M universitat WS 2024/2025
™ innsbruck

Functional Programming

Week 1 — Organisation and Introduction

René Thiemann  Diana Griindlinger  Alexander Montag ~ Adam Pescoller

Department of Computer Science


https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Organization

RT et al. (DCS @ UIBK) Week 1 2/25


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lecture (VO 2)
® |V-Number: 703024

® |ecturer: René Thiemann
consultation hours: Tuesday 10:15—11:15 in 3M09 (ICT building)

e time and place: Monday, 12:00 — 13:30 in HS B
® course website: http://cl-informatik.uibk.ac.at/teaching/ws24/fp/

® |ecture will be in German with English slides

® slides are available online and contain links
® online registration required by January 31, 2025

e |ecture will be recorded; videos are accessible in OLAT-VO
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Schedule

lecture 1  October
lecture 2 October
lecture 3 October
lecture 4 October
lecture 5 November
lecture 6 November
lecture 7 November

® lecture on January 20

® content is not relevant for exam
® discussion of previous exam
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14
21
28

11
18

Week 1

lecture 8
lecture 9
lecture 10
lecture 11
lecture 12
lecture 13

Q&A

November
December
December
December
January
January
January

4/25
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Proseminar (PS 1)

LV-Number: 703025

new exercise sheets available online on Tuesday or Wednesday
solved exercises must be entered in OLAT-PS

® mark which exercises have been solved (Kreuzliste)
® upload solutions to programming exercises
® deadline: 8 pm on Tuesday before PS on Wednesday

solutions will be presented in proseminar groups
first exercise sheet: today

proseminar starts on October 9 or October 16
proseminar on October 9
® voluntary, discussion of basic topics (command line, ...)

attendance is obligatory starting from October 16
registration deadline was in September

exercise sheets will be English, seminar groups in German
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Proseminar Groups

® in total 9 groups, cf. LFU online
® all groups are completely full

® still want to join — contact me to put name on waiting list
® change of groups only possible via the online swap-tool

® in OLAT, there was a welcome message that included more details about swap-tool
® if you don't care about the time of your group, enter an optional wish
® deadline when changes will be conducted: today, October 7, 4pm
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Tutorium

® opportunity to ask questions about topics of lecture and exercises
® presentation of more examples

® no new topics, no influence on grades, no solutions to exercises

® attendance voluntary

e tutor: Adam Pescoller
® Tuesday 17:15-18:00

® starts tomorrow
e HS 11
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Weekly Schedule
¢ Monday 12:00—13:30: lecture on topic n
® Tuesday 17:15 — 18:00: tutorium on topicn — 1 or n
® Tuesday or Wednesday: exercise sheet n on topic n available

e Tuesday 8 pm: deadline for upload of solution of exercise sheet n — 1

Wednesday: proseminars on exercise sheet n — 1
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Grading

® separate grades for lecture and proseminar
® |ecture

® grading solely via exam

® 1st exam on February 3, 2025

® online registration required from December 30 — January 20 via LFU online

(deregistration still possible later on)

® 2nd exam on April 24, 2025

® 3rd exam: September (tentative)

® it suffices to pass one of the three exams
® proseminar

® 80 %: scores from weekly exercises

® 20 %: presentation of solutions
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Chat-GPT

® Chat-GPT is capable of generating functional programs
® positive aspects of using Chat-GPT

® you might pass the proseminar, without being able to program on your own
® you might get hints if you are stuck on a specific problem

® negative aspects of using Chat-GPT

® if you did not learn to program on your own, there is no chance to pass the exam
® if you are stuck on a specific problem, be social: discuss with student colleagues

® why are studying computer science?

® to learn programming skills and more?
® to learn to use systems that can solve easy programming tasks?

overall: usage of Chat-GPT is highly discouraged
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Literature

4 slides
® no other topics will appear in exam . ..
® .. but topics need to be understood thoroughly

® read and write functional programs
® apply presented techniques on new examples
® not only knowledge reproduction

[@ Richard Bird. Introduction to Functional Programming using Haskell, 2nd Edition,
Prentice Hall.
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Introduction
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(Functional) Programming

® task: solve problems
® sort a list
® generate a website
® navigate from Innsbruck to Cologne

distinguish between data ...
® input [1,5,2] and output [1,2,5]
® query “search for ‘functional programming™ and resulting website
® map of Europe, two locations and route

® . .and programs

® control over how data should be processed
® mostly written by humans

usually computers are used for executing a program on some input, but computation can
also be done on paper or in mind
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How to Learn Programming
+ read, study and write programs (many)
+ actively attend lecture and proseminar
+ try to solve exercises (alone or discuss in small teams)

— copy solutions from other students or from the internet
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Algorithms and Programs

algorithm (prog. language agnostic)
® task: determine the maximum of m
and a list of numbers

e if list is empty, result is m

e otherwise, change m to maximum of
first element of list and m

® continue with rest of list

RT et al. (DCS @ UIBK)

text (language dependent)

® Tom and Paul were struggling until
® Thomas und Paul rauften solange bis
o EOMALLIIE2 M1 UU=M...

program (language dependent)

maxlist m [] =m
® maxlist m (x : xs) =

maxlist (max m x) xs

while (list != null) {
m = max(m, list.head);
list = list.next; }
return m;
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Different Programming Styles

® Imperative Programming (VO Introduction to Programming)
® state is mapping of variables to data
® assignments instruct computer to update state
® example
® consider assignment x := (x + y) / 2;
® if in a state x stores value 7 and y stores 3
® then after executing assignment x stores value 5 and y still stores 3

