
WS 2024/2025

Functional Programming
Week 7 – Higher-Order Functions

René Thiemann Diana Gründlinger Alexander Montag Adam Pescoller

Department of Computer Science

Last Lecture
• type class definitions

class (...) => TCName a where

fName :: ty -- type ty + description of fName

...

lhs = rhs -- optional default implementation

...

• type class instantiations

instance (...) => TCName (TConstr a1 .. aN) where

... -- implementation of functions

• examples
• classes: Eq a, Num a, Integral a, RealFrac a, . . .
• instances: Integral Int, Eq a => Eq (Maybe a), (Ord a, Ord b) => Ord (a,b), . . .

• documentation:
http://hackage.haskell.org/package/base-4.18.0.0/docs/Prelude.html

• switch between operators and function names: (+) and `div`

RT et al. (DCS @ UIBK) Week 7 2/20

Higher-Order Functions

RT et al. (DCS @ UIBK) Week 7 3/20

Functions and Values

• functions take values as input and produce output values
• values so far: numbers, characters, pairs, lists, user defined datatypes, . . .
• examples

• lookup :: Eq a => a -> [(a,b)] -> Maybe b
• elem :: Eq a => a -> [a] -> Bool

• important extension: functions are values
• result: higher-order functions

• functions can take other functions as input, e.g.,
nTimes :: (a -> a) -> Int -> a -> a

-- nTimes f n x = f(...(f x))
• the result of a function can be a function, e.g.,
compose :: (b -> c) -> (a -> b) -> (a -> c)

-- compose f g is the function that takes an x and results in f(g(x))

• observations
• higher-order functions are quite natural to define, e.g., compose f g x = f (g x)
• higher-order functions are useful to avoid code duplication

RT et al. (DCS @ UIBK) Week 7 4/20

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws24/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://hackage.haskell.org/package/base-4.18.0.0/docs/Prelude.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Partial Application
• question: how to construct values that are functions?

• possible answer: partial application

• note: type constructor for functions (->) associates to the right, cf. lecture 4, slide 10

a -> b -> c -> d is identical to a -> (b -> (c -> d))

• note: function application associates to the left

f expr1 expr2 expr3 is identical to ((f expr1) expr2) expr3

• example with parentheses added

average :: Double -> (Double -> Double)

(average x) y = (x + y) / 2

• partial application: average is applied on less than two arguments
• example expressions

• average :: Double -> (Double -> Double) no arguments applied
• average 3 :: Double -> Double 1 argument applied
• (average 3) 5 :: Double first 1 argument applied, then another one
• average 3 5 :: Double same as above

RT et al. (DCS @ UIBK) Week 7 5/20

Sections, flip

• sections are a special form of partial applications in combination with operators &

• (expr &) is the same as (&) expr

• (& expr) is a function that takes an x and returns x & expr

• (& expr) is the same as flip (&) expr
• flip is a predefined function that swaps the arguments of a binary function

flip :: (a -> b -> c) -> (b -> a -> c)

-- same as (a -> b -> c) -> b -> a -> c

flip f y x = f x y

• exception: (- expr) is not flip (-) expr but just the negated value of expr
• examples

• (> 3) test whether a number is larger than 3
• (3 >) test whether 3 is larger than a number
• (3 -) subtract something from 3
• (- 3) the number -3

RT et al. (DCS @ UIBK) Week 7 6/20

Example: nTimes

nTimes :: (a -> a) -> Int -> a -> a

nTimes f n x

| n == 0 = x

| otherwise = f (nTimes f (n - 1) x)

• observations
• nTimes uses standard recursion on numbers
• in the last line f is used twice

• once as parameter of nTimes, where in nTimes f no argument is applied to f
• once as the function which is applied to an argument: otherwise = f (...)

