mid |i| \leq |b| + |a_1| + \cdots + |a_n|\} \cup \{\perp\}$

$$
\triangleright \delta(i, (b_1 \cdots b_n)^T) = \begin{cases} \frac{i - (a_1b_1 + \cdots + a_nb_n)}{2} & \text{if } i - (a_1b_1 + \cdots + a_nb_n) \text{ is even} \\ \bot & \text{if } i - (a_1b_1 + \cdots + a_nb_n) \text{ is odd or } i = \bot \end{cases}
$$

 $F = \{0\}$

Lemma

if $\delta(i, (b_1 \cdots b_n)^T) = j$ then $a_1x_1 + \cdots + a_nx_n = j \iff a_1(2x_1 + b_1) + \cdots + a_n(2x_n + b_n) = i$

Theorem \blacktriangleright A_{\varnothing} is well-defined

 \blacktriangleright $L(A_{\varphi}) = L(\varphi)$

Universitat WS 2024 Automata and Logic lecture 8 1. **Summary of Previous Lecture**

Definition (Cylindrification)

 $C_i(R) \subseteq \sum_{n+1}^*$ is defined for $R \subseteq \sum_{n=1}^*$ and index $1 \leqslant i \leqslant n+1$ as

$$
C_i(R) = \{x_1 \cdots x_m \in \sum_{n+1}^* |\text{drop}_i(x_1) \cdots \text{drop}_i(x_m) \in R\}
$$

with $\mathsf{drop}_i\big((b_1\cdots b_{n+1})^{\mathsf{T}}\big) = (b_1\cdots b_{i-1}b_{i+1}\cdots b_{n+1})^{\mathsf{T}}$

Lemma

if $R \subseteq \Sigma_n^*$ is regular then $\mathsf{C}_i(R) \subseteq \Sigma_{n+1}^*$ is regular for every $1 \leqslant i \leqslant n+1$

Definition (Projection)

 $\Pi_i(R) \subseteq \Sigma_n^*$ is defined for $R \subseteq \Sigma_{n+1}^*$ and index $1 \leqslant i \leqslant n+1$ as

$$
\Pi_i(R) = \{ \text{drop}_i(x_1) \cdots \text{drop}_i(x_m) \in \Sigma_n^* \mid x_1 \cdots x_m \in R \}
$$

Translation from Presburger Arithmetic to WMSO

- ▶ map variables in Presburger arithmetic formula to second-order variables in WMSO
- \triangleright n is represented as set of "1" positions in reverse binary notation of n
- ▶ 0 and 1 in Presburger arithmetic formulas are translated into ZERO and ONE with

$$
\forall x. \neg \mathsf{ZERO}(x) \qquad \qquad \forall x. \mathsf{ONE}(x) \leftrightarrow x = 0
$$

 \rightarrow + in Presburger arithmetic formula is translated into ternary predicate P_+ with

$$
P_{+}(X,Y,Z) := \exists C. \neg C(0) \land (\forall x. C(x + 1) \leftrightarrow X(x) \land Y(x) \lor X(x) \land C(x) \lor Y(x) \land C(x)) \land (\forall x. Z(x) \leftrightarrow X(x) \land Y(x) \land C(x) \lor X(x) \land \neg Y(x) \land \neg C(x) \lor \neg X(x) \land Y(x) \land \neg Y(x) \land C(x))
$$

if $R\subseteq \Sigma_{n+1}^*$ is regular then $\Pi_i(R)\subseteq \Sigma_n^*$ is regular for every $\ 1\leqslant i\leqslant n+1$

universität WS 2024 Automata and Logic lecture 8 1. **Summary of Previous Lecture**

Automata

Lemma

- \blacktriangleright (deterministic, non-deterministic, alternating) finite automata
- \blacktriangleright re[gular expressions](#page-0-0)
- ▶ (alternating) [Büchi aut](#page-2-0)omata

Logi[c](#page-5-0)

- \blacktriangleright (weak) monadic second-order logic
- \blacktriangleright Pre[sburger arithmetic](#page-5-0)
- \blacktriangleright lin[ear-time temporal logi](#page-7-0)c

Outline

1. Summary of Previous Lecture

2. Infinite Strings

- **3. Büchi Automata**
- **4. Intermezzo**
- **5. Closure Properties**
- **6. Further Reading**

AM.

