
Advanced Functional Programming WS 2025/2026 LVA 703139

Exercise Sheet 2, 10 points Deadline: Tuesday, October 21, 2025, 4pm

• Solve the tasks in file Exercise02.hs and upload only this file in OLAT.

• Mark the solved exercises in OLAT.

• Your modified Exercise02.hs file must compile with ghci without error messages.

Task 1 Type Inference 5 p.

Consider the following definition of a fold function on lists:
fold [] e f = e
fold (x : xs) e f = f x (fold xs e f)

1. Construct constraints to determine the most generic type of fold, similarly to slide 12 of week 2.

2. Encode the constraints in Haskell, and use the provided implementation of the unification algorithm to
obtain the most generic type of fold. Compare the computed type to the type-inference algorithm of ghc.
The latter can be invoked as follows:

cabal repl
ghci> :m Exercise02
ghci> :t fold

Task 2 Type Inference with Let and λ 5 p.

1. Extend the type-inference algorithm so that it can handle λ-abstractions of the form \ x -> e, where x
is a variable and e some expression. What will be the constraints for type-inference of function?

function = \ x -> x x

2. Compare the difference of type-inference of Haskell when treating λ and let. To this end, invoke ghc on
the following two functions. Try to explain the observed difference.
polymorphicLet :: (Bool, String)
polymorphicLet =

let f = id
in (f True, f "hello")

polymorphicLambda :: (Bool, String)
polymorphicLambda =

(\ f -> (f True, f "hello")) id


