M universitat WS 2025/2026
W innsbruck

Organization

Advanced Functional Programming

Week 1 — Organisation and Introduction, Strict- and Lazy-Evaluation

René Thiemann

Department of Computer Science
RT (DCS @ UIBK) Week 1 2/28

Organization of Course
e LV-Number: 703139

® |ecturer: René Thiemann
consultation hours: Tuesday 10:15—11:15 in 3M09 (ICT building) Schedule

® time and place: Wednesday, 11:00 — 13:30 in SR 12 ® detailed schedule: see website

® special dates

® today: just lecture
® January 21, Q & A session, no new content
® January 28: exam

® |ecture will be in English

® slides are available online and contain links
® modus: VU 3
® 3 hours per week

® attendance is obligatory
® VU: lecture and exercises combined

® today: just lecture
® from next week onwards: first, presentation of exercises; afterwards lecture

RT (DCS @ UIBK) Week 1 3/28 RT (DCS @ UIBK) Week 1 4/28

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=25{}W&lvnr_id_in=703139
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/teaching/ws25/afp//material.php?lan=de
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Evaluation

Literature
® 50 % exercises + 50 % exam
® exam on January 28 [slides and exercises
e exercises will be handed out every week ® no other topics will appear in exam ...

. . e .. but topics need to be understood thoroughl
e mark solved exercises and upload Haskell sources in OLAT P i) gnty
® read and write functional programs

® deadline in OLAT: Tuesday, 4pm ® apply presented techniques on new examples
e definition of solved: ® not only knowledge reproduction

® 100 % solutions are not required, but a significant part of tasks should have been solved e s -
® capability to explain your solution to everyone in this room @ Bryan O'Sullivan, John Goerzen and Don Stewart. Real World Haskell, O'Reilly.

® not permitted: just copy some internet/chatGPT solution without understanding it B ... see slides

® positive evaluation: get in total at least 50 % of points

RT (DCS @ UIBK) Week 1 5/28 RT (DCS @ UIBK) Week 1 6/28

Prerequisites: Basic Knowledge of Functional Programming

knowledge on lists, trees and other algebraic data types

knowledge on recursive function definitions

basic knowledge on type-classes (Eq, Ord, Show, Num) Strict- and Lazy—EvaIuation

basic knowledge on programming with higher-order functions
(map, filter, foldr, ., partial application, ...)

basic knowledge on I0
(separate pure from |0-computations, do-notation, ...)

RT (DCS @ UIBK) Week 1 7/28 RT (DCS @ UIBK) Week 1 8/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example
Consider
® program square x = x * ¥, and

® expression square (3 + 2)

Different Ways to Apply Equations

® strict/innermost: evaluate arguments before doing a function application
square (3 + 2) = square 5 =5 * 5 = 25
® non-strict/lazy: apply program equation as soon as possible
square (3 + 2) = (3 +2) *x (3 +2) =5%*5=25

where the sub-expression 3+2 is shared and hence, only evaluated once

RT (DCS @ UIBK) Week 1

Example (foldl and foldl’)

foldl, foldl'
foldl £ y [1 =y
foldl f y (x : xs) =
let z =f y x
in foldl f z xs

(b ->a ->b) =>b ->1[a] -=> b

foldl' £y [1 =y
foldl' £y (x : xs) =
let z =f y x
in seq z $ foldl' f z xs

Remark

® seq x y returns y after evaluating x to weak-head normal form (WHNF), i.e., after
outermost constructor has been computed

® example:
(let xs = take 2 [5..] in seq xs xs) = ... =5

RT (DCS @ UIBK) Week 1

: take (2 - 1) [6 + 1.

-]

9/28

11/28

RT (DCS @ UIBK)

RT (DCS @ UIBK)

Values and Thunks
value: a fully evaluated term, e.g., 5, "hello", [1,2,3]

® thunk: a term that needs further evaluation, e.g., 2 + 3, "hel" ++ "lo", ...
® strict/innermost: evaluate arguments to values before invoking function application
® non-strict/lazy: arguments can be passed as values or as thunks

® consequences

® strict/innermost is easier to implement; takes less space per cell
® non-strict/lazy includes overhead when working with thunks;
admits new kinds of programming styles

e ML and OCaml use a strict/innermost evaluation strategy
® Haskell uses non-strict/lazy as default evaluation strategy;
strict/innermost on demand

o offer strict and lazy folding functions

® offer strict and lazy arrays

® offer strict and lazy dictionaries

® enforce strictness via seq, via strict datatypes, ...

