

WS 2024/2025

Functional Programming

Week 4 – Polymorphism

René Thiemann Diana Gründlinger Alexander Montag Adam Pescoller

Department of Computer Science

Last Lecture

- function definitions by pattern matching
	- allow several equations for each function
	- equations are tried from top to bottom
- patterns
	- x, _, CName pat1 ... patN, x@pat
	- variable names must be distinct
	- patterns describe shape of inputs

```
• recursion
```
 \bullet in a defining equation of function f one can use f already in the rhs

f pat $1 \ldots$ pat $N = \ldots$ (f expr $1 \ldots$ expr $N) \ldots$

• the arguments in each recursive call should be smaller than in the lhs

RT et al. (DCS @ UIBK) 2/22

List Examples • [task 1: append two](https://uibk.ac.at) lists, e.g., appending $[1, 5]$ and $[3]$ yields $[1, 5, 3]$ • prerequisite: concrete representation of abstract lists in Haskell data List = Empty | Cons Integer List -- abstract list [1,5] is represented as Cons 1 (Cons 5 Empty) • solution to task 1: pattern matching and recursion on first argument append Empty $ys = ys$ append (Cons x xs) $vs = Cons x$ (append xs vs) interpretation of the second equation • first append the remaining list xs and ys (append xs ys), afterwards insert \bar{x} in front of the result • task 2: determine last element of list • [solution: consider three cases \(list with at](http://cl-informatik.uibk.ac.at/teaching/ws24/fp/) least two elements, singleton list, empty list) $lastElem (Cons xs@(Cons _-)) = lastElem xs$ lastElem (Cons x) = x -- here the order of eq. matters lastElem Empty = error "empty list has no last element" [RT et al. \(DCS](http://cl-informatik.uibk.ac.at/~thiemann) @ UIBK) 3/22 Example – Datatypes Expr and List • consider datatype for expressions data Expr = Number Integer | Plus Expr Expr | Negate Expr • task: create list of all numbers that occur in expression • solution numbers :: Expr -> List numbers (Number x) = Cons x Empty numbers (Plus e1 e2) = append (numbers e1) (numbers e2) numbers (Negate e) = numbers e • remarks • the rhs of the first equation must be Cons \bar{x} Empty and not just \bar{x} : the result must be a list of numbers • numbers (and also append) is defined via structural recursion: invoke the function recursively for each recursive argument of a datatype (e1 and e2 for Plus e1 e2, and e for Negate e, but not x of Number \mathbf{x}) RT et al. (DCS @ UIBK) 4/22

Decomposition and Auxiliary Functions

- during the definition of new functions, often some functionality is missing
- task: define a function to remove all duplicates from a list
- solution:

```
remdups Empty = Empty
remdups (Cons x xs) = Cons x (remove x (remdups xs))-- subtask: define "remove x xs" to delete each x from list xs
remove x Empty = Empty
remove x (Cons y ys) = rHelper (x == y) y (remove x ys)
rHelper True xs = xsrHelper False y xs = Cons y xs
```
- remarks
	- solution above uses structural recursion: remdups (Cons \overline{x} \overline{x} s) invokes remdups $\overline{x}s$
	- alternative solution with non-structural recursion: replace 2nd equation by

```
remdups (Cons x xs) = Cons x (remdups (remove x xs))
```

```
RT et al. (DCS @ UIBK) 5/22
```
RT et al. (DCS @ UIBK) 6/22

Parametric Polymorphism

Limitations of Datatype Definitions

• task: define a datatype for lists of numbers and a function to compute their length

```
data IntList = EmptyIL | ConsIL Integer IntList
lenIL EmbvIL = 0lenIL (ConstL <sub>xs</sub>) = 1 + lenIL xs
```
• task: define a datatype for lists of strings and a function to compute their length

```
data StringList = EmptySL | ConsSL String StringList
lensL EmptySL = 0
lenSL (ConsSL xs) = 1 + lenSL xs
```
- observations
	- the datatype and function definitions are nearly identical:

only difference is type of elements (Integer/String) and type/function/constructor names • creating a copy for each new element type is not desirable for many reasons