• application: implement other functions in more concise way

tower :: Integer -> Int -> Integer -- tower x n = x ^ (x ^ ... (x ^ 1))

tower x n = nTimes (x ^) n 1 -- n exponentiations with basis x

replicate :: Int -> a -> [a] -- replicate n x = [x, ..., x]

replicate n x = nTimes (x :) n [] -- n insertions of x

RT et al. (DCS @ UIBK) Week 7 7/20

Partial Application and Evaluation

• if defining equation of f is of shape f pat1 ... patN with N arguments,
then evaluation of f expr1 ... exprM can only happen, if M ≥ N

• example nTimes and tower

nTimes f n x

| n == 0 = x

| otherwise = f (nTimes f (n - 1) x)

tower x n = nTimes (x ^) n 1

tower 4 2

= nTimes (4 ^) 2 1 -- (4 ^) cannot be evaluated!

= 4 ^ (nTimes (4 ^) 1 1) -- evaluate second argument of ^

= 4 ^ (4 ^ (nTimes (4 ^) 0 1)) -- again, argument evaluation

= 4 ^ (4 ^ 1)

= 4 ^ 4

= 256

RT et al. (DCS @ UIBK) Week 7 8/20

http://cl-informatik.uibk.ac.at/teaching/ws24/fp//slides/04x1.pdf#page=10
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Partial Application and Evaluation, Continued
• if defining equation of f is of shape f pat1 ... patN with N arguments,
then evaluation of f expr1 ... exprM can only happen, if M ≥ N

• example with M > N

selectFunction :: Bool -> (Int -> Int) -- same as Bool -> Int -> Int

selectFunction True = (* 3)

selectFunction False = abs

selectFunction False (-2) -- M > N

= abs (-2)

= 2

• restriction: all defining equations of a function must have same number of arguments

• consequence: the following code is not allowed, although it would make sense

selectFunction' :: Bool -> Int -> Int

selectFunction' True = (* 3)

selectFunction' False x = 2 - x

RT et al. (DCS @ UIBK) Week 7 9/20

Currying

• most of the time we defined functions in curried form (Haskell B. Curry, M. Schönfinkel)

f :: ty1 -> ... -> tyN -> ty

• alternative is tupled form

f :: (ty1, ..., tyN) -> ty

• observations
• partial application is only possible with curried form
• tupled form has advantage when passing logically connected values around

type Date = (Int, Int, Int)

differenceDate :: Date -> Date -> Int -- number of days between two dates

-- but not: Int -> Int -> Int -> Int -> Int -> Int -> Int
• argument order is relevant in curried form: partial application only possible from left to right

• divide 1000 by something: div 1000
• division by 1000: let f x = div x 1000 in f
• alternative using flip: flip div 1000

• rule of thumb: put arguments that are unlikely to change to the left

RT et al. (DCS @ UIBK) Week 7 10/20

Anonymous Functions: λ abstractions

• example: apply n-times the function that given an x computes 3 · (x+ 1)

• one possibility: local definition of a function
example :: Num a => Int -> a -> a

example = let f x = 3 * (x + 1) in nTimes f

-- this is equivalent to

example n y = let f x = 3 * (x + 1) in nTimes f n y

• annoying: creation of function names, here f
• alternative: creation of anonymous function via λ abstraction

• syntax: \ pat1 ... patN -> expr λ is written as \ in Haskell
• equivalent to: let f pat1 ... patN = expr in f for some fresh name f

example = nTimes (\ x -> 3 * (x + 1))

• difference between lambda abstractions and local function definitions
• recursion not expressible via lambda abstractions
• lambda abstractions do not require new function names

RT et al. (DCS @ UIBK) Week 7 11/20

Example Higher-Order Functions and Applications

RT et al. (DCS @ UIBK) Week 7 12/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Generalize Common Programming Patterns
• consider the following tasks

• multiply all list elements by 2
• convert all characters in a string to upper case
• compute a list of email addresses from a list of students

• possible implementation

multTwo [] = []

multTwo (x : xs) = 2 * x : multTwo xs

toUpperList [] = []

toUpperList (c : cs) = toUpper c : toUpperList cs

eMails [] = []

eMails (s : ss) = getEmail s : eMails ss

• observation: all of these functions are similar

• abstract version: apply some function on each list element

• aim: program the abstract version only once (will be a higher-order function),
and then just instantiate this function for each task

