

Advanced Functional Programming

WS 2025/2026

LVA 703139

Exercise Sheet 1, 10 points

Deadline: Tuesday, October 14, 2025, 4pm

- Solve the tasks in file ExerciseO1.hs and upload only this file in OLAT.
- Mark the solved exercises in OLAT.
- Your modified Exercise01.hs file must compile with ghci without error messages.

Task 1 Optimal Brackets

5 p.

Design an algorithm optBrackets:: [Integer] -> Brackets that computes an optimal bracketing, represented by the following data type, where the integer in a split indicates the index of the matrix where the outermost brackets are added.

data Brackets = Leaf | Split Brackets Int Brackets

For instance, Split (Split Leaf 0 Leaf) 1 (Split Leaf 2 (Split Leaf 3 Leaf)) represents the bracketing $(A_0A_1)(A_2(A_3A_4))$.

Your algorithm should be similar in structure to optBracketCosts from the lecture slides.

Task 2 Embedding Relation

5 p.

First order terms are either variables or function symbols that are applied on lists of terms. The following inference rules describe the embedding relation on terms.

$$\bullet \ \frac{s_1 \succsim_{emb} t_1 \ \dots \ s_n \succsim_{emb} t_n}{f(s_1,\dots,s_n) \succsim_{emb} f(t_1,\dots,t_n)} \ \text{(args)}$$

$$\bullet \ \frac{s_i \succsim_{emb} t}{f(s_1, \dots, s_n) \succsim_{emb} t} \ (\text{sub})$$

•
$$\overline{x \succsim_{emb} x}$$
 (var

For example, one can infer $f(m(x,y),s(z)) \succsim_{emb} f(y,s(z))$ and show $f(m(x,y),s(z)) \not\succsim_{emb} f(z,s(y))$.

In the template file you find an encoding of first order terms and a naive implementation of the embedding relation. It requires exponential time because of many overlapping recursive calls.

Design a more efficient Haskell function that decides $s \succsim_{emb} t$ for arbitrary input terms s and t. Your function should avoid overlapping recursive calls by using lazy dictionaries or lazy arrays.