Definitions

- \triangleright infinite string over alphabet Σ is function $x: \mathbb{N} \to \Sigma$
- \blacktriangleright Σ^{ω} denotes set of all infinite strings over Σ
- \blacktriangleright |x|_a for $x \in \Sigma^{\omega}$ and $a \in \Sigma$ denotes number of occurrences of a in x

Example

 $x(i) =$ $\int a$ if *i* is even $\left\{ b\right.$ if *i* is odd $x = ababab \dots = (ab)^\omega$

Remarks

- \triangleright infinite string x is identified with infinite sequence $x(0)x(1)x(2) \cdots$
- \blacktriangleright $|x|_a = \infty$ for at least one $a \in \Sigma$

universität WS 2024 Automata and Logic lecture 8 2. **Infinite Strings** 13/32

Definitions

- ► left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^{\omega}$ is denoted by $u \cdot v \in \Sigma^{\omega}$
- ► left-concatenation of $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^\omega$

 $U \cdot V = \{u \cdot v \mid u \in U \text{ and } v \in V\}$

- $\blacktriangleright \sim V = \Sigma^{\omega} V$ is complement of $V \subseteq \Sigma^{\omega}$
- $\blacktriangleright \ \ U^{\omega} = \{u_0 \cdot u_1 \cdot \dots \mid u_i \in U \{\epsilon\} \text{ for all } i \in \mathbb{N}\}\text{ is } \omega\text{-iteration of } U \subseteq \Sigma^*$

AM.

Outline

- **1[. Summary of Previous Lecture](#page-0-0)**
- **2. Infinite Strings**

3[. Büchi Automata](#page-2-0)

- **4[. Intermezzo](#page-3-0)**
- **5[. Closure Prop](#page-5-0)erties**
- **6[. Further Reading](#page-5-0)**

Definitions

- ▶ nondeterministic Büchi automaton (NBA) is NFA $M = (Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of M on input $x = a_0 a_1 a_2 \cdots \in \Sigma^\omega$ is infinite sequence q_0, q_1, \ldots of states such that $q_0 \in S$ and $q_{i+1} \in \Delta(q_i, a_i)$ for $i \geqslant 0$
- ▶ run q_0, q_1, \ldots is accepting if $q_i \in F$ for infinitely many *i*
- \blacktriangleright $L(M) = \{x \in \Sigma^{\omega} \mid x \text{ admits accepting run}\}$

Example

- ▶ NBA M
- \blacktriangleright $(ab)^{\omega} \in L(M)$

► L(M) = { $x \in \{a, b\}^{\omega}$ | $|x|_a = \infty$ }

 AM

AM.

Example

▶ NBA M

$$
\begin{array}{c}\n\mathbf{a} \mathbf{b} & \mathbf{b} \\
\hline\n\mathbf{0} & \mathbf{0} \\
\hline\n\mathbf{1} & \mathbf{b} \\
\hline\n\mathbf{0}\n\end{array}
$$

- \blacktriangleright $\;$ $\mathsf{L}(M) = \{x \in \{a,b\}^\omega \; | \; |x|_a \neq \infty\} = (a+b)^*b^\omega$
- \triangleright *M* is not deterministic

Definitions

- ► set $A \subseteq \Sigma^\omega$ is ω -regular if $A = L(M)$ for some NBA M
- \triangleright deterministic Büchi automaton (DBA) is NBA (Q, Σ , Δ , S, F) with
	- $|S| = 1$
	- **2** $|\Delta(q, a)| = 1$ for all $q \in Q$ and $a \in \Sigma$

universität WS 2024 Automata and Logic lecture 8 3. Büchi Automata

AM.

