
Advanced Functional Programming WS 2025/2026 LVA 703139

Exercise Sheet 10, 10 points Deadline: Tuesday, January 6, 2026, 4pm

• Solve the tasks in file Exercise10.hs and upload only this file in OLAT.

• Mark the solved exercises in OLAT.

• Your modified Exercise10.hs files must compile with ghci without error messages.

• Performance measurements will be performed via:

cabal run Exercise10 -- numbers 5000000
cabal run Exercise10 -- sort optimizedInput hybridSort +RTS -N4 -RTS

Task 1 Hybrid Sorting 4 p.

Instead of performing parallelization of a single sorting algorithm such as quicksort, an alternative is to split the
list into nc sublists (where nc is the number of cores), each sublist is sorted in parallel using sequential quicksort,
and then the merge-operation of mergesort is applied.
Implement and evaluate this idea.
Hint: parList and spine might be useful.
For testing, the first commands generates a file with random numbers, and the second command invokes one of
the selected algorithms using 4 cores.

cabal run Exercise10 -- numbers 5000000
cabal run Exercise10 -- sort seqInput {qsortSeq|qsortPar|hybridSort} +RTS -N4 -RTS

Task 2 Parallel File Reading 4 p.

The current code for running a parallel sorting algorithm has a significant sequential phase, namely:
input <- lines <$> readFile sortFile
Figure out whether this part can be made more efficient by using parallelism, too. To this end, implement and
evaluate some of the following ideas:

• reading the file is still done sequentially, but lines is re-implemented in a parallel way

• both reading and splitting the input into lines is done in parallel

If you want to perform the file-read operation in parallel, then the ByteString library might be useful, which is
already imported in the template. It provides constant time operations to split (BSC.splitAt) a ByteString at
any position, and there is also constant time random access to any character in the ByteString (BSC.index).
For testing, run

cabal run Exercise10 -- sort {seqInput|parListInput|optimizedInput} hybridSort +RTS -N4 -RTS

with different number of cores to test your input reader.

Task 3 Concurrent Dictionaries 2 p.

We consider the task to create a concurrent dictionary, based on a standard immutable dictionary implementa-
tion. The aim is to gain efficiency by releasing MVar-locks early on.
In detail:

• Create a datatype for a concurrent map and implement empty, insert, and lookup. In the template, you
already find the import of Data.Map.Strict to get access to a purely functional and strict implementation
of maps.

• Test your implementation with the provided application code. To run the application, execute something
like

cabal run Exercise10 -- cmap 1000 100000 100 +RTS -N2 -s -RTS

where 1000 is the number of elements that are inserted into the map per thread, 1000000 is the computation
cost of each element, 100 is number of threads, and -s prints statistic information.

In the statistics, the total time reports computation time and real time (elapsed).

• Also run

cabal run Exercise10 -- cmap 10000 1 500 +RTS -N2 -s -RTS

and look at the memory consumption. Can you observe some unwanted effect and integrate counter-
measures?

