M universitat WS 2024/2025
™ innsbruck Last Lecture

® type variables: a, b, ...represent any type

® parametric polymorphism
® one implementation that can be used for various types
® polymorphic datatypes, e.g., data List a = Empty | Cons a (List a)
® polymorphic functions, e.g., append :: List a -> List a -> List a
® type constraints, e.g., sumList :: Num a => List a -> a

® predefined types: [a], Maybe a, Either a b, (al,...,alN)

® predefined type classes

Functional Programming ® arithmetic except division: Num a
® arithmetic including division: Fractional a
Week 5 — Expressions, Recursion on Numbers ® equality between elements: Eq a
® smaller than and greater than: Ord a
. . . s ® conversion to Strings: Show a
René Thiemann Diana Griindlinger ~ Alexander Montag ~ Adam Pescoller
Department of Computer Science
RT et al. (DCS @ UIBK) Week 5 2/26

This Lecture
® type synonyms
ype synony Type Synonyms

® expressions revisited

® recursion involving numbers

RT et al. (DCS @ UIBK) Week 5 3/26 RT et al. (DCS @ UIBK) Week 5 4/26

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Type Synonyms

® Haskell offers a mechanism to create synonyms of types via the keyword type

type TConstr al aN = ty
® TConstr is a fresh name for a type constructor
® al ... allis a list of type variables
® ty is a type that may contain any of the type variables
® there is no new (value-)constructor
® ty may not include TConstr itself, i.e., no recursion allowed
RT et al. (DCS @ UIBK) Week 5

Type Synonyms versus Datatypes

® type synonyms can always be encoded as separate datatype

® example encoding of persons as name and year of birth
type PersonTS = (String, Integer)

-- pair of name and year

Type Synonyms — Applications, Strings
® example applications of type synonyms

® avoid creation of new datatypes: type Person = (String,Integer)

® increase readability of code
type Month = Int
type Day = Int
type Year = Int
type Date = (Day, Month, Year)

createDate :: Day -> Month -> Year -> Date
createDate d m y = (d, m, y)

-- createDate is logically equivalent to the following function,
-- but the type synonyms help to make the code more readable

createDate Int -> Int -> Int -> (Int, Int, Int)
createDate x vy z = (%, y, z)
® in Haskell: type String = [Char]
® in particular "hello" is identical to ['h', 'e', '1', '1', 'o0']
® all functions on lists can be applied to Strings as well, e.g. (++) :: [a] -> [a]

5/26 RT et al. (DCS @ UIBK) Week 5

data PersonDT = Person (String, Integer) -- just add constructor Person

® remark: PersonTS and PersonDT are different types
® the types PersonTS and (String, Integer) are identical
the type PersonDT is different from both (String, Integer) and PersonTS
("Bob", 2002) is of type PersonTS, but not of type PersonDT
Person ("Bob", 2002) is of type PersonDT, but not of type PersonTS

® advantages of modeling via type synonyms
® no overhead in writing additional constructor, i.e., here Person
® functions on existing types can directly be used, e.g., £st to access name vs.
name (Person p) = fst p -- implementation for PersonDT
® advantages of modeling via datatypes

® separate type class instances are possible, e.g., for show-function

® possibility to hide internal representation
RT et al. (DCS © UIBK) Week 5

Expressions Revisited

(week 6)
(week 9)

7/26 RT et al. (DCS @ UIBK) Week 5

-> [a]

6/26

8/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

if-then-else

® most primitive form of case analysis: if-then-else

Function Definitions Revisited o) .
e functionality: return one of two possible results, depending on a Boolean value

® current form of function definitions ite :: Bool => a4 => a -> a
f oty —-- optional type definition ite True x y = x
f patll ... patiM = exprl -- first defining equation ite False x y = y
s e example application: lookup a value in a key/value-list
f patiM ... patNM = exprN -- last defining equation lookup :: Eq a => a => [(a, b)] -> Maybe b
where expressions consist of literals, variables, and function- or constructor applications lookup x ((k, v) : ys) = ite (x == k) (Just v) (lookup x ys)
® observations lookup _ _ = Nothing
® case analysis only possible via patterns in left-hand sides of equations ® if-then-else is predefined: if ... then ... else
® case analysis on right-hand sides often desirable lookup x ((k, v) : ys) = if x == k then Just v else lookup x ys
o) . e . .
work-around via auxiliary functions possible e there is no if-then (without the else) in Haskell:

® better solution: extension of expressions .)
what should be the result if the Boolean is false?

