

WS 2024 lecture 8

Automata and Logic

Aart Middeldorp and Johannes Niederhauser

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings
- 3. Büchi Automata
- 4. Intermezzo
- 5. Closure Properties
- 6. Further Reading

universität WS 2024 Automata and Logic lecture 8

Definition

formulas of Presburger arithmetic

 $\begin{array}{l} \varphi \ ::= \ \bot \ \mid \ \neg \varphi \ \mid \ \varphi_1 \lor \varphi_2 \ \mid \ \exists \ x. \varphi \ \mid \ t_1 = t_2 \ \mid \ t_1 < t_2 \\ t \ ::= \ 0 \ \mid \ 1 \ \mid \ t_1 + t_2 \ \mid \ x \end{array}$

Abbreviations

 $\varphi \land \psi := \neg (\neg \varphi \lor \neg \psi)$ $\forall x. \varphi := \neg \exists x. \neg \varphi$ $n := \underbrace{1 + \cdots + 1}_{n}$

$$\varphi \rightarrow \psi := \neg \varphi \lor \psi \qquad \top := \neg \bot$$
$$t_1 \leqslant t_2 := t_1 < t_2 \lor t_1 = t_2$$
$$nx := \underbrace{x + \dots + x}_{n \neq 1} \quad \text{for } n > 1$$

Definitions

 $\blacktriangleright\,$ assignment $\alpha\,$ is mapping from first-order variables to $\,\mathbb{N}\,$

► extension to terms:
$$\alpha(0) = 0$$
 $\alpha(1) = 1$ $\alpha(t_1 + t_2) = \alpha(t_1) + \alpha(t_2)$

universität WS 2024 Automata and Logic lecture 8 1. Summary of Previous Lecture
 Insbruck

Definition

assignment α satisfies formula φ ($\alpha \vDash \varphi$):

$\alpha \not\vDash \bot$		
$\alpha \vDash \neg \varphi$	\iff	$\alpha \nvDash \varphi$
$\alpha \vDash \varphi_1 \lor \varphi_2$	\iff	$\alpha \vDash \varphi_1 \text{ or } \alpha \vDash \varphi_2$
$\alpha \vDash \exists \mathbf{X}. \varphi$	\iff	$\alpha[\mathbf{x} \mapsto \mathbf{n}] \vDash \varphi \text{ for some } \mathbf{n} \in \mathbb{N}$
$\alpha \vDash t_1 = t_2$	\iff	$\alpha(t_1) = \alpha(t_2)$
$\alpha \models t_1 < t_2$	\iff	$\alpha(t_1) < \alpha(t_2)$

Remark

AM

3/32

every $t_1 = t_2$ can be written as $a_1x_1 + \cdots + a_nx_n = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Decision Procedures

- quantifier elimination
- automata techniques
- translation to WMSO

Definition (Representation)

sequence of n natural numbers is represented as string over

$$\Sigma_n = \{ (b_1 \cdots b_n)^T \mid b_1, \dots, b_n \in \{0, 1\} \}$$

$$\bullet \ x = \begin{pmatrix} b_1^1 \\ \vdots \\ b_n^1 \end{pmatrix} \begin{pmatrix} b_1^2 \\ \vdots \\ b_n^2 \end{pmatrix} \cdots \begin{pmatrix} b_n^m \\ \vdots \\ b_n^m \end{pmatrix} \in \Sigma_n^* \text{ represents } x_1 = (b_1^m \cdots b_1^2 b_1^1)_2, \ \dots, \ x_n = (b_n^m \cdots b_n^2 b_n^1)_2$$

• $\underline{x} = (x_1, \ldots, x_n)$

universität WS 2024 Automata and Logic lecture 8 1. Summary of Previous Lecture
 Innsbruck