- writing the same functionality over and over again initially is tedious and error-prone
- changing the implementation later on is even more tedious and error-prone integrate changes for every element type
- aim: define one generic list datatype and functions on these generic lists polymorphism

Two Kinds of Polymorphism

• parametric polymorphism

- key idea: provide one definition that can be used in various ways
- examples
	- a datatype definition for arbitrary lists (parametrized by type of elements)
	- a datatype definition for arbitrary pairs (parametrized by two types)
	- \bullet
	- a function definition that works on parametric lists, pairs, \dots
	- examples: length, append two lists, first component of pair, ...
- ad-hoc polymorphism
	- key idea: provide similar functionality under same name for different types
	- examples
		- \bullet (==) is equality operator; different implementations for strings, integers, floats, ...
		- (+) is addition operator; different implementations for integers, floats, . . .
		- minBound gives smallest value for bounded types; different implementations for Int, Char, . . .
	- advantage: uniform access (instead of ==Int, ==String, ==Double)

Type Variables

- definition of polymorphic types and functions requires type variables
- type variables
	- start with a lowercase letter; usually a single letter is used, e.g., a, b, \ldots
	- a type variable represents any type
	- type variables can be substituted by (more concrete) types
- type ty1 is more general than ty2 if ty2 can be obtained from ty1 by a type substitution
- important: it is allowed to replace generic types with more concrete ones; whenever expr :: ty1 and ty1 is more general than ty2 then expr :: ty2
- types ty1 and ty2 are equivalent if ty1 is more general than ty2 and vice versa
- examples
	- a is more general than any other type

• a -> b -> a is more general than Int -> Char -> Int, a -> Bool -> a, c -> c -> c a/Int, b/Char a/a , $b/Bool$ ${a/c}$, b/c • $a \rightarrow b \rightarrow a$ is equivalent to $b \rightarrow a \rightarrow b$ • $a \rightarrow b \rightarrow a$ is not more general than $a \rightarrow b \rightarrow c$ • someFun True a x $$ y $\sum_{i=1}^{n}$ $=$ \mathbf{x} |{z} d is a function with type Bool a/Bool -> b -> c -> b d/b RT et al. (DCS @ UIBK) 9/22

Types Revisited

- already known: definition of (basic) Haskell expressions and patterns
- now: definition of types
- prerequisite: type constructors (TConstr)
	- similarity to (value-)constructors (Cons, True, . . .)
		- start with uppercase letter
		- have a fixed arity
	- difference to constructors: type constructors are used to construct types
- a Haskell type has one of the following three shapes
- a contract of a structure of a type variable of a type variable • TConstr ty1 ... tyN a type constructor of arity N applied to N types • (tv) parentheses are allowed • examples (type constructors of arity 0: Char, Bool, Integer, . . . ; arity 2: ->) • -> without the two arguments is not a type • $a \rightarrow Int -$ type of functions that take an arbitrary input and deliver an Int • Bool \rightarrow (a \rightarrow Int) – type of f. that take a Bool and deliver a f. of type a \rightarrow Int • Bool \rightarrow a \rightarrow Int – same as above (!), \rightarrow associates to the right • (Bool \rightarrow a) \rightarrow Int – take a function of type Bool \rightarrow a as input, deliver an Int

```
RT et al. (DCS @ UIBK) 10/22
```
Class Assertions and Predefined Type Classes