® remark: also lookup is predefined in Haskell;

Prelude content (functions, (type-)constructors, type classes, ...) is typeset in green
RT et al. (DCS @ UIBK) Week 5 9/26 RT et al. (DCS @ UIBK) Week 5 10/26
Case Analysis via Pattern Matching
® observation: often case analysis is required on computed values Case Expressions
® implementation possible via auxiliary functions ® case expressions support arbitrary pattern matching directly in right-hand sides

case expr of
patl —> expri

® example: evaluation of expressions with meaningful error messages

data Expr a = Var String | ... -- Numbers, Addition,

eval :: Num a => [(String, a)] -> Expr a -> a T

eval ass ... = ... -— all the other cases path —> expr.N

eval ass (Var x) = aux (1ookup X ass) x -— case analysis on lookup x ass : ﬁmtdwgxp?agamstpatltopatNtopFob9nom

aux (Just i) _ = i if patI is first match, then case-expression is evaluated to exprI

aux _ x = error ("assignment does not include variable " ++ x) example from previous slide without auxiliary function

eval ass (Var x) = case lookup x ass of
Just i > i
_ —> error ("assignment does not include variable " ++ x)

® disadvantages
® local values need to be passed as arguments to auxiliary function (here: x)
® pollution of name space by auxiliary functions
(aux, auxl, aux2, auX, helper, fHelper, ...)

® note: if-then-else is not sufficient for above example

RT et al. (DCS @ UIBK) Week 5 11/26 RT et al. (DCS @ UIBK) Week 5 12/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

White-Space in Haskell

® because of layout rule, white-space in Haskell matters
(in contrast to many other programming languages)

The Layout Rule

® problem: define groups (of patterns, of function definitions, ...)

® script content is group, start nested group by where, let, do, or of . . .
P group group by ® avoid tabulators in Haskell scripts

® jtems that start in same column are grouped together (tab-width of editor versus Haskell-compiler)

® by increasing indentation, single item may span multiple lines

. . Example
® groups end when indentation decreases
. C i r . o andl bl b2 = case bl of and2 bl b2 = case bl of
® ignore layout: enclose groups in ‘{’ and ‘}' and separate items by °; True —> case b2 of True —> case b2 of
Examples True -> True True -> True
with layout: without layout: False -> False False -> False
and bl b2 = case bl of and bl b2 = case bl of)
True -> case b2 of { True -> case b2 of ghci> andl True False
True -> True { True -> True; False -> False 1}; False
False -> False False -> False }

ghci> and2 True False
*%% error: non-exhaustive patterns

False -> False

RT et al. (DCS @ UIBK) Week 5 13/26 RT et al. (DCS @ UIBK) Week 5 14/26

The 1ot Construct Number of Real Roots via 1let Construct

-- Prelude type and function for comparing two numbers

® let-expressions are used for local definitions
data Ordering = EQ | LT | GT

® syntax ;
1ot compare :: Ord a => a -> a -> Ordering
pat = expr -—- definition by pattern matching
fname patl patN = expr -- function definition -- task: determine number of real roots of ax™2 + bx + ¢
in expr —— result numRoots a b ¢ = let
. . L . disc = b2 - 4 % a x c —-- local variable
® each let-expression may contain several definitions (order irrelevant) analyse EQ = 1 —~ local function
® definitions result in new variable-bindings and functions analyse LT = 0
® may be used in every expression expr above analyse GT = 2

® are not visible outside let-expression in analyse (compare disc 0)

RT et al. (DCS @ UIBK) Week 5 15/26 RT et al. (DCS @ UIBK) Week 5 16/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The where Construct

® yhere is similar to 1let, used for local definitions

® syntax
f patl .. patM = expr -- defining equation (or case)
where pat = expr -- pattern matching

fname patl .. patN = expr
® each where may consist of several definitions (order irrelevant)
local definitions introduce new variables and functions

® may be used in every expression expr above
® are not visible outside defining equation / case-expression

® remark: in contrast to let, when using where the defining equation of f is given first

numRoots a b ¢ = analyse (compare disc 0) where

disc = b™2 - 4 x a *x ¢ -- local variable

analyse EQ = 1 -- local function
analyse LT = 0O
analyse GT = 2

RT et al. (DCS @ UIBK) Week 5

Example: Roots
® task: compute the sum of the roots of a quadratic polynomial
® solution with potential runtime errors
roots :: Double -> Double -> Double -> (Double, Double)
roots a b ¢
| a == 0 = error "not quadratic"
| d < 0 = error "no real roots"
| otherwise = ((-b -1) /e, (-b+1) /e

where d = b *x b - 4 x a *x c
e =2 % a
r = sqrt d
sumRoots :: Double -> Double -> Double -> Double

sumRoots a b ¢ = let
(x, y) = roots a b ¢ -- pattern match in let
in x + y
® note: non-variable patterns in let are usually only used if they cannot fail;

otherwise, use case instead of let
RT et al. (DCS @ UIBK) Week 5

—-- function definitions

17/26

19/26

Guarded Equations

defining equations within a function definition can be guarded

syntax:
fname patl ... patM
| condl = expri
| cond2 = expr2

where

—-- optional where-block

where each condI is a Boolean expression

whenever condl is first condition that

evaluates to True, then result is exprI

next defining equation of fname considered, if no condition is satisfied

numRoots a b ¢
| disc > 0O
| disc ==

2
1
| otherwise 0
where disc = b™2 - 4 *x a * c

RT et al. (DCS @ UIBK)