RT et al. (DCS @ UIBK) Week 7 13/20

The map Function
• map applies a function on each list element

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x : xs) = f x : map f xs

• solve tasks from previous slide easily

multTwo = map (2 *)

toUpperList = map toUpper

eMails = map getEmail

• example evaluation

toUpperList "Hi"

= map toUpper "Hi"

= toUpper 'H' : map toUpper "i"

= 'H' : toUpper 'i' : map toUpper ""

= 'H' : 'I' : ""

= "HI"

RT et al. (DCS @ UIBK) Week 7 14/20

The filter Function
• filter selects all elements of a list that satisfy some condition

filter :: (a -> Bool) -> [a] -> [a]

filter f [] = []

filter f (x : xs)

| f x = x : filter f xs

| otherwise = filter f xs

• example applications
-- test whether some element is included in a list

elem :: Eq a => a -> [a] -> Bool

elem x xs = filter (== x) xs /= []

-- the well known lookup function

lookup :: Eq a => a -> [(a,b)] -> Maybe b

lookup x xs = case filter (\ (k,_) -> x == k) xs of

[] -> Nothing

((_,v) : _) -> Just v

RT et al. (DCS @ UIBK) Week 7 15/20

Application: Quicksort

• quicksort is an efficient sorting algorithm

• main idea: partition a non-empty list into small and large elements and sort recursively

• straight-forward implementation

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x : xs) = -- x is pivot element

qsort (filter (<= x) xs) ++ [x] ++ qsort (filter (> x) xs)

• implementation might be tuned in several ways
• use partition :: (a -> Bool) -> [a] -> ([a], [a]) once instead of filter twice
• parametrize order

• qsortBy :: (a -> a -> Bool) -> [a] -> [a]
• qsort = qsortBy (<=)

• take random pivot element, cf. lecture Algorithms and Data Structures

RT et al. (DCS @ UIBK) Week 7 16/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


The Function Composition Operator (.)

• function composition is a higher-order function (in Haskell: (.))
(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) = \ x -> f (g x)

• it takes two functions as input and returns a function

• in Haskell, function composition is often used to chain several function applications
without explicit arguments

• example: given a number, first add 5, then compute the absolute value, then multiply it
by 7, and finally convert it into a string and determine its length

• without composition: many parenthesis, not very readable
\ x -> length (show ((abs (x + 5)) * 7))

• written conveniently with function composition
length . show . (* 7) . abs . (+ 5)

RT et al. (DCS @ UIBK) Week 7 17/20

Collection View

• often lists are used to encode collections of elements

• then one can process the whole collection via map, filter, sum, . . .
without looking at the position of the list elements

• list index function (!!) is rarely used in these applications

• in particular: do not write the following kind of loop

for (int i = 0; i < length; i++) {

xs[i] = someFun(xs[i]);

}

as functional program

map (\ i -> someFun (xs !! i)) [0 .. length xs - 1]

but instead just write

map someFun xs

• the bad program needs ∼ 1
2n

2 evaluation steps for a list of length n: lists ̸= arrays!

RT et al. (DCS @ UIBK) Week 7 18/20

Application: Names of Good Students

• given a list of students, compute a sorted list of all names of students whose average
grade is 2 or better

• implementation

data Student = ...

avgGrade :: Student -> Double

...

getName :: Student -> String

...

goodStudents :: [Student] -> [String]

goodStudents = qsort . map getName . filter (\ s -> avgGrade s <= 2)

RT et al. (DCS @ UIBK) Week 7 19/20

Summary

• higher-order functions
• functions may have functions as input
• functions may have functions as output

• partial application
• n-ary function is value
• applying n-ary function on 1 argument results in n− 1-ary function
• sections are special syntax for partially applied operators

• λ-abstraction is anonymous function

• process lists that encode a collection via map, filter, . . .

RT et al. (DCS @ UIBK) Week 7 20/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Higher-Order Functions
	
	Example Higher-Order Functions and Applications