Definition

for Presburger arithmetic formula φ with $FV(\varphi) = (x_1, \dots, x_n)$

$$L(\varphi) = \{ x \in \Sigma_n^* \mid \underline{x} \vDash \varphi \}$$

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Proof Sketch

- \blacktriangleright construct finite automaton A_{arphi} for every Presburger arithmetic formula arphi
- \blacktriangleright induction on φ
- $\blacktriangleright L(A_{\varphi}) = L(\varphi)$

AM_

5/32

 \perp

					A.M
universität innsbruck	WS 2024	Automata and Logic	lecture 8	1. Summary of Previous Lecture	6/32

Definition (Automaton for Atomic Formula)

finite automaton $A_{\varphi} = (Q, \Sigma_n, \delta, s, F)$ for $\varphi(x_1, \dots, x_n)$: $a_1x_1 + \dots + a_nx_n = b$

• $Q \subseteq \{i \mid |i| \leq |b| + |a_1| + \dots + |a_n|\} \cup \{\bot\}$

•
$$\delta(i, (b_1 \cdots b_n)^{\mathsf{T}}) = \begin{cases} \frac{i - (a_1b_1 + \cdots + a_nb_n)}{2} & \text{if } i - (a_1b_1 + \cdots + a_nb_n) \text{ is even} \\ \bot & \text{if } i - (a_1b_1 + \cdots + a_nb_n) \text{ is odd or } i = \end{cases}$$

▶ $F = \{0\}$

Lemma

if
$$\delta(i, (b_1 \cdots b_n)^{\dagger}) = j$$
 then $a_1 x_1 + \cdots + a_n x_n = j \iff a_1(2x_1 + b_1) + \cdots + a_n(2x_n + b_n) = i$

Boolean Operations			
	boolean operation	automata const	ruction
	_	complement	С
	\wedge	intersection	I
	\vee	union	U

Definition (Cylindrification)

 $C_i(R) \subseteq \Sigma_{n+1}^*$ is defined for $R \subseteq \Sigma_n^*$ and index $1 \leqslant i \leqslant n+1$ as

$$\mathsf{C}_i(R) = \left\{ x_1 \cdots x_m \in \Sigma_{n+1}^* \mid \mathsf{drop}_i(x_1) \cdots \, \mathsf{drop}_i(x_m) \in R \right\}$$

with drop_i $((b_1 \cdots b_{n+1})^T) = (b_1 \cdots b_{i-1} b_{i+1} \cdots b_{n+1})^T$

Lemma

if $R \subseteq \Sigma_n^*$ is regular then $C_i(R) \subseteq \Sigma_{n+1}^*$ is regular for every $1 \le i \le n+1$

Definition (Projection)

 $\Pi_i(R) \subseteq \Sigma_n^*$ is defined for $R \subseteq \Sigma_{n+1}^*$ and index $1 \leqslant i \leqslant n+1$ as

if $R \subseteq \Sigma_{n+1}^*$ is regular then $\prod_i (R) \subseteq \Sigma_n^*$ is regular for every $1 \leq i \leq n+1$

 $\Pi_i(R) = \{\operatorname{drop}_i(x_1)\cdots\operatorname{drop}_i(x_m) \in \Sigma_n^* \mid x_1\cdots x_m \in R\}$

Translation from Presburger Arithmetic to WMSO

- map variables in Presburger arithmetic formula to second-order variables in WMSO
- n is represented as set of "1" positions in reverse binary notation of n
- \blacktriangleright 0 and 1 in Presburger arithmetic formulas are translated into ZERO and ONE with

$$\forall x. \neg \mathsf{ZERO}(x) \qquad \forall x. \mathsf{ONE}(x) \leftrightarrow x = 0$$

 \blacktriangleright + in Presburger arithmetic formula is translated into ternary predicate P_+ with

$$\begin{array}{l} P_{+}(X,Y,Z) &:= \exists \ C, \neg C(0) \land (\forall x. C(x+1) \leftrightarrow X(x) \land Y(x) \lor X(x) \land C(x) \lor Y(x) \land C(x)) \land \\ & (\forall x. Z(x) \leftrightarrow X(x) \land Y(x) \land C(x) \lor X(x) \land \neg Y(x) \land \neg C(x) \lor \\ & \neg X(x) \land Y(x) \land \neg C(x) \lor \neg X(x) \land \neg Y(x) \land C(x)) \end{array}$$

