
WS 2024/2025

Functional Programming
Week 4 – Polymorphism

René Thiemann Diana Gründlinger Alexander Montag Adam Pescoller

Department of Computer Science

Last Lecture

• function definitions by pattern matching
• allow several equations for each function
• equations are tried from top to bottom

• patterns
• x, _, CName pat1 ... patN, x@pat
• variable names must be distinct
• patterns describe shape of inputs

• recursion
• in a defining equation of function f one can use f already in the rhs

f pat1 ... patN = ... (f expr1 ... exprN) ...

• the arguments in each recursive call should be smaller than in the lhs

RT et al. (DCS @ UIBK) Week 4 2/22

List Examples
• task 1: append two lists, e.g., appending [1, 5] and [3] yields [1, 5, 3]

• prerequisite: concrete representation of abstract lists in Haskell
data List = Empty | Cons Integer List

-- abstract list [1,5] is represented as Cons 1 (Cons 5 Empty)

• solution to task 1: pattern matching and recursion on first argument

append Empty ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

interpretation of the second equation
• first append the remaining list xs and ys (append xs ys),

afterwards insert x in front of the result

• task 2: determine last element of list

• solution: consider three cases (list with at least two elements, singleton list, empty list)
lastElem (Cons _ xs@(Cons _ _)) = lastElem xs

lastElem (Cons x _) = x -- here the order of eq. matters

lastElem Empty = error "empty list has no last element"
RT et al. (DCS @ UIBK) Week 4 3/22

Example – Datatypes Expr and List

• consider datatype for expressions

data Expr = Number Integer | Plus Expr Expr | Negate Expr

• task: create list of all numbers that occur in expression

• solution

numbers :: Expr -> List

numbers (Number x) = Cons x Empty

numbers (Plus e1 e2) = append (numbers e1) (numbers e2)

numbers (Negate e) = numbers e

• remarks
• the rhs of the first equation must be Cons x Empty and not just x:

the result must be a list of numbers
• numbers (and also append) is defined via structural recursion:

invoke the function recursively for each recursive argument of a datatype

(e1 and e2 for Plus e1 e2, and e for Negate e, but not x of Number x)

RT et al. (DCS @ UIBK) Week 4 4/22

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Decomposition and Auxiliary Functions

• during the definition of new functions, often some functionality is missing

• task: define a function to remove all duplicates from a list

• solution:

remdups Empty = Empty

remdups (Cons x xs) = Cons x (remove x (remdups xs))

-- subtask: define "remove x xs" to delete each x from list xs

remove x Empty = Empty

remove x (Cons y ys) = rHelper (x == y) y (remove x ys)

rHelper True _ xs = xs

rHelper False y xs = Cons y xs

• remarks
• solution above uses structural recursion: remdups (Cons x xs) invokes remdups xs
• alternative solution with non-structural recursion: replace 2nd equation by

remdups (Cons x xs) = Cons x (remdups (remove x xs))

RT et al. (DCS @ UIBK) Week 4 5/22

Parametric Polymorphism

RT et al. (DCS @ UIBK) Week 4 6/22

Limitations of Datatype Definitions
• task: define a datatype for lists of numbers and a function to compute their length

data IntList = EmptyIL | ConsIL Integer IntList

lenIL EmptyIL = 0

lenIL (ConsIL _ xs) = 1 + lenIL xs

• task: define a datatype for lists of strings and a function to compute their length

data StringList = EmptySL | ConsSL String StringList

lenSL EmptySL = 0

lenSL (ConsSL _ xs) = 1 + lenSL xs

• observations
• the datatype and function definitions are nearly identical:

only difference is type of elements (Integer/String) and type/function/constructor names
• creating a copy for each new element type is not desirable for many reasons

• writing the same functionality over and over again initially is tedious and error-prone
• changing the implementation later on is even more tedious and error-prone – integrate

changes for every element type

• aim: define one generic list datatype and functions on these generic lists – polymorphism

RT et al. (DCS @ UIBK) Week 4 7/22

Two Kinds of Polymorphism

• parametric polymorphism
• key idea: provide one definition that can be used in various ways
• examples

• a datatype definition for arbitrary lists (parametrized by type of elements)
• a datatype definition for arbitrary pairs (parametrized by two types)
• . . .
• a function definition that works on parametric lists, pairs, . . . ;

examples: length, append two lists, first component of pair, . . .