AM

Example

 ${x \in \{a, b\}^\omega \mid |x|_a = |x|_b = \infty}$ is accepted by DBA

Theorem

not every ω -regular set is accepted by DBA

Proof

 $\mathcal{L} = \{x \in \{a,b\}^\omega \mid |x|_a \neq \infty\}$ is ω -regular but not accepted by DBA:

 \triangleright suppose $L = L(M)$ for DBA $M = (Q, \Sigma, \Delta, S, F)$

 $x_0 = b^{\omega} \in L$ \implies \exists accepting run q_0, q_1, \ldots \implies $\exists i_0 \geq 0$ with $q_{i_0} \in F$ $x_1 = b^{i_0}$ ab \implies ∃ accepting run $q_0, q_1, \ldots \implies$ ∃ $i_1 > i_0 + 1$ with $q_i \in F$ let $l_1 = i_1 - i_0 - 1$ $\mathsf{x}_2 = \mathsf{b}^{\,i_0}\mathsf{a} \mathsf{b}^{\,l_1}\mathsf{a} \mathsf{b}^{\,\omega} \in \mathsf{L} \quad \Longrightarrow \quad \exists \text{ accepting run } \mathsf{q}_0, \mathsf{q}_1, \cdots \quad \Longrightarrow \quad \exists \, i_2 > i_1+1 \enspace \text{with } \mathsf{q}_{i_2} \in \mathsf{F}$ · · · $\exists j < k$ such that $q_{i_k} = q_{i_k}$

$$
\blacktriangleright x = b^{i_0}ab^{i_1}\cdots ab^{i_j}(ab^{i_j+1}\cdots ab^{i_k})^{\omega} \text{ admits accepting run but } x \notin L \qquad \frac{1}{2}
$$

Lemma

every ω -regular set is accepted by NBA with one start state

Proof

- $A = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \oplus \{s\}$ and

$$
\Delta'(p, a) = \begin{cases} \Delta(p, a) & \text{if } p \neq s \\ \{q \in Q \mid q \in \Delta(p', a) \text{ for some } p' \in S\} & \text{if } p = s \end{cases}
$$

- \blacktriangleright $L(N) = A$:
	- $x \in A \iff \exists$ run q_0, q_1, q_2, \dots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i \ge 0$ \iff \exists run q_0, q_1, q_2, \dots in M with $q_0 \in S$ and $q_i \in F$ for infinitely many $i > 0$ \iff \exists run s, q_1, q_2, \dots in N with $q_i \in F$ for infinitely many $i > 0$ \Leftrightarrow $x \in L(N)$

Outline

- **1. Summary of Previous Lecture**
- **2. Infinite Strings**
- **3. Büchi Automata**

4. Intermezzo

- **5. Closure Properties**
- **6. Further Reading**

Exticify with session ID 8020 8256

Question

Which statement about the following NBA M is true?

Outline

universität

1[. Summary of Previous Lecture](#page-0-0)

WS 2024 Automata and Logic lecture 8 4. **Intermezzo** 21/32

- **2. Infinite Strings**
- **3[. Büchi Automata](#page-2-0)**
- **4[. Intermezzo](#page-3-0)**

5[. Closure Prop](#page-5-0)erties

6[. Further Reading](#page-5-0)

Theorem

 ω -regular sets are effectively closed under union

Proof (construction)

- $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- ▶ without loss of generality $Q_1 \cap Q_2 = \emptyset$
- \blacktriangleright A \cup B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

$$
\begin{aligned}\n\textcircled{1} \quad & Q = Q_1 \cup Q_2 \\
\textcircled{2} \quad & S = S_1 \cup S_2 \\
\textcircled{3} \quad & F = F_1 \cup F_2 \\
\textcircled{4} \quad & \Delta(q, a) = \begin{cases}\n\Delta_1(q, a) & \text{if } q \in Q_1 \\
\Delta_2(q, a) & \text{if } q \in Q_2\n\end{cases}\n\end{aligned}
$$

AM_

Theorem

 ω -regular sets are effectively closed under intersection

Remark

product construction needs to be modified

Theorem

 ω -regular sets are effectively closed under intersection

Proof (modified product construction)

