
WS 2024/2025

Functional Programming
Week 5 – Expressions, Recursion on Numbers

René Thiemann Diana Gründlinger Alexander Montag Adam Pescoller

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Lecture

• type variables: a, b, . . . represent any type
• parametric polymorphism

• one implementation that can be used for various types
• polymorphic datatypes, e.g., data List a = Empty | Cons a (List a)
• polymorphic functions, e.g., append :: List a -> List a -> List a
• type constraints, e.g., sumList :: Num a => List a -> a

• predefined types: [a], Maybe a, Either a b, (a1,...,aN)
• predefined type classes

• arithmetic except division: Num a
• arithmetic including division: Fractional a
• equality between elements: Eq a
• smaller than and greater than: Ord a
• conversion to Strings: Show a

RT et al. (DCS @ UIBK) Week 5 2/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

This Lecture

• type synonyms

• expressions revisited

• recursion involving numbers

RT et al. (DCS @ UIBK) Week 5 3/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type Synonyms

RT et al. (DCS @ UIBK) Week 5 4/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type Synonyms

• Haskell offers a mechanism to create synonyms of types via the keyword type

type TConstr a1 ... aN = ty
• TConstr is a fresh name for a type constructor
• a1 ... aN is a list of type variables
• ty is a type that may contain any of the type variables
• there is no new (value-)constructor
• ty may not include TConstr itself, i.e., no recursion allowed

RT et al. (DCS @ UIBK) Week 5 5/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type Synonyms – Applications, Strings
• example applications of type synonyms

• avoid creation of new datatypes: type Person = (String,Integer)
• increase readability of code
type Month = Int

type Day = Int

type Year = Int

type Date = (Day, Month, Year)

createDate :: Day -> Month -> Year -> Date

createDate d m y = (d, m, y)

-- createDate is logically equivalent to the following function,

-- but the type synonyms help to make the code more readable

createDate :: Int -> Int -> Int -> (Int, Int, Int)

createDate x y z = (x, y, z)

• in Haskell: type String = [Char]
• in particular "hello" is identical to ['h', 'e', 'l', 'l', 'o']
• all functions on lists can be applied to Strings as well, e.g. (++) :: [a] -> [a] -> [a]

RT et al. (DCS @ UIBK) Week 5 6/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type Synonyms versus Datatypes

• type synonyms can always be encoded as separate datatype

• example encoding of persons as name and year of birth
type PersonTS = (String, Integer) -- pair of name and year

data PersonDT = Person (String, Integer) -- just add constructor Person

• remark: PersonTS and PersonDT are different types
• the types PersonTS and (String, Integer) are identical
• the type PersonDT is different from both (String, Integer) and PersonTS
• ("Bob", 2002) is of type PersonTS, but not of type PersonDT
• Person ("Bob", 2002) is of type PersonDT, but not of type PersonTS

• advantages of modeling via type synonyms
• no overhead in writing additional constructor, i.e., here Person
• functions on existing types can directly be used, e.g., fst to access name vs.
name (Person p) = fst p -- implementation for PersonDT

• advantages of modeling via datatypes
• separate type class instances are possible, e.g., for show-function (week 6)
• possibility to hide internal representation (week 9)

RT et al. (DCS @ UIBK) Week 5 7/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Expressions Revisited

RT et al. (DCS @ UIBK) Week 5 8/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions Revisited

• current form of function definitions

f :: ty -- optional type definition

f pat11 ... pat1M = expr1 -- first defining equation

...

f pat1M ... patNM = exprN -- last defining equation

where expressions consist of literals, variables, and function- or constructor applications
• observations

• case analysis only possible via patterns in left-hand sides of equations
• case analysis on right-hand sides often desirable
• work-around via auxiliary functions possible
• better solution: extension of expressions

RT et al. (DCS @ UIBK) Week 5 9/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

if-then-else

• most primitive form of case analysis: if-then-else

• functionality: return one of two possible results, depending on a Boolean value
ite :: Bool -> a -> a -> a

ite True x y = x

ite False x y = y

• example application: lookup a value in a key/value-list
lookup :: Eq a => a -> [(a, b)] -> Maybe b

lookup x ((k, v) : ys) = ite (x == k) (Just v) (lookup x ys)

lookup _ _ = Nothing

• if-then-else is predefined: if ... then ... else ...

lookup x ((k, v) : ys) = if x == k then Just v else lookup x ys

• there is no if-then (without the else) in Haskell:
what should be the result if the Boolean is false?