					A.M_
universität innsbruck	WS 2024	Automata and Logic	lecture 8	1. Summary of Previous Lecture	9/32

universität WS 2024 Automata and Logic lecture 8 1. Summary of Previous Lecture
 innsbruck

Automata

Lemma

- (deterministic, non-deterministic, alternating) finite automata
- ► regular expressions
- (alternating) Büchi automata

Logic

- (weak) monadic second-order logic
- Presburger arithmetic
- linear-time temporal logic

Outline

1. Summary of Previous Lecture

2. Infinite Strings

- 3. Büchi Automata
- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading

Definitions

- infinite string over alphabet Σ is function $x \colon \mathbb{N} \to \Sigma$
- Σ^{ω} denotes set of all infinite strings over Σ
- ▶ $|x|_a$ for $x \in \Sigma^{\omega}$ and $a \in \Sigma$ denotes number of occurrences of *a* in *x*

Example

 $x(i) = \begin{cases} a & \text{if } i \text{ is even} \\ b & \text{if } i \text{ is odd} \end{cases} \qquad x = ababab \cdots = (ab)^{\omega}$

Remarks

- infinite string x is identified with infinite sequence $x(0)x(1)x(2)\cdots$
- $|x|_a = \infty$ for at least one $a \in \Sigma$

universitat WS 2024 Automata and Logic lecture 8 2. Infinite Strings

2. Infinite Strings

```
Definitions
```

- left-concatenation of $u \in \Sigma^*$ and $v \in \Sigma^{\omega}$ is denoted by $u \cdot v \in \Sigma^{\omega}$
- left-concatenation of $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^{\omega}$

$$U \cdot V = \{ u \cdot v \mid u \in U \text{ and } v \in V \}$$

- $\sim V = \Sigma^{\omega} V$ is complement of $V \subseteq \Sigma^{\omega}$
- $U^{\omega} = \{u_0 \cdot u_1 \cdot \cdots \mid u_i \in U \{\epsilon\} \text{ for all } i \in \mathbb{N}\}$ is ω -iteration of $U \subseteq \Sigma^*$

__A.M_

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings

3. Büchi Automata

- 4. Intermezzo
- **5. Closure Properties**
- 6. Further Reading

Definitions

- nondeterministic Büchi automaton (NBA) is NFA $M = (Q, \Sigma, \Delta, S, F)$ operating on Σ^{ω}
- ► run of *M* on input $x = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$ is infinite sequence q_0, q_1, \ldots of states such that $q_0 \in S$ and $q_{i+1} \in \Delta(q_i, a_i)$ for $i \ge 0$
- ▶ run $q_0, q_1, ...$ is accepting if $q_i \in F$ for infinitely many *i*
- $L(M) = \{x \in \Sigma^{\omega} \mid x \text{ admits accepting run}\}$

Example

- ► NBA M
- ▶ $(ab)^{\omega} \in L(M)$

b

- ▶ $aab^{\omega} \notin L(M)$
- ▶ $L(M) = \{x \in \{a, b\}^{\omega} \mid |x|_a = \infty\}$

AM_

Example

► NBA M

- ▶ $L(M) = \{x \in \{a, b\}^{\omega} \mid |x|_a \neq \infty\} = (a+b)^* b^{\omega}$
- ► *M* is not deterministic

Definitions

- ► set $A \subseteq \Sigma^{\omega}$ is ω -regular if A = L(M) for some NBA M
- ► deterministic Büchi automaton (DBA) is NBA $(Q, \Sigma, \Delta, S, F)$ with
 - (1) |S| = 1
 - (2) $|\Delta(q,a)| = 1$ for all $q \in Q$ and $a \in \Sigma$

universität WS 2024 Automata and Logic lections unsbruck

ata and Logic	lecture 8	3. Büchi Automata	

 $\{x \in \{a, b\}^{\omega} \mid |x|_a = |x|_b = \infty\}$ is accepted by DBA

					A/\
universität innsbruck	WS 2024	Automata and Logic	lecture 8	3. Büchi Automata	18/32

