
WS 2024/2025

Functional Programming
Week 1 – Organisation and Introduction

René Thiemann Diana Gründlinger Alexander Montag Adam Pescoller

Department of Computer Science

Organization

RT et al. (DCS @ UIBK) Week 1 2/25

Lecture (VO 2)

• LV-Number: 703024

• lecturer: René Thiemann
consultation hours: Tuesday 10:15 – 11:15 in 3M09 (ICT building)

• time and place: Monday, 12:00 – 13:30 in HS B

• course website: http://cl-informatik.uibk.ac.at/teaching/ws24/fp/

• lecture will be in German with English slides

• slides are available online and contain links

• online registration required by January 31, 2025

• lecture will be recorded; videos are accessible in OLAT-VO

RT et al. (DCS @ UIBK) Week 1 3/25

Schedule

lecture 1 October 7 lecture 8 November 25
lecture 2 October 14 lecture 9 December 2
lecture 3 October 21 lecture 10 December 9
lecture 4 October 28 lecture 11 December 16
lecture 5 November 4 lecture 12 January 13
lecture 6 November 11 lecture 13 January 20
lecture 7 November 18 Q & A January 27

• lecture on January 20
• content is not relevant for exam
• discussion of previous exam

RT et al. (DCS @ UIBK) Week 1 4/25

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703024
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/teaching/ws24/fp//material.php?lan=de
https://lfuonline.uibk.ac.at/public/lfuonline_lv.anmeldung?termine_id_in=251893
https://lms.uibk.ac.at/url/RepositoryEntry/5683576937
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proseminar (PS 1)

• LV-Number: 703025

• new exercise sheets available online on Tuesday or Wednesday
• solved exercises must be entered in OLAT-PS

• mark which exercises have been solved (Kreuzliste)
• upload solutions to programming exercises
• deadline: 8 pm on Tuesday before PS on Wednesday

• solutions will be presented in proseminar groups

• first exercise sheet: today

• proseminar starts on October 9 or October 16
• proseminar on October 9

• voluntary, discussion of basic topics (command line, . . .)

• attendance is obligatory starting from October 16

• registration deadline was in September

• exercise sheets will be English, seminar groups in German

RT et al. (DCS @ UIBK) Week 1 5/25

Proseminar Groups

• in total 9 groups, cf. LFU online
• all groups are completely full

• still want to join → contact me to put name on waiting list

• change of groups only possible via the online swap-tool
• in OLAT, there was a welcome message that included more details about swap-tool
• if you don’t care about the time of your group, enter an optional wish
• deadline when changes will be conducted: today, October 7, 4pm

RT et al. (DCS @ UIBK) Week 1 6/25

Tutorium

• opportunity to ask questions about topics of lecture and exercises

• presentation of more examples

• no new topics, no influence on grades, no solutions to exercises

• attendance voluntary

• tutor: Adam Pescoller
• Tuesday 17:15 – 18:00

• starts tomorrow
• HS 11

RT et al. (DCS @ UIBK) Week 1 7/25

Weekly Schedule

• Monday 12:00 – 13:30: lecture on topic n

• Tuesday 17:15 – 18:00: tutorium on topic n− 1 or n

• Tuesday or Wednesday: exercise sheet n on topic n available

• Tuesday 8 pm: deadline for upload of solution of exercise sheet n− 1

• Wednesday: proseminars on exercise sheet n− 1

• . . .

RT et al. (DCS @ UIBK) Week 1 8/25

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703025
http://cl-informatik.uibk.ac.at/teaching/ws24/fp//exercises.php?lan=de
https://lms.uibk.ac.at/url/RepositoryEntry/5683576938
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703025
https://lms.uibk.ac.at/url/RepositoryEntry/5683576938/CourseNode/110067306020202
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Grading

• separate grades for lecture and proseminar
• lecture

• grading solely via exam
• 1st exam on February 3, 2025
• online registration required from December 30 – January 20 via LFU online

(deregistration still possible later on)
• 2nd exam on April 24, 2025
• 3rd exam: September (tentative)
• it suffices to pass one of the three exams

• proseminar
• 80 %: scores from weekly exercises
• 20 %: presentation of solutions

RT et al. (DCS @ UIBK) Week 1 9/25

Chat-GPT

• Chat-GPT is capable of generating functional programs
• positive aspects of using Chat-GPT

• you might pass the proseminar, without being able to program on your own
• you might get hints if you are stuck on a specific problem

• negative aspects of using Chat-GPT
• if you did not learn to program on your own, there is no chance to pass the exam
• if you are stuck on a specific problem, be social: discuss with student colleagues

• why are studying computer science?
• to learn programming skills and more?
• to learn to use systems that can solve easy programming tasks?