• remark: also lookup is predefined in Haskell;
Prelude content (functions, (type-)constructors, type classes, . . .) is typeset in green

RT et al. (DCS @ UIBK) Week 5 10/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Case Analysis via Pattern Matching

• observation: often case analysis is required on computed values

• implementation possible via auxiliary functions

• example: evaluation of expressions with meaningful error messages

data Expr a = Var String | ... -- Numbers, Addition, ...

eval :: Num a => [(String, a)] -> Expr a -> a

eval ass ... = ... -- all the other cases

eval ass (Var x) = aux (lookup x ass) x -- case analysis on lookup x ass

aux (Just i) _ = i

aux _ x = error ("assignment does not include variable " ++ x)

• disadvantages
• local values need to be passed as arguments to auxiliary function (here: x)
• pollution of name space by auxiliary functions

(aux, aux1, aux2, auX, helper, fHelper, ...)

• note: if-then-else is not sufficient for above example

RT et al. (DCS @ UIBK) Week 5 11/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Case Expressions

• case expressions support arbitrary pattern matching directly in right-hand sides
case expr of

pat1 -> expr1

...

patN -> exprN
• match expr against pat1 to patN top to bottom
• if patI is first match, then case-expression is evaluated to exprI

• example from previous slide without auxiliary function

eval ass (Var x) = case lookup x ass of

Just i -> i

_ -> error ("assignment does not include variable " ++ x)

RT et al. (DCS @ UIBK) Week 5 12/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Layout Rule

• problem: define groups (of patterns, of function definitions, . . .)

• script content is group, start nested group by where, let, do, or of

• items that start in same column are grouped together

• by increasing indentation, single item may span multiple lines

• groups end when indentation decreases

• ignore layout: enclose groups in ‘{’ and ‘}’ and separate items by ‘;’

Examples
with layout:
and b1 b2 = case b1 of

True -> case b2 of

True -> True

False -> False

False -> False

without layout:
and b1 b2 = case b1 of

{ True -> case b2 of

{ True -> True; False -> False };

False -> False }

RT et al. (DCS @ UIBK) Week 5 13/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

White-Space in Haskell

• because of layout rule, white-space in Haskell matters
(in contrast to many other programming languages)

• avoid tabulators in Haskell scripts
(tab-width of editor versus Haskell-compiler)

Example
and1 b1 b2 = case b1 of

True -> case b2 of

True -> True

False -> False

and2 b1 b2 = case b1 of

True -> case b2 of

True -> True

False -> False

ghci> and1 True False

False

ghci> and2 True False

*** error: non-exhaustive patterns

RT et al. (DCS @ UIBK) Week 5 14/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The let Construct

• let-expressions are used for local definitions

• syntax
let

pat = expr -- definition by pattern matching

fname pat1 ... patN = expr -- function definition

in expr -- result

• each let-expression may contain several definitions (order irrelevant)
• definitions result in new variable-bindings and functions

• may be used in every expression expr above
• are not visible outside let-expression

RT et al. (DCS @ UIBK) Week 5 15/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Number of Real Roots via let Construct

-- Prelude type and function for comparing two numbers

data Ordering = EQ | LT | GT

compare :: Ord a => a -> a -> Ordering

-- task: determine number of real roots of ax^2 + bx + c

numRoots a b c = let

disc = b^2 - 4 * a * c -- local variable

analyse EQ = 1 -- local function

analyse LT = 0

analyse GT = 2

in analyse (compare disc 0)

RT et al. (DCS @ UIBK) Week 5 16/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The where Construct

• where is similar to let, used for local definitions

• syntax
f pat1 .. patM = expr -- defining equation (or case)

where pat = expr -- pattern matching

fname pat1 .. patN = expr -- function definitions

• each where may consist of several definitions (order irrelevant)
• local definitions introduce new variables and functions

• may be used in every expression expr above
• are not visible outside defining equation / case-expression

• remark: in contrast to let, when using where the defining equation of f is given first
numRoots a b c = analyse (compare disc 0) where

disc = b^2 - 4 * a * c -- local variable

analyse EQ = 1 -- local function

analyse LT = 0

analyse GT = 2

RT et al. (DCS @ UIBK) Week 5 17/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Equations

• defining equations within a function definition can be guarded

• syntax:
fname pat1 ... patM

| cond1 = expr1

| cond2 = expr2

| ...

where ... -- optional where-block
where each condI is a Boolean expression

• whenever condI is first condition that evaluates to True, then result is exprI

• next defining equation of fname considered, if no condition is satisfied
numRoots a b c

| disc > 0 = 2

| disc == 0 = 1

| otherwise = 0 -- otherwise = True

where disc = b^2 - 4 * a * c -- disc is shared among cases

RT et al. (DCS @ UIBK) Week 5 18/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Roots
• task: compute the sum of the roots of a quadratic polynomial