Theorem

not every ω -regular set is accepted by DBA

Proof

 $L = \{x \in \{a, b\}^{\omega} \mid |x|_a \neq \infty\}$ is ω -regular but not accepted by DBA:

• suppose L = L(M) for DBA $M = (Q, \Sigma, \Delta, S, F)$

- $\exists j < k$ such that $q_{i_j} = q_{i_k}$
- ► $x = b^{i_0} a b^{l_1} \cdots a b^{l_j} (a b^{l_j+1} \cdots a b^{l_k})^{\omega}$ admits accepting run but $x \notin L$ 4

Lemma

AM_

AM

17/32

every ω -regular set is accepted by NBA with one start state

Proof

- A = L(M) for NBA $M = (Q, \Sigma, \Delta, S, F)$
- define NBA $N = (Q', \Sigma, \Delta', \{s\}, F)$ with $Q' = Q \uplus \{s\}$ and

$$\Delta'(p,a) = \begin{cases} \Delta(p,a) & \text{if } p \neq s \\ \{q \in Q \mid q \in \Delta(p',a) \text{ for some } p' \in S\} & \text{if } p = s \end{cases}$$

•
$$L(N) = A$$
:

 $\begin{array}{rcl} x \in A & \Longleftrightarrow & \exists \ \operatorname{run} \ q_0, q_1, q_2, \dots \ \operatorname{in} \ M \ \text{with} \ q_0 \in S \ \text{and} \ q_i \in F \ \text{for infinitely many} \ i \geq 0 \\ & \Leftrightarrow & \exists \ \operatorname{run} \ q_0, q_1, q_2, \dots \ \operatorname{in} \ M \ \text{with} \ q_0 \in S \ \text{and} \ q_i \in F \ \text{for infinitely many} \ i > 0 \\ & \Leftrightarrow & \exists \ \operatorname{run} \ s, q_1, q_2, \dots \ \operatorname{in} \ N \ \text{with} \ q_i \in F \ \text{for infinitely many} \ i > 0 \\ & \Leftrightarrow & \exists \ \operatorname{run} \ s, q_1, q_2, \dots \ \operatorname{in} \ N \ \text{with} \ q_i \in F \ \text{for infinitely many} \ i > 0 \\ & \Leftrightarrow & x \in L(N) \end{array}$

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings
- 3. Büchi Automata

4. Intermezzo

- 5. Closure Properties
- 6. Further Reading

Purticify with session ID 8020 8256

Question

Which statement about the following NBA M is true ?

universität

- Outline
 - **1. Summary of Previous Lecture**

WS 2024 Automata and Logic lecture 8

4. Intermezzo

- 2. Infinite Strings
- 3. Büchi Automata
- 4. Intermezzo

5. Closure Properties

6. Further Reading

Theorem

 $\omega\text{-}\mathrm{regular}$ sets are effectively closed under union

Proof (construction)

- $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- $A \cup B = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

(1)
$$Q = Q_1 \cup Q_2$$

(2) $S = S_1 \cup S_2$
(3) $F = F_1 \cup F_2$
(4) $\Delta(q, a) = \begin{cases} \Delta_1(q, a) & \text{if } q \in Q \\ \Delta_2(q, a) & \text{if } q \in Q \end{cases}$

A.M_ 23/32

M

Theorem

 $\omega\operatorname{-regular}$ sets are effectively closed under intersection

Remark

product construction needs to be modified

Theorem

 $\omega\text{-}\mathrm{regular}$ sets are effectively closed under intersection

Proof (modified product construction)

- ► $A = L(M_1)$ for NBA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- $A \cap B = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

