M universitat WS 2024/2025
™ innsbruck

Functional Programming

Week 1 — Organisation and Introduction

René Thiemann Diana Griindlinger Alexander Montag ~ Adam Pescoller

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Organization

RT et al. (DCS @ UIBK) Week 1 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lecture (VO 2)
® |V-Number: 703024

® |ecturer: René Thiemann
consultation hours: Tuesday 10:15—11:15 in 3M09 (ICT building)

e time and place: Monday, 12:00 — 13:30 in HS B
® course website: http://cl-informatik.uibk.ac.at/teaching/ws24/fp/

® |ecture will be in German with English slides

® slides are available online and contain links
® online registration required by January 31, 2025

e |ecture will be recorded; videos are accessible in OLAT-VO

RT et al. (DCS @ UIBK) Week 1 3/25

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703024
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/teaching/ws24/fp//material.php?lan=de
https://lfuonline.uibk.ac.at/public/lfuonline_lv.anmeldung?termine_id_in=251893
https://lms.uibk.ac.at/url/RepositoryEntry/5683576937
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Schedule

lecture 1 October
lecture 2 October
lecture 3 October
lecture 4 October
lecture 5 November
lecture 6 November
lecture 7 November

® lecture on January 20

® content is not relevant for exam
® discussion of previous exam

RT et al. (DCS @ UIBK)

14
21
28

11
18

Week 1

lecture 8
lecture 9
lecture 10
lecture 11
lecture 12
lecture 13

Q&A

November
December
December
December
January
January
January

4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proseminar (PS 1)

LV-Number: 703025

new exercise sheets available online on Tuesday or Wednesday
solved exercises must be entered in OLAT-PS

® mark which exercises have been solved (Kreuzliste)
® upload solutions to programming exercises
® deadline: 8 pm on Tuesday before PS on Wednesday

solutions will be presented in proseminar groups
first exercise sheet: today

proseminar starts on October 9 or October 16
proseminar on October 9
® voluntary, discussion of basic topics (command line, ...)

attendance is obligatory starting from October 16
registration deadline was in September

exercise sheets will be English, seminar groups in German

RT et al. (DCS @ UIBK) Week 1 5/25

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703025
http://cl-informatik.uibk.ac.at/teaching/ws24/fp//exercises.php?lan=de
https://lms.uibk.ac.at/url/RepositoryEntry/5683576938
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proseminar Groups

® in total 9 groups, cf. LFU online
® all groups are completely full

® still want to join — contact me to put name on waiting list
® change of groups only possible via the online swap-tool

® in OLAT, there was a welcome message that included more details about swap-tool
® if you don't care about the time of your group, enter an optional wish
® deadline when changes will be conducted: today, October 7, 4pm

RT et al. (DCS @ UIBK) Week 1 6/25

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703025
https://lms.uibk.ac.at/url/RepositoryEntry/5683576938/CourseNode/110067306020202
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tutorium

® opportunity to ask questions about topics of lecture and exercises
® presentation of more examples

® no new topics, no influence on grades, no solutions to exercises

® attendance voluntary

e tutor: Adam Pescoller
® Tuesday 17:15-18:00

® starts tomorrow
e HS 11

RT et al. (DCS @ UIBK) Week 1 7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Weekly Schedule
¢ Monday 12:00—13:30: lecture on topic n
® Tuesday 17:15 — 18:00: tutorium on topicn — 1 or n
® Tuesday or Wednesday: exercise sheet n on topic n available

e Tuesday 8 pm: deadline for upload of solution of exercise sheet n — 1

Wednesday: proseminars on exercise sheet n — 1

RT et al. (DCS @ UIBK) Week 1 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Grading

® separate grades for lecture and proseminar
® |ecture

® grading solely via exam

® 1st exam on February 3, 2025

® online registration required from December 30 — January 20 via LFU online

(deregistration still possible later on)

® 2nd exam on April 24, 2025

® 3rd exam: September (tentative)

® it suffices to pass one of the three exams
® proseminar

® 80 %: scores from weekly exercises

® 20 %: presentation of solutions

RT et al. (DCS @ UIBK) Week 1 9/25

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703024
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Chat-GPT

® Chat-GPT is capable of generating functional programs
® positive aspects of using Chat-GPT

® you might pass the proseminar, without being able to program on your own
® you might get hints if you are stuck on a specific problem

® negative aspects of using Chat-GPT

® if you did not learn to program on your own, there is no chance to pass the exam
® if you are stuck on a specific problem, be social: discuss with student colleagues

® why are studying computer science?

® to learn programming skills and more?
® to learn to use systems that can solve easy programming tasks?

overall: usage of Chat-GPT is highly discouraged

RT et al. (DCS @ UIBK) Week 1 10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

4 slides
® no other topics will appear in exam . ..
® .. but topics need to be understood thoroughly

® read and write functional programs
® apply presented techniques on new examples
® not only knowledge reproduction

[@ Richard Bird. Introduction to Functional Programming using Haskell, 2nd Edition,
Prentice Hall.

RT et al. (DCS @ UIBK) Week 1 11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Introduction

RT et al. (DCS @ UIBK) Week 1 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Functional) Programming

® task: solve problems
® sort a list
® generate a website
® navigate from Innsbruck to Cologne

distinguish between data ...
® input [1,5,2] and output [1,2,5]
® query “search for ‘functional programming™ and resulting website
® map of Europe, two locations and route

® . .and programs

® control over how data should be processed
® mostly written by humans

usually computers are used for executing a program on some input, but computation can
also be done on paper or in mind

RT et al. (DCS @ UIBK) Week 1 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

How to Learn Programming
+ read, study and write programs (many)
+ actively attend lecture and proseminar
+ try to solve exercises (alone or discuss in small teams)

— copy solutions from other students or from the internet

RT et al. (DCS @ UIBK) Week 1 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Algorithms and Programs

algorithm (prog. language agnostic)
® task: determine the maximum of m
and a list of numbers

e if list is empty, result is m

e otherwise, change m to maximum of
first element of list and m

® continue with rest of list

RT et al. (DCS @ UIBK)

text (language dependent)

® Tom and Paul were struggling until
® Thomas und Paul rauften solange bis
o EOMALLIIE2 M1 UU=M...

program (language dependent)

maxlist m [] =m
® maxlist m (x : xs) =

maxlist (max m x) xs

while (list != null) {
m = max(m, list.head);
list = list.next; }
return m;

Week 1

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Different Programming Styles

® Imperative Programming (VO Introduction to Programming)
® state is mapping of variables to data
® assignments instruct computer to update state
® example
® consider assignment x := (x + y) / 2;
® if in a state x stores value 7 and y stores 3
® then after executing assignment x stores value 5 and y still stores 3

¢ Functional Programming (this lecture)

® define functions (mathematical: same input implies same output)
® new results (of function invocations) are computed,
but there is no notion of state that can be updated

® example
® consider function definition average x y = (x + y) / 2 where x and y are parameters;
® function invocation average 7 3 is evaluated, e.g.,

average 7 3 = (7 +3) /2=10/ 2 =5

® 7 is not changed into 5, there is no state with variable x

® Logic Programming, Object Oriented Programming, ...

RT et al. (DCS @ UIBK) Week 1 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Different Programming Styles

e fact: most programming languages are of equal power

e demand for different styles still reasonable
® each style has its own distinguishing features and limitations
(like in real languages: translate “Ohrwurm” or “Internetbrowser”)
® good programmer should know about alternatives:
choose suitable style and language depending on problem and context
e advantages of functional programming
® intuitive evaluation mechanism
® suitable for verification
® expressive language features
® suitable for parallelization
e disadvantages of functional programming

® more difficult to model state, side-effects, and /O
® not main-stream in industry, but getting more popular

RT et al. (DCS @ UIBK) Week 1 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Different Functional Programming Languages

combinatory logic (Moses Schonfinkel 1924, Haskell Curry 1930): foundation of FP
A-calculus (Alonzo Church 1936): foundation of FP

LISP (John McCarthy, 1958): List Processing

ML (Robin Milner, 1973): Meta Language, several dialects

Erlang (Ericsson, 1987): distributed computing

Haskell (Paul Hudak and Philip Wadler, 1990): language in this course

F# (Microsoft, 2002) and Scala (Martin Odersky, 2003): combine different programming
styles, including FP

RT et al. (DCS @ UIBK) Week 1 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Syntax and Semantics

® syntax of a (programming) language defines valid sentences (programs)
® “This is a proper English sentence.”
® “this one not propper”
® computers refuse programs that contain syntactical errors!