¢ Functional Programming (this lecture)

® define functions (mathematical: same input implies same output)
® new results (of function invocations) are computed,
but there is no notion of state that can be updated

® example
® consider function definition average x y = (x + y) / 2 where x and y are parameters;
® function invocation average 7 3 is evaluated, e.g.,

average 7 3 = (7 +3) /2=10/ 2 =5

® 7 is not changed into 5, there is no state with variable x

® Logic Programming, Object Oriented Programming, ...
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Different Programming Styles

e fact: most programming languages are of equal power

e demand for different styles still reasonable
® each style has its own distinguishing features and limitations
(like in real languages: translate “Ohrwurm” or “Internetbrowser”)
® good programmer should know about alternatives:
choose suitable style and language depending on problem and context
e advantages of functional programming
® intuitive evaluation mechanism
® suitable for verification
® expressive language features
® suitable for parallelization
e disadvantages of functional programming

® more difficult to model state, side-effects, and /O
® not main-stream in industry, but getting more popular
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Different Functional Programming Languages

combinatory logic (Moses Schonfinkel 1924, Haskell Curry 1930): foundation of FP
A-calculus (Alonzo Church 1936): foundation of FP

LISP (John McCarthy, 1958): List Processing

ML (Robin Milner, 1973): Meta Language, several dialects

Erlang (Ericsson, 1987): distributed computing

Haskell (Paul Hudak and Philip Wadler, 1990): language in this course

F# (Microsoft, 2002) and Scala (Martin Odersky, 2003): combine different programming
styles, including FP
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Syntax and Semantics

® syntax of a (programming) language defines valid sentences (programs)
® “This is a proper English sentence.”
® “this one not propper”
® computers refuse programs that contain syntactical errors!

® semantics defines the meaning of valid sentences / programs

® “Clean your room!"
® let xs =1 : 1 : zipWith (+) xs (tail xs) in take 9 xs

x N

e we will learn both syntax and semantics of Haskell
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Haskell Scripts

-- This script is stored in file script_01.hs
average x y = (x +y) / 2

{- the following function takes a temperature in
degree Fahrenheit and converts it into Celsius -}

fahrenheitToCelsius f = (f - 32) * 5 / 9

® a Haskell script (= program) has file extension .hs
® a script is a collection of (several) function definitions
® comments are just for humans, ignored by computer

® single-line and multi-line comments

® single: -- everything right of -- is a comment

{- multi-line comments can deactivate
® multi: areaRectangle width height = width * height

parts of script easily -}
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Writing Haskell Scripts

-- This script is stored in file script_01.hs
average x y = (x +y) / 2
fahrenheitToCelsius f = (f - 32) * 5 / 9

® coloring

® when entering a Haskell script, one does not add colors in a text editor
® syntax highlighting: often editors for computer programs automatically add colors to simplify
reading; quickly distinguish
® comments, keywords, names of functions, names of parameters, ...
e function- and parameter-names (average, x, ...)

® always start with a lowercase letter, may contain digits
® convention: long names use camelCase (fahrenheitToCelsius, ...)
® white-space (spaces, tabs, newlines, ...)

® in Haskell white-space matters
® for the moment, start every new line without blanks
® the following script is not accepted

average x y = (x +y) / 2

fahrenheitToCelsius f = (f - 32) *x 5 / 9
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Functional Programming — Sessions

® starting a session is like activating your calculator

® we use ghci, an interpreter for Haskell

rene$ ghci -— start the interpreter
Prelude> 42 -- enter a value

42

Prelude> 5 * (3 + 4) -- evaluate an expression
35

Prelude> :load script_01.hs -- load script from file
[1 of 1] Compiling Main ( script_Ol.hs, interpreted )
Ok, 1 module loaded. -- script was accepted
*Main> fahrenheitToCelsius 95 -- invoke our function
35.0

*Main> :quit
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Workflow for Functional Programming

¢ define functions in script
® load script (will compile script or deliver error message)

® parse error: 5 + (argument missing)
® type error: 5 + "five" (cannot add number and text)
® error-messages are sometimes cryptic

® enter expression and start evaluation to get result (read-eval-print loop, REPL)

® result: value which cannot be further simplified, e.g., 42, "hello", [7,1,3], ...,
but not 5 + 7, fahrenheitToCelsius 8§, ...
® evaluation uses

® built-in functions (+, *, :, ++, head, tail, ...), defined in Prelude
® user-defined functions (fahrenheitToCelsius,...) from script-files

Compare FP to Calculator

® enter expression and let it compute result

® restricted to numbers and built-in functions
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Comparison: FP vs Calculator

® task: convert many temperatures from Fahrenheit to Celsius: 8, 9, 300, ...
® calculator: enter the following expressions
° (8-32)%5/9
(9—32)%5/9
(300 — 32) % 5/9
. P
e FP
® write one program: fahrenheitToCelsius f = (f - 32) * 5 / 9
® just evaluate the function on the various inputs

® fahrenheitToCelsius 8
® fahrenheitToCelsius 9
® fahrenheitToCelsius 300
o

(quite tedious: enter same formula over and over again)

. (concise, readable, easy: just invoke function)
® or just: map fahrenheitToCelsius [8,9,300,...]

® program(s): a recipe to turn inputs into desired outputs
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Summary

Haskell scripts are stored in .hs-files

functional programming: specify functions (input-output-behaviour)

ghci loads scripts and evaluates expressions

® next lecture: beyond numbers — structured data
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