• ad-hoc polymorphism
• key idea: provide similar functionality under same name for different types
• examples

• (==) is equality operator; different implementations for strings, integers, floats, . . .
• (+) is addition operator; different implementations for integers, floats, . . .
• minBound gives smallest value for bounded types; different implementations for Int, Char, . . .

• advantage: uniform access (instead of ==Int, ==String, ==Double)

RT et al. (DCS @ UIBK) Week 4 8/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type Variables
• definition of polymorphic types and functions requires type variables
• type variables

• start with a lowercase letter; usually a single letter is used, e.g., a, b, . . .
• a type variable represents any type
• type variables can be substituted by (more concrete) types

• type ty1 is more general than ty2 if ty2 can be obtained from ty1 by a type substitution

• important: it is allowed to replace generic types with more concrete ones;
whenever expr :: ty1 and ty1 is more general than ty2 then expr :: ty2

• types ty1 and ty2 are equivalent if ty1 is more general than ty2 and vice versa
• examples

• a is more general than any other type
• a -> b -> a is more general than Int -> Char -> Int︸ ︷︷ ︸

a/Int, b/Char

, a -> Bool -> a︸ ︷︷ ︸
a/a, b/Bool

, c -> c -> c︸ ︷︷ ︸
a/c, b/c

• a -> b -> a is equivalent to b -> a -> b
• a -> b -> a is not more general than a -> b -> c
• someFun True︸ ︷︷ ︸

a

x︸︷︷︸
b

y︸︷︷︸
c

= x︸︷︷︸
d

is a function with type Bool︸ ︷︷ ︸
a/Bool

-> b -> c -> b︸︷︷︸
d/b

RT et al. (DCS @ UIBK) Week 4 9/22

Types Revisited
• already known: definition of (basic) Haskell expressions and patterns

• now: definition of types
• prerequisite: type constructors (TConstr)

• similarity to (value-)constructors (Cons, True, . . .)
• start with uppercase letter
• have a fixed arity

• difference to constructors: type constructors are used to construct types

• a Haskell type has one of the following three shapes
• a a type variable
• TConstr ty1 ... tyN a type constructor of arity N applied to N types
• (ty) parentheses are allowed

• examples (type constructors of arity 0: Char, Bool, Integer, . . . ; arity 2: ->)
• -> without the two arguments is not a type
• a -> Int – type of functions that take an arbitrary input and deliver an Int
• Bool -> (a -> Int) – type of f. that take a Bool and deliver a f. of type a -> Int
• Bool -> a -> Int – same as above (!), -> associates to the right
• (Bool -> a) -> Int – take a function of type Bool -> a as input, deliver an Int

RT et al. (DCS @ UIBK) Week 4 10/22

Class Assertions and Predefined Type Classes

• often a type variable a needs to be constrained to belong to a certain type class
• a type a for which (+), (-), (*) is defined: type class Num a
• a type a for which (/) is defined: type class Fractional a
• a type a for which (==), (/=) is defined: type class Eq a
• a type a for which (<), (<=), . . . is defined: type class Ord a
• a type a for which show :: a -> String is defined: type class Show a

• these constraints are called class assertions in Haskell, notation via =>

• examples
f x y = x -- f :: a -> b -> a

g x y = x + y - 3 -- g :: Num a => a -> a -> a

h x y = "cmp is " ++ show (x < y) -- h :: Ord a => a -> a -> String

i x = "result: " ++ show (x + 3) -- i :: (Num a, Show a) => a -> String

• type substitutions need to respect class assertions
• g False True is not allowed since Bool is not an instance of Num
• i (5 :: Int) is allowed since Int is an instance of both Num and Show