(1)
$$Q = Q_1 \times Q_2 \times \{0, 1, 2\}$$

(2) $S = S_1 \times S_2 \times \{0\}$
(3) $F = Q_1 \times Q_2 \times \{2\}$
(4) $\Delta((p,q,i),a) = \{(p',q',j) \mid p' \in \Delta_1(p,a) \text{ and } q' \in \Delta_2(q,a)\}$ with
 $j = \begin{cases} 1 & \text{if } i = 0 \text{ and } p' \in F_1 \text{ or } i = 1 \text{ and } q' \notin F_2 \\ 2 & \text{if } i = 1 \text{ and } q' \in F_2 \\ 0 & \text{otherwise} \end{cases}$

universität WS 2024 Automata and Logic lecture 8 5. Closure Properties innsbruck

Example

Theorem

left-concatenation of regular set and ω -regular set is ω -regular

Proof (construction)

- ► $A = L(M_1)$ for NFA $M_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$ and $B = L(M_2)$ for NBA $M_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$
- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- $A \cdot B = L(M)$ for NBA $M = (Q, \Sigma, \Delta, S, F)$ with

3
$$F = F_2$$

A.M_

27/32

(4) $\Delta = \Delta_1 \cup \Delta_2 \cup \{(p, a, q) \mid (p, a, f) \in \Delta_1 \text{ for some } f \in F_1 \text{ and } q \in S_2 \}$

Theorem

 $\omega\text{-}\mathrm{iteration}$ of regular set is $\,\omega\text{-}\mathrm{regular}$

Proof (construction)

- A = L(M) for NFA $M = (Q, \Sigma, \Delta, S, F)$
- without loss of generality $\epsilon \notin A$
- NFA $M' = (Q \cup \{s\}, \Sigma, \Delta', \{s\}, F)$ with

 $\Delta' = \Delta \cup \{(s, a, q) \mid (p, a, q) \in \Delta \text{ for some } p \in S\}$

- ► L(M') = L(M)
- NBA $M'' = (Q \cup \{s\}, \Sigma, \Delta'', \{s\}, \{s\})$ with

 $\Delta'' = \Delta' \cup \{(p, a, s) \mid (p, a, q) \in \Delta' \text{ for some } q \in F\}$

• $L(M'') = L(M')^{\omega}$

universität universität unsbruck
WS 2024 Automata and Logic lecture 8
5. Closure Properties _____A.M_____ 29/32

Theorem

set $A \subseteq \Sigma^{\omega}$ is ω -regular \iff

 $A = U_1 \cdot V_1^{\omega} \cup \cdots \cup U_n \cdot V_n^{\omega}$ for some $n \ge 0$ and regular $U_1, \ldots, U_n, V_1, \ldots, V_n \subseteq \Sigma^*$

Proof (⇐)

A is ω -regular using closure properties: ω -iteration, left-concatenation, union

Proof (\Longrightarrow)

- A = L(M) for some NBA $M = (Q, \Sigma, \Delta, S, F)$
- L_{pq} for $p, q \in Q$ is set of strings $x \in \Sigma^*$ such that $q \in \widehat{\Delta}(\{p\}, x)$
- L_{pq} is regular for all $p, q \in Q$
- $\blacktriangleright A = \bigcup_{p \in S, q \in F} L_{pq} \cdot L_{qq}^{\omega}$

universität innsbruck	WS 2024	Automata and Logic	lecture 8	5. Closure Properties

Outline

- **1. Summary of Previous Lecture**
- 2. Infinite Strings
- 3. Büchi Automata
- 4. Intermezzo
- **5. Closure Properties**

6. Further Reading

Hofmann and Lange

Chapter 5 of Automatentheorie und Logik (Springer, 2011)

Esparza and Blondin

Chapter 10 of Automata Theory: An Algorithmic Approach (MIT Press 2023)

Important Concepts

•	Büchi automaton	 left-concatenation 	Þ	NBA	►	ω -iteration
•	DBA		Þ	Σ^{ω}	Þ	ω -regular

homework for November 29

A.M.