• solution with potential runtime errors
roots :: Double -> Double -> Double -> (Double, Double)

roots a b c

| a == 0 = error "not quadratic"

| d < 0 = error "no real roots"

| otherwise = ((- b - r) / e, (- b + r) / e)

where d = b * b - 4 * a * c

e = 2 * a

r = sqrt d

sumRoots :: Double -> Double -> Double -> Double

sumRoots a b c = let

(x, y) = roots a b c -- pattern match in let

in x + y

• note: non-variable patterns in let are usually only used if they cannot fail;
otherwise, use case instead of let

RT et al. (DCS @ UIBK) Week 5 19/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Roots (Continued)

• task: compute the sum of the roots of a quadratic polynomial

• solution with explicit failure via Maybe-type
roots :: Double -> Double -> Double -> Maybe (Double, Double)

roots a b c

| a == 0 = Nothing

| d < 0 = Nothing

| otherwise = Just ((- b - r) / e, (- b + r) / e)

where d = b * b - 4 * a * c

e = 2 * a

r = sqrt d

sumRoots :: Double -> Double -> Double -> Maybe Double

sumRoots a b c =

case roots a b c of -- case for explicit error handling

Just (x, y) -> Just (x + y) -- nested pattern matching

n -> Nothing -- can't be replaced by n -> n! (types)

RT et al. (DCS @ UIBK) Week 5 20/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursion on Numbers

RT et al. (DCS @ UIBK) Week 5 21/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursion on Numbers

• recursive function
f pat1 ... patN = ... (f expr1 ... exprN) ...

where input arguments should somehow be larger than arguments in recursive call:
(pat1, ..., patN) > (expr1, ..., exprN) -- for some relation >

• decrease often happens in one specific argument (the i-th argument always gets smaller)
• so far the decrease in size was always w.r.t. tree size

• length of list gets smaller
• arithmetic expressions (Expr) are decomposed, i.e., number of constructors is decreased

• if argument is a number (tree size is always 1), then still recursion is possible;
example: the value of number might decrease

• frequent cases
• some number i is decremented until it becomes 0 (while i ̸= 0 . . . i := i− 1)
• some number i is incremented until it reaches some bound n (while i < n . . . i := i+ 1)

RT et al. (DCS @ UIBK) Week 5 22/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Factorial Function

• mathematical definition: n! = n · (n− 1) · . . . · 2 · 1, 0! = 1

• implementation D: count downwards
factorial :: Integer -> Integer

factorial 0 = 1

factorial n = n * factorial (n - 1)
• in every recursive call the value of n is decreased
• factorial n does not terminate if n is negative (hit Ctrl-C in ghci to stop computation)

• implementation U: count upwards, use accumulator (here: r stores accumulated (r)esult)
factorial :: Integer -> Integer

factorial n = fact 1 1 where

fact r i

| i <= n = fact (i * r) (i + 1)

| otherwise = r
• in every recursive call the value of n - i is decreased
• implementation U is equivalent to imperative program (with local variables r and i)

RT et al. (DCS @ UIBK) Week 5 23/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Combined Recursion
• recursion on trees and numbers can be combined

• example: compute the n-th element of a list

nth :: [a] -> Int -> a

nth (x : _) 0 = x -- indexing starts from 0

nth (_ : xs) n = nth xs (n - 1) -- decrease of number and list-length

nth _ _ = error "no nth-element"

• example: take the first n-elements of a list

take :: Int -> [a] -> [a]

take _ [] = []

take n (x : xs)

| n <= 0 = []

| otherwise = x : take (n - 1) xs -- decrease of number and list-length

• remarks
• both take and n-th element (!!) are predefined
• drop is predefined function that removes the first n-elements of a list
• equality: take n xs ++ drop n xs == xs

RT et al. (DCS @ UIBK) Week 5 24/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Creating Ranges of Values

• task: given lower bound l and upper bound u, compute list of numbers [l, l + 1, . . . , u]

• algorithm: increment l until l > u and always add l to front of list
range l u

| l <= u = l : range (l + 1) u

| otherwise = []

• remark: (a generalized version of) range l u is predefined and written [l .. u]

• example: concise definition of factorial function
• factorial n = product [1 .. n]

where product :: Num a => [a] -> a computes the product of a list of numbers

RT et al. (DCS @ UIBK) Week 5 25/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• type synonyms via type

• expressions with local definitions and case analysis

• recursion on numbers

RT et al. (DCS @ UIBK) Week 5 26/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Type Synonyms
	
	Expressions Revisited
	
	Recursion on Numbers