RT et al. (DCS @ UIBK) Week 4 11/22

Datatypes with Parametric Polymorphism

• previous definition

data TName =

CName1 type1_1 ... type1_N1

| ...

| CNameM typeM_1 ... typeM_NM

• new definition

data TConstr a1 ... aK =

CName1 type1_1 ... type1_N1

| ...

| CNameM typeM_1 ... typeM_NM

• new definition is more general (K can be zero)
• a1 ... aK have to be distinct type variables
• TConstr is a new type constructor with arity K
• a1 ... aK can be used in any of the types typeI_J, but no other type variables
• CName1 :: type1_1 -> ... -> type1_N1 -> TConstr a1 ... aK, etc.

RT et al. (DCS @ UIBK) Week 4 12/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Examples using Parametric Polymorphism

RT et al. (DCS @ UIBK) Week 4 13/22

Parametric Lists

data List a = Empty | Cons a (List a)

• List is unary type constructor
• example types

• List a – list of arbitrary elements
• List Integer – list of integers
• List Bool – list of Booleans
• List (List Integer) – list whose elements are lists of integers

• type of constructors
• Empty :: List a
• Cons :: a -> List a -> List a

• example values
• Empty :: List a, Empty :: List Integer, Empty :: List (List Bool), . . .
• Cons 7 (Cons 5 Empty) :: List Integer, Cons True Empty :: List Bool, . . .
• Cons (Cons 7︸︷︷︸

Int

(Cons 5︸︷︷︸
Int

Empty︸ ︷︷ ︸
List Int︸ ︷︷ ︸

List Int

)) (Cons Empty︸ ︷︷ ︸
List Int

Empty︸ ︷︷ ︸
List (List Int)︸ ︷︷ ︸

List (List Int)

) :: List (List Int)

• Cons True (Cons 7 Empty) not allowed, cannot mix element types
RT et al. (DCS @ UIBK) Week 4 14/22

Functions on Parametric Lists

data List a = Empty | Cons a (List a)

• example programs
len :: List a -> Int -- parametric function definition

len Empty = 0

len (Cons _ xs) = 1 + len xs

first :: List a -> a

first (Cons x _) = x

RT et al. (DCS @ UIBK) Week 4 15/22

Parametric Lists Continued

data List a = Empty | Cons a (List a)

• function definitions can enforce certain class assertions
• example: replace all occurrences of x by y in a list

replace :: Eq a => a -> a -> List a -> List a

replace _ _ Empty = Empty

replace x y (Cons z zs) = rHelper (x == z) y z (replace x y zs)

rHelper True y _ xs = Cons y xs

rHelper False _ z xs = Cons z xs

• class assertion Eq a => is required since list elements are compared via ==

• function definitions can enforce a concrete element type
• example: replace all occurrences of 'A' by 'B' in a list

replaceAB :: List Char -> List Char

replaceAB xs = replace 'A' 'B' xs
• important: since replace asserts class Eq a, and this a is instantiated by Char in
replaceAB, it is checked that Char indeed is in type class Eq

RT et al. (DCS @ UIBK) Week 4 16/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lists in Haskell

• the list type from previous three slides is actually predefined in Haskell
• only difference: names

• instead of List a one writes [a]
• instead of Empty one writes []
• instead of Cons x xs one writes x : xs (and : is called “Cons”)
• in total

data [a] = [] | a : [a]

• list constructor (:) associates to the right:
1 : 2 : 3 : [] = 1 : (2 : (3 : []))

• special list syntax for finite lists: [1, 2, 3] = 1 : 2 : 3 : []