- often a type variable a needs to be constrained to belong to a certain type class
	- a type a for which $(+)$, $(-)$, $(*)$ is defined: the type class Num a
	- a type a for which (/) is defined: type class Fractional a
	- a type a for which $(==)$, $(/-)$ is defined: type class Eq a
	- a type a for which $(\langle \rangle, \langle \langle = \rangle, \ldots)$ is defined: the set of type class Ord a
	- a type a for which show :: a -> String is defined: type class Show a
- these constraints are called class assertions in Haskell, notation via =>
- examples
	- f $x y = x$ -- f :: a -> b -> a $g \times y = x + y - 3$ --g :: Num a => a -> a -> a h x y = "cmp is " \leftrightarrow show $(x < y)$ -- h :: Ord a => a -> a -> String
	- i $x =$ "result: " ++ show $(x + 3)$ -- i :: (Num a, Show a) => a -> String
-
- type substitutions need to respect class assertions
	- g False True is not allowed since Bool is not an instance of Num
	- \bullet i (5 :: Int) is allowed since Int is an instance of both Num and Show

Datatypes with Parametric Polymorphism

• previous definition

```
data TName =
      CName1 type1_1 ... type1_N1
    | ...
    | CNameM typeM_1 ... typeM_NM
• new definition
 data TConstr a1 \ldots aK =
      CName1 type1_1 ... type1_N1
    | ...
    | CNameM typeM_1 ... typeM_NM
    • new definition is more general (K \cap B)
```
- a1 ... aK have to be distinct type variables
- TConstr is a new type constructor with arity K
- a1 \ldots aK can be used in any of the types typeI J, but no other type variables
- CName1 :: type1_1 -> ... -> type1_N1 -> TConstr a1 ... aK, etc.

Parametric Lists


```
data List a = \text{Empty} | Cons a (List a)
```

```
• example programs
```

```
len :: List a -> Int -- parametric function definition
len Empty = 0
len (Cons xs) = 1 + len xs
```

```
first :: List a -> a
first (Cons x ) = x
```
Parametric Lists Continued

data List $a = \text{Empty}$ | Cons a (List a)

- function definitions can enforce certain class assertions
	- example: replace all occurrences of \bar{x} by \bar{y} in a list

```
replace :: Eq a \Rightarrow a \Rightarrow a \Rightarrow List a \Rightarrow List a
replace Empty = Emptyreplace x y (Cons z zs) = rHelper (x == z) y z (replace x y zs)
rHelper True y _ xs = Cons y xs
rHelper False _ z xs = Cons z xs
```
- class assertion Eq $a \Rightarrow$ is required since list elements are compared via $=$
- function definitions can enforce a concrete element type
	- example: replace all occurrences of 'A' by 'B' in a list

```
replaceAB :: List Char -> List Char
```
- replaceAB $xs = replace 'A' 'B' xs$
- important: since replace asserts class Eq a , and this a is instantiated by Char in replaceAB, it is checked that Char indeed is in type class Eq

Lists in Haskell

• the list type from previous three slides is actually predefined in Haskell

- only difference: names
	- instead of List a one writes [a]
	- instead of Empty one writes []
	- instead of Cons \bar{x} xs one writes \bar{x} : $\bar{x}s$ (and : is called "Cons")
	- in total

```
data [a] = [1] | a : [a]
```
- list constructor (:) associates to the right: $1 : 2 : 3 : 1 = 1 : (2 : (3 : 1))$
- special list syntax for finite lists: $[1, 2, 3] = 1 : 2 : 3 : \square$
- example: append on Haskell lists

append \therefore [a] \rightarrow [a] \rightarrow [a] append $\begin{bmatrix} \end{bmatrix}$ ys $\begin{bmatrix} \end{bmatrix}$ ys append $(x : xs)$ vs = $x : an$ append xs vs

```
RT et al. (DCS @ UIBK) 17/22
```

```
Tuples
```
- tuples are a frequently used datatype to provide several outputs at once; example: a division-with-remainder function should return two numbers, the quotient and the remainder
- it is easy to define various tuples in Haskell

```
data Unit = Unit - tuple with 0 entries
 data Pair a b = Pair a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 
 data Triple a \ b \ c = Triple a \ b \ c - -- tuple with 3 entries
• example: find value of key \forall y \land \exists in list of key/value-pairs
 findY :: [Pair Char a] -> a
 findY \lceil = error "cannot find v''findY (Pair 'y' v : ) = vfindY ( : xs) = findY xsremark: one would usually define a function to search for arbitrary keys
```
RT et al. (DCS @ UIBK) 18/22