Week 1

Example (Lazy Evaluation via f01d1)

foldl £y [1 =y
foldl f y (x : xs) =
let z =f y x
in foldl f z xs

foldl (+) 0 [112:354,576]
= let z1 = 0 + 1 in foldl (+) zl [2,3,4,5,6]

= let z1 = 0 + 1 in let z2 = z1 + 2 in foldl (+) z2 [3,4,5,6] = ...
=let z1 =0+ 1 in let z2 = z1 + 2 in let z3 = z2 + 3 in

let z4 = z3 + 4 in let z5 = z4 + 5 in let z6 = z5 + 6 in foldl (+) z6 []
=let z1 =0+ 1 in let z2 = z1 + 2 in let z3 = z2 + 3 in

let z4 = z3 + 4 in let zb = z4 + 5 in let z6 = z5 + 6 in z6
= ((((0+1) +2) +3) +4) +5) +6
= ... =21
Linear space requirement!

Week 1

10/28

12/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Strict Evaluation via foldl”’)

foldl' £y [1 =y
foldl' f y (x :
let z=f y x
in seq z $§ foldl' f z xs

Xs) =

foldl' (+) 0 [1,2,3,4,5,6]
= let z1 = 0 + 1 in seq z1 $ foldl' (+) zl1 [2,3,4,5,6]
= let z1 = 1 in seq zl1 $ foldl' (+) zl [2,3,4,5,6]
= foldl' (+) 1 [2,3,4,5,6]
= let z2 = 1 + 2 in seq z2 $ foldl' (+) z2 [3,4,5,6]
= let z2 = 3 in seq z2 $ foldl' (+) z2 [3,4,5,6]
= foldl' (+) 3 [3,4,5,6]

= foldl' (+) 21 []
= 21
Constant space requirement!
RT (DCS @ UIBK) Week 1

Use seq Carefully

® seq forces only an evaluation, if seq itself is at a position which should be evaluated

e usually, put seq on the outside

fOoy=...
fxy=1letz=...1n z “seq f (x - 1) z -- evaluation of z to WHNF
fxy=1let z= in f (x - 1) (z “seq” z) -- no effect
fxy-s=
let x1 = x - 1;

zZ = ...
-- evaluate both x1 and z to WHNF
-- here: useless for x1

in x1 "seq” z "seq” f x1 z

RT (DCS @ UIBK) Week 1

13/28

15/28

Example (Sometimes foldl is Preferable)

mulNS x 0 = 0
mulNS x y = x *x y

-- compare
foldl mulNS 1 [3,6,undefined,0,7]
-- with

foldl' mulNS 1 [3,6,undefined,0,7]

-- result: only the former succeeds

RT (DCS @ UIBK) Week 1 14/28

Benefits from Lazy Evaluation: Modularity

® composing several programs can work out nicely with lazy evaluation, where strict
evaluation is not performant

® example: compute the ten smallest elements in a list xs

® |azy approach: take 10 (sort xs)

® approach can be efficient, since due to laziness, not all of sort xs has to be computed
(efficiency depends on utilized sorting algorithm)

® strict approach

® take 10 (sort xs) is inefficient to evaluate, if xs is long
® writing separate program from scratch requires work

RT (DCS @ UIBK) Week 1 16/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming with Lazy Evaluation

® task
® replace all elements in a non-empty list by the minimum in the list . ..
® ... with only one list-traversal
® solution
findMinRepl :: Ord b => a -> [b] -> (b, [al)
findMinRepl r [x] = (x, [r])
findMinRepl r (x : xs) = case findMinRepl r xs of
(m, ys) -> (min m x, r : ys)

replAl1ByMin :: Ord a => [a] -> [a]
replAl1ByMin xs =
let (m, ys) = findMinRepl m xs
in ys

e trick: m is evaluated lazily in replA11ByMin

RT (DCS @ UIBK) Week 1

Programming with Lazy Evaluation — Lazy Arrays

® several container data structures (arrays, dictionaries, ...) are provided both in a strict
and in a lazy variant in Haskell libraries
® advantage of strict versions

® no overhead from working with thunks
® less memory consumption, no boxing and unboxing of values

e advantage of lazy versions

® |azy initialization becomes possible:
already consume parts of array during construction (similar to m in previous example)

e documentation

® https://hackage.haskell.org/package/array/docs/Data-Array-IArray.html
® https://hackage.haskell.org/package/array/docs/Data-Array-Unboxed.html

RT (DCS @ UIBK) Week 1

Programming with Lazy Evaluation

findMinRepl r [x] = (x, [r])
findMinRepl r (x : xs) = case findMinRepl r xs of
(m, ys) -> (min m x, r : ys)
replAl1ByMin xs = let (m, ys) = findMinRepl m xs in ys

replABM [2,6,1]

= let (m, ys) = fMR m [2,6,1] in ys

= let (m, ys) = case fMR m [6,1] of (ml, ys1) -> (min ml 2, m : ysl) in ys

= let (m, ys) = case (