• example: append on Haskell lists

append :: [a] -> [a] -> [a]

append [] ys = ys

append (x : xs) ys = x : append xs ys

RT et al. (DCS @ UIBK) Week 4 17/22

Tuples

• tuples are a frequently used datatype to provide several outputs at once;
example: a division-with-remainder function should return two numbers,
the quotient and the remainder

• it is easy to define various tuples in Haskell

data Unit = Unit -- tuple with 0 entries

data Pair a b = Pair a b -- tuple with 2 entries

data Triple a b c = Triple a b c -- tuple with 3 entries

• example: find value of key 'y' in list of key/value-pairs

findY :: [Pair Char a] -> a

findY [] = error "cannot find y"

findY (Pair 'y' v : _) = v

findY (_ : xs) = findY xs

remark: one would usually define a function to search for arbitrary keys

RT et al. (DCS @ UIBK) Week 4 18/22

Tuples in Haskell

• tuples are predefined in Haskell (so there is no need to define Pair, Triple, ...)
• for every n ̸= 1 Haskell provides:

• a type constructor (, ...,) (with n entries)
• a (value) constructor (, ...,) (with n entries)

• examples
• Pair a b and Triple a b c are equivalent to (a, b) and (a, b, c)
• (5, True, "foo") :: (Int, Bool, String)
• () :: ()
• (5) is just the number 5, so no 1-tuple
• (1, 2, 3) is neither the same as ((1, 2), 3) nor as (1, (2, 3))

• example program from previous slide using predefined tuples

findY :: [(Char, a)] -> a

findY [] = error "cannot find y"

findY (('y', v) : _) = v

findY (_ : xs) = findY xs

RT et al. (DCS @ UIBK) Week 4 19/22

data Maybe a = Nothing | Just a

• Maybe is predefined Haskell type to specify optional results

• example application: safe division without runtime errors

divSafe :: Double -> Double -> Maybe Double

divSafe x 0 = Nothing

divSafe x y = Just (x / y)

data Expr = Plus Expr Expr | Div Expr Expr | Number Double

eval :: Expr -> Maybe Double

eval (Number x) = Just x

eval (Plus x y) = plusMaybe (eval x) (eval y)

eval (Div x y) = divMaybe (eval x) (eval y)

plusMaybe (Just x) (Just y) = Just (x + y)

plusMaybe _ _ = Nothing

divMaybe (Just x) (Just y) = divSafe x y

divMaybe _ _ = Nothing
RT et al. (DCS @ UIBK) Week 4 20/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

data Either a b = Left a | Right b

• Either is predefined Haskell type for specifying alternative results

• example application: model optional values with error messages

divSafe :: Double -> Double -> Either String Double

divSafe x 0 = Left ("don't divide " ++ show x ++ " by 0")

divSafe x y = Right (x / y)

data Expr = Plus Expr Expr | Div Expr Expr | Number Double

eval :: Expr -> Either String Double

eval (Number x) = Right x

eval (Plus x y) = plusEither (eval x) (eval y)

eval (Div x y) = divEither (eval x) (eval y)

divEither (Right x) (Right y) = divSafe x y

divEither e@(Left _) _ = e -- new case analysis required

divEither _ e = e

plusEither ... = ...
RT et al. (DCS @ UIBK) Week 4 21/22

Summary

• usage of type variables and parametric polymorphism
• datatypes with type variables
• polymorphic functions, potentially include class assertions

(example: f :: (Eq a, Show b) => a -> Bool -> a -> b -> String, . . .)

• predefined datatypes
• lists [a]
• tuples (..,..,..)
• option type Maybe a
• sum type Either a b

• predefined type classes
• arithmetic except division: Num a
• arithmetic including division: Fractional a
• equality between elements: Eq a
• smaller than and greater than: Ord a
• conversion to Strings: Show a

RT et al. (DCS @ UIBK) Week 4 22/22

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Parametric Polymorphism
	
	Examples using Parametric Polymorphism