- \blacktriangleright A = $L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \blacktriangleright A \cap B = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$ with
	- **1** $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$ **2** $S = S_1 \times S_2 \times \{0\}$ **3** $F = Q_1 \times Q_2 \times \{2\}$ $\mathfrak{A}\!\!\!\!/\;\;\; \Delta((\rho,q,i),a) = \{ (p',q',j) \ | \ p' \in \Delta_1(\rho,a) \text{ and } q' \in \Delta_2(q,a) \}$ with $\begin{cases} 1 & \text{if } i = 0 \text{ and } p' \in F_1 \text{ or } i = 1 \text{ and } q' \notin F_2 \end{cases}$ $j = \begin{cases} 1 & \text{if } i = 0 \text{ and } p \in F_1 \\ 2 & \text{if } i = 1 \text{ and } q' \in F_2 \end{cases}$ 0 otherwise AM.

universität WS 2024 Automata and Logic lecture 8 5. Closure Properties

Example

Theorem

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

- $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- \triangleright without loss of generality $Q_1 \cap Q_2 = \emptyset$
- \blacktriangleright $A \cdot B = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

$$
Q = Q_1 \cup Q_2
$$

Q
$$
S = \begin{cases} S_1 & \text{if } F_1 \cap S_1 = \emptyset \\ S_1 \cup S_2 & \text{otherwise} \end{cases}
$$

$$
3 \quad F = F_2
$$

 AM

4 $\Delta = \Delta_1 \cup \Delta_2 \cup \{ (p, a, q) \mid (p, a, f) \in \Delta_1 \text{ for some } f \in F_1 \text{ and } q \in S_2 \}$

Theorem

 $ω$ -iteration of regular set is $ω$ -regular

Proof (construction)

- $A = L(M)$ for NFA $M = (Q, \Sigma, \Delta, S, F)$
- \triangleright without loss of generality $\epsilon \notin A$
- ► NFA $M' = (Q \cup \{s\}, \Sigma, \Delta', \{s\}, F)$ with

 $\Delta' = \Delta \cup \{ (s, a, q) \mid (p, a, q) \in \Delta \}$ for some $p \in S$

- \blacktriangleright $L(M') = L(M)$
- ▶ NBA $M'' = (Q \cup \{s\}, \Sigma, \Delta'', \{s\}, \{s\})$ with

 $\Delta'' = \Delta' \cup \{ (p, a, s) \mid (p, a, q) \in \Delta' \text{ for some } q \in F \}$

 \blacktriangleright $L(M'') = L(M')^{\omega}$

universität
Linnsbruck WS 2024 Automata and Logic lecture 8 5. Closure Properties

```
AM.
```
Theorem

set $A \subseteq \Sigma^\omega$ is ω -regular \iff

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n \geqslant 0$ and regular $U_1, \ldots, U_n, V_1, \ldots, V_n \subseteq \Sigma^*$

$Proof $(\leftarrow)$$

A is ω -regular using closure properties: ω -iteration, left-concatenation, union

$\sqrt{\frac{Proot}{}}$

- $A = L(M)$ for some NBA $M = (Q, \Sigma, \Delta, S, F)$
- ► L_{pq} for $p, q \in Q$ is set of strings $x \in \Sigma^*$ such that $q \in \widehat{\Delta}(\{p\}, x)$
- \blacktriangleright L_{pq} is regular for all $p, q \in Q$
- \blacktriangleright A = $\begin{pmatrix} \end{pmatrix}$ p∈S, q∈F $L_{pq} \cdot L_{qq}^{\omega}$

W universitat WS 2024 Automata and Logic lecture 8 5. Closure Properties

Outline

- **1[. Summ](#page-0-0)[ary of Previous Lecture](https://doi.org/10.1007/978-3-642-18090-3)**
- **2. Infinite Strings**
- **3[. Büchi Automata](#page-2-0)**
- **4[. Interme](#page-3-0)[zzo](https://mitpress.mit.edu/9780262048637/automata-theory/)**
- **5[. Closure Prop](#page-5-0)erties**

6[. Further Reading](#page-5-0)

Hofmann and Lange

▶ Chapter 5 of Automatentheorie und Logik (Springer, 2011)

Esparza and Blondin

▶ Chapter 10 of Automata Theory: An Algorithmic Approach (MIT Press 2023)

Important Concepts

homework for November 29

AM.