• overall: usage of Chat-GPT is highly discouraged

RT et al. (DCS @ UIBK) Week 1 10/25

Literature

slides

• no other topics will appear in exam . . .
• . . . but topics need to be understood thoroughly

• read and write functional programs
• apply presented techniques on new examples
• not only knowledge reproduction

Richard Bird. Introduction to Functional Programming using Haskell, 2nd Edition,
Prentice Hall.

RT et al. (DCS @ UIBK) Week 1 11/25

Introduction

RT et al. (DCS @ UIBK) Week 1 12/25

https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=24{}W&lvnr_id_in=703024
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Functional) Programming

• task: solve problems
• sort a list
• generate a website
• navigate from Innsbruck to Cologne

• distinguish between data . . .
• input [1,5,2] and output [1,2,5]
• query “search for ‘functional programming’” and resulting website
• map of Europe, two locations and route

• . . . and programs
• control over how data should be processed
• mostly written by humans

• usually computers are used for executing a program on some input, but computation can
also be done on paper or in mind

RT et al. (DCS @ UIBK) Week 1 13/25

How to Learn Programming

+ read, study and write programs (many)

+ actively attend lecture and proseminar

+ try to solve exercises (alone or discuss in small teams)

− copy solutions from other students or from the internet

RT et al. (DCS @ UIBK) Week 1 14/25

Algorithms and Programs
story (language agnostic) text (language dependent)

• Tom and Paul were struggling until
. . .

• Thomas und Paul rauften solange bis
. . .

•

algorithm (prog. language agnostic)

• task: determine the maximum of m
and a list of numbers

• if list is empty, result is m

• otherwise, change m to maximum of
first element of list and m

• continue with rest of list

program (language dependent)

•
maxlist m [] = m

maxlist m (x : xs) =

maxlist (max m x) xs

•
while (list != null) {

m = max(m, list.head);

list = list.next; }

return m;

RT et al. (DCS @ UIBK) Week 1 15/25

Different Programming Styles

• Imperative Programming (VO Introduction to Programming)
• state is mapping of variables to data
• assignments instruct computer to update state
• example

• consider assignment x := (x + y) / 2;
• if in a state x stores value 7 and y stores 3
• then after executing assignment x stores value 5 and y still stores 3

• Functional Programming (this lecture)
• define functions (mathematical: same input implies same output)
• new results (of function invocations) are computed,

but there is no notion of state that can be updated
• example

• consider function definition average x y = (x + y) / 2 where x and y are parameters;
• function invocation average 7 3 is evaluated, e.g.,

average 7 3 = (7 + 3) / 2 = 10 / 2 = 5
• 7 is not changed into 5, there is no state with variable x

• Logic Programming, Object Oriented Programming, . . .

RT et al. (DCS @ UIBK) Week 1 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Different Programming Styles

• fact: most programming languages are of equal power
• demand for different styles still reasonable

• each style has its own distinguishing features and limitations
(like in real languages: translate “Ohrwurm” or “Internetbrowser”)

• good programmer should know about alternatives:
choose suitable style and language depending on problem and context

• advantages of functional programming
• intuitive evaluation mechanism
• suitable for verification
• expressive language features
• suitable for parallelization

• disadvantages of functional programming
• more difficult to model state, side-effects, and I/O
• not main-stream in industry, but getting more popular

RT et al. (DCS @ UIBK) Week 1 17/25

Different Functional Programming Languages

• combinatory logic (Moses Schönfinkel 1924, Haskell Curry 1930): foundation of FP

• λ-calculus (Alonzo Church 1936): foundation of FP

• LISP (John McCarthy, 1958): List Processing

• ML (Robin Milner, 1973): Meta Language, several dialects

• Erlang (Ericsson, 1987): distributed computing

• Haskell (Paul Hudak and Philip Wadler, 1990): language in this course

• F# (Microsoft, 2002) and Scala (Martin Odersky, 2003): combine different programming
styles, including FP

RT et al. (DCS @ UIBK) Week 1 18/25

Syntax and Semantics

• syntax of a (programming) language defines valid sentences (programs)
• “This is a proper English sentence.”
• “this one not propper”
• computers refuse programs that contain syntactical errors!

• semantics defines the meaning of valid sentences / programs
• “Clean your room!” ✔
• let xs = 1 : 1 : zipWith (+) xs (tail xs) in take 9 xs ✘

• we will learn both syntax and semantics of Haskell

RT et al. (DCS @ UIBK) Week 1 19/25

Haskell Scripts

-- This script is stored in file script_01.hs

average x y = (x + y) / 2

{- the following function takes a temperature in

degree Fahrenheit and converts it into Celsius -}

fahrenheitToCelsius f = (f - 32) * 5 / 9

• a Haskell script (= program) has file extension .hs

• a script is a collection of (several) function definitions

• comments are just for humans, ignored by computer
• single-line and multi-line comments

• single: -- everything right of -- is a comment

• multi:

{- multi-line comments can deactivate

areaRectangle width height = width * height

parts of script easily -}
RT et al. (DCS @ UIBK) Week 1 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Writing Haskell Scripts

-- This script is stored in file script_01.hs

average x y = (x + y) / 2

fahrenheitToCelsius f = (f - 32) * 5 / 9

• coloring
• when entering a Haskell script, one does not add colors in a text editor
• syntax highlighting: often editors for computer programs automatically add colors to simplify

reading; quickly distinguish
• comments, keywords, names of functions, names of parameters, . . .

• function- and parameter-names (average, x, . . .)
• always start with a lowercase letter, may contain digits
• convention: long names use camelCase (fahrenheitToCelsius, . . .)

• white-space (spaces, tabs, newlines, . . .)
• in Haskell white-space matters
• for the moment, start every new line without blanks
• the following script is not accepted
average x y = (x + y) / 2

fahrenheitToCelsius f = (f - 32) * 5 / 9

RT et al. (DCS @ UIBK) Week 1 21/25

Functional Programming – Sessions

• starting a session is like activating your calculator

• we use ghci, an interpreter for Haskell

rene$ ghci -- start the interpreter

Prelude> 42 -- enter a value

42

Prelude> 5 * (3 + 4) -- evaluate an expression

35

Prelude> :load script_01.hs -- load script from file

[1 of 1] Compiling Main (script_01.hs, interpreted)

Ok, 1 module loaded. -- script was accepted

*Main> fahrenheitToCelsius 95 -- invoke our function

35.0

*Main> :quit

RT et al. (DCS @ UIBK) Week 1 22/25

Workflow for Functional Programming

• define functions in script
• load script (will compile script or deliver error message)

• parse error: 5 + (argument missing)
• type error: 5 + "five" (cannot add number and text)
• error-messages are sometimes cryptic

• enter expression and start evaluation to get result (read-eval-print loop, REPL)
• result: value which cannot be further simplified, e.g., 42, "hello", [7,1,3], . . . ,

but not 5 + 7, fahrenheitToCelsius 8, . . .
• evaluation uses

• built-in functions (+, *, :, ++, head, tail, . . .), defined in Prelude
• user-defined functions (fahrenheitToCelsius,. . .) from script-files

Compare FP to Calculator

• enter expression and let it compute result

• restricted to numbers and built-in functions

RT et al. (DCS @ UIBK) Week 1 23/25

Comparison: FP vs Calculator

• task: convert many temperatures from Fahrenheit to Celsius: 8, 9, 300, . . .
• calculator: enter the following expressions

• (8− 32) ∗ 5/9
• (9− 32) ∗ 5/9
• (300− 32) ∗ 5/9
• . . . (quite tedious: enter same formula over and over again)

• FP
• write one program: fahrenheitToCelsius f = (f - 32) * 5 / 9
• just evaluate the function on the various inputs

• fahrenheitToCelsius 8
• fahrenheitToCelsius 9
• fahrenheitToCelsius 300
• . . . (concise, readable, easy: just invoke function)

• or just: map fahrenheitToCelsius [8,9,300,...]

• program(s): a recipe to turn inputs into desired outputs

RT et al. (DCS @ UIBK) Week 1 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• Haskell scripts are stored in .hs-files

• functional programming: specify functions (input-output-behaviour)

• ghci loads scripts and evaluates expressions

• next lecture: beyond numbers – structured data

RT et al. (DCS @ UIBK) Week 1 25/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Organization
	
	Introduction

