
Advanced Functional Programming WS 2025/2026 LVA 703139

Exercise Sheet 1, 10 points Deadline: Tuesday, October 14, 2025, 4pm

• Solve the tasks in file Exercise01.hs and upload only this file in OLAT.

• Mark the solved exercises in OLAT.

• Your modified Exercise01.hs file must compile with ghci without error messages.

Task 1 Optimal Brackets 5 p.

Design an algorithm optBrackets :: [Integer] -> Brackets that computes an optimal bracketing, repre-
sented by the following data type, where the integer in a split indicates the index of the matrix where the
outermost brackets are added.
data Brackets = Leaf | Split Brackets Int Brackets

For instance, Split (Split Leaf 0 Leaf) 1 (Split Leaf 2 (Split Leaf 3 Leaf)) represents the bracket-
ing (A0A1)(A2(A3A4)).
Your algorithm should be similar in structure to optBracketCosts from the lecture slides.

Task 2 Embedding Relation 5 p.

First order terms are either variables or function symbols that are applied on lists of terms.
The following inference rules describe the embedding relation on terms.

•
s1 ≿emb t1 . . . sn ≿emb tn
f(s1, . . . , sn) ≿emb f(t1, . . . , tn)

(args)

•
si ≿emb t

f(s1, . . . , sn) ≿emb t
(sub)

•
x ≿emb x

(var)

For example, one can infer f(m(x, y), s(z)) ≿emb f(y, s(z)) and show f(m(x, y), s(z)) ̸≿emb f(z, s(y)).
In the template file you find an encoding of first order terms and a naive implementation of the embedding
relation. It requires exponential time because of many overlapping recursive calls.
Design a more efficient Haskell function that decides s ≿emb t for arbitrary input terms s and t. Your function
should avoid overlapping recursive calls by using lazy dictionaries or lazy arrays.