Tuples in Haskell

• tuples are predefined in Haskell (so there is no need to define Pair, Triple, ...) • for every $n \neq 1$ Haskell provides: • a type constructor (, ...,) $($ with n entries) • a (value) constructor (, \dots ,) (with n entries) • examples • Pair a b and Triple a b c are equivalent to (a, b) and (a, b, c) • (5, True, "foo") :: (Int, Bool, String) \bullet () :: () \bullet (5) is just the number 5, so no 1-tuple • $(1, 2, 3)$ is neither the same as $((1, 2), 3)$ nor as $(1, (2, 3))$ • example program from previous slide using predefined tuples findY :: $[(Char, a)] \rightarrow a$ findY \lceil = error "cannot find v'' findY $(('v', v) :) = v$ find $($: $xs)$ = find xs

```
data Maybe a = Nothing | Just a
  • Maybe is predefined Haskell type to specify optional results
```

```
• example application: safe division without runtime errors
 divSafe :: Double -> Double -> Maybe Double
 divSafe x 0 = Nothing
 divSafe x y = Just (x / y)data Expr = Plus Expr Expr | Div Expr Expr | Number Double
 eval :: Expr -> Maybe Double
 eval (Number x) = Just xeval (Plus x \ y) = plusMaybe (eval x) (eval y)
 eval (\text{Div } x \ y) = \text{div} \text{Map} (\text{eval } x) (\text{eval } y)plusMaybe (Just x) (Just y) = Just (x + y)plusMaybe _ _ _ _ = Nothing
 divMaybe (Just x) (Just y) = divSafe x y
```

```
div \text{Maybe} = int \text{Noting}<br>(DCS @ LIIRK)
RT et al. (DCS @ UIBK) 20/22
```

```
data Either a b = Left a | Right b• Either is predefined Haskell type for specifying alternative results
  • example application: model optional values with error messages
    divSafe :: Double -> Double -> Either String Double
    divSafe x = 0 = Left ("don't divide " ++ show x + + " by 0")
    divSafe x y = Right (x / y)data Expr = Plus Expr Expr | Div Expr Expr | Number Double
    eval :: Expr -> Either String Double
    eval (Number x) = Right xeval (Plus x y) = plusEither (eval x) (eval y)
    eval (\text{Div } x \ y) = \text{divEither} (\text{eval } x) (\text{eval } y)divEither (Right x) (Right y) = divSafe x y
    divEither e@(Left ) = e -- new case analysis required
    divEither e = eSummary
                                                                                                  • usage of type variables and parametric polymorphism
                                                                                                      • datatypes with type variables
                                                                                                      • polymorphic functions, potentially include class assertions
                                                                                                        (example: f :: (Eq a, Show b) => a -> Bool -> a -> b -> String, ...)
                                                                                                  • predefined datatypes
                                                                                                      • lists [a]
                                                                                                      \bullet tuples ( \ldots, \ldots, \ldots)• option type Maybe a
                                                                                                      • sum type Either a b
                                                                                                  • predefined type classes
                                                                                                      • arithmetic except division: Num a
                                                                                                      • arithmetic including division: Fractional a
                                                                                                      • equality between elements: Eq a
                                                                                                      • smaller than and greater than: Ord a
                                                                                                      • conversion to Strings: Show a
```

```
plusEither ... = ...
RT et al. (\overline{\text{DCS}} \otimes \text{UIBK}) 21/22
```
RT et al. (DCS @ UIBK) 22/22