M universitat
iInnsbruck

Advanced Functional Programming WS 2025/2026 LVA 703139

Exercise Sheet 12, 10 points Deadline: Tuesday, January 20, 2026, 4pm

e Solve the tasks in files Exercise12.hs and Exercisel12_LPO_Encoder.hs and upload only these files in
OLAT.

e Mark the solved exercises in OLAT.

e Your modified .hs-files must compile without error messages.

Task 1 Queues 5 p.

1. Consider the simple queue implementation. The amortized complexity is O(1). This implies that n
consecutive operations have cost O(n).

However, this statement is only true, if always the same queue is used and the queue is not copied. Write
a Haskell program that performs O(n) many queue operations (insertion, removal, and queue-copying),
and requires ©(n?) time.

Use cabal repl Exercisel2 and test using :set +s within ghci.
Reason for using read-eval-print-loop: Full compilation might optimize and tune your code so that a
quadratic behavior might not be visible after compilation. (2 points)

2. Study the improved implementation Queue2. Perform an evaluation of iterated insertion in the style of
Slides 22 and 23 for Queue2 to identify a pattern in the evaluation. Afterwards derive a lower bound on
the worst case complexity of remove2 after a sequence of n many insertions.

Here, all arithmetic operations should be performed immediately, and the first argument of fo1dl should
always be evaluated to WHNF before performing the next recursive step with foldl. (3 points)

Task 2 Profiling and Optimization 5 p.

Consider the solution to the implementation of the LPO-encoding of exercise 11, which is given to you in
Exercisel2_LPO_Encoder.hs. Via profiling it was figured out that the lookup in the encoding is time-
consuming.

Use any techniques that you learned in this course and optimize the implementation to make it more efficient.
You may change mainLPO in Exercisel2.hs as well as everything in file Exercise12_LPO_Encoder.hs.
Important: It is not allowed to make any changes that influence the resulting SMT-formula. In particular the
output of the original version and the optimized version must be 100 % identical.

Perform profiling before and after your modification and briefly report on the results.

The measurement and checking is done with the following invocations.

before optimization:
time cabal run Exercisel2 -- lpo ariTRSs.txt +RTS -N4 -RTS > orig_output.txt

after optimization
time cabal run Exercisel2 -- 1lpo ariTRSs.txt +RTS -N4 -RTS > new_output.txt

diff orig_output.txt new_output.txt || echo "disqualified"

measure real time output of "time" command from optimized implementation

On a test computer, the optimized version from the example solution could reduce the required time from

previously 39.4 seconds down to 3.4 seconds.
The fastest student solution will be awarded with a copy of "Parallel and Concurrent Programming in Haskell"
(unfortunately, I was informed about an expected delivery date of July 24).