® semantics defines the meaning of valid sentences / programs

® “Clean your room!"
® let xs =1 : 1 : zipWith (+) xs (tail xs) in take 9 xs

x N

e we will learn both syntax and semantics of Haskell

RT et al. (DCS @ UIBK) Week 1 19/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Haskell Scripts

-- This script is stored in file script_01.hs
average x y = (x +y) / 2

{- the following function takes a temperature in
degree Fahrenheit and converts it into Celsius -}

fahrenheitToCelsius f = (f - 32) * 5 / 9

® a Haskell script (= program) has file extension .hs
® a script is a collection of (several) function definitions
® comments are just for humans, ignored by computer

® single-line and multi-line comments

® single: -- everything right of -- is a comment

{- multi-line comments can deactivate
® multi: areaRectangle width height = width * height

parts of script easily -}
RT et al. (DCS @ UIBK) Week 1 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Writing Haskell Scripts

-- This script is stored in file script_01.hs
average x y = (x +y) / 2
fahrenheitToCelsius f = (f - 32) * 5 / 9

® coloring

® when entering a Haskell script, one does not add colors in a text editor
® syntax highlighting: often editors for computer programs automatically add colors to simplify
reading; quickly distinguish
® comments, keywords, names of functions, names of parameters, ...
e function- and parameter-names (average, x, ...)

® always start with a lowercase letter, may contain digits
® convention: long names use camelCase (fahrenheitToCelsius, ...)
® white-space (spaces, tabs, newlines, ...)

® in Haskell white-space matters
® for the moment, start every new line without blanks
® the following script is not accepted

average x y = (x +y) / 2

fahrenheitToCelsius f = (f - 32) *x 5 / 9
RT et al. (DCS @ UIBK) Week 1 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Functional Programming — Sessions

® starting a session is like activating your calculator

® we use ghci, an interpreter for Haskell

rene$ ghci -— start the interpreter
Prelude> 42 -- enter a value

42

Prelude> 5 * (3 + 4) -- evaluate an expression
35

Prelude> :load script_01.hs -- load script from file
[1 of 1] Compiling Main (script_Ol.hs, interpreted)
Ok, 1 module loaded. -- script was accepted
*Main> fahrenheitToCelsius 95 -- invoke our function
35.0

*Main> :quit

RT et al. (DCS @ UIBK) Week 1 22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Workflow for Functional Programming

¢ define functions in script
® load script (will compile script or deliver error message)

® parse error: 5 + (argument missing)
® type error: 5 + "five" (cannot add number and text)
® error-messages are sometimes cryptic

® enter expression and start evaluation to get result (read-eval-print loop, REPL)

® result: value which cannot be further simplified, e.g., 42, "hello", [7,1,3], ...,
but not 5 + 7, fahrenheitToCelsius 8§, ...
® evaluation uses

® built-in functions (+, *, :, ++, head, tail, ...), defined in Prelude
® user-defined functions (fahrenheitToCelsius,...) from script-files

Compare FP to Calculator

® enter expression and let it compute result

® restricted to numbers and built-in functions

RT et al. (DCS @ UIBK) Week 1 23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Comparison: FP vs Calculator

® task: convert many temperatures from Fahrenheit to Celsius: 8, 9, 300, ...
® calculator: enter the following expressions
° (8-32)%5/9
(9—32)%5/9
(300 — 32) % 5/9
. P
e FP
® write one program: fahrenheitToCelsius f = (f - 32) * 5 / 9
® just evaluate the function on the various inputs

® fahrenheitToCelsius 8
® fahrenheitToCelsius 9
® fahrenheitToCelsius 300
o

(quite tedious: enter same formula over and over again)

. (concise, readable, easy: just invoke function)
® or just: map fahrenheitToCelsius [8,9,300,...]

® program(s): a recipe to turn inputs into desired outputs

RT et al. (DCS @ UIBK) Week 1 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

Haskell scripts are stored in .hs-files

functional programming: specify functions (input-output-behaviour)

ghci loads scripts and evaluates expressions

® next lecture: beyond numbers — structured data

RT et al. (DCS @ UIBK) Week 1 25/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Organization
	
	Introduction