Example: Roots (Continued)

—-- otherwise = True
-- disc is shared among cases

Week 5 18/26

® task: compute the sum of the roots of a quadratic polynomial

® solution with explicit failure via Maybe-type

roots
roots a b ¢

| a == Nothing
| d < 0 = Nothing
| otherwise = Just ((- b - 1)

where d = b *x b - 4 % a *x c
e =2 % a
r = sqrt d
sumRoots :: Double -> Double ->

sumRoots a b ¢ =
case roots a b ¢ of
Just (x, y) -> Just (x + y)
n -> Nothing

RT et al. (DCS @ UIBK)

:: Double -> Double -> Double -> Maybe (Double, Double)

/e, (-=b+1x)/e)

Double -> Maybe Double

-—- case for explicit error handling
-- nested pattern matching
-- can't be replaced by n -> n! (types)

Week 5 20/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursion on Numbers

RT et al. (DCS @ UIBK) Week 5 21/26

Example: Factorial Function

® mathematical definition: n!l=n-(n—1)-...-2-1,01 =1
® implementation D: count downwards
factorial Integer -> Integer
factorial 0 =1
factorial n = n * factorial (n - 1)
® in every recursive call the value of n is decreased
® factorial n does not terminate if n is negative (hit Ctrl-C in ghci to stop computation)
® implementation U: count upwards, use accumulator (here: r stores accumulated (r)esult)
factorial Integer -> Integer
factorial n = fact 1 1 where
fact r i
| i <= n = fact (i * r) (i + 1)
| otherwise = r

® in every recursive call the value of n - i is decreased
® implementation U is equivalent to imperative program (with local variables r and i)

RT et al. (DCS @ UIBK) Week 5 23/26

Recursion on Numbers

® recursive function

f patl patN = (f expril exprN)
where input arguments should somehow be larger than arguments in recursive call:
(patl, ..., patN) > (exprl, ., exprN) -- for some relation >

e decrease often happens in one specific argument (the i-th argument always gets smaller)
® so far the decrease in size was always w.r.t. tree size
® length of list gets smaller
® arithmetic expressions (Expr) are decomposed, i.e., number of constructors is decreased
e if argument is a number (tree size is always 1), then still recursion is possible;
example: the value of number might decrease
® frequent cases

® some number i is decremented until it becomes 0 (whilei#0 ...i:=i—1)
® some number ¢ is incremented until it reaches some bound n (whilei<n ...i:=i4+1)
RT etal. (DCS @ UIBK) Week 5 22/26
Example: Combined Recursion
® recursion on trees and numbers can be combined
® example: compute the n-th element of a list
nth :: [a] => Int -> a
nth (x : _) 0 =x -- indexing starts from 0
nth (_ xs) n = nth xs (n - 1) -- decrease of number and list-length
nth _ _ = error "no nth-element"
® example: take the first n-elements of a list
take :: Int -> [a] -> [a]
take _ [1 = []
take n (x : xs)
| n<=0=10
| otherwise = x take (n - 1) xs -- decrease of number and list-length
® remarks
® both take and n-th element (!!) are predefined
® drop is predefined function that removes the first n-elements of a list
® equality: take n xs ++ drop n xs == xs
RT et al. (DCS © UIBK) Week 5 24/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Creating Ranges of Values

e task: given lower bound [and upper bound u, compute list of numbers [I,1 + 1,. .., u]

® algorithm: increment [until [> u and always add [to front of list
range 1 u

| 1 <=u=1:range (1 + 1) u

| otherwise = []
® remark: (a generalized version of) range 1 u is predefined and written [1 .. ul
® example: concise definition of factorial function
® factorial n = product [1 .. n]
where product :: Num a => [a] -> a computes the product of a list of numbers
RT et al. (DCS @ UIBK) Week 5

25/26

Summary

® type synonyms via type

® expressions with local definitions and case analysis

® recursion on numbers

RT et al. (DCS @ UIBK)

Week 5

26/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Type Synonyms
	
	Expressions Revisited
	
	Recursion on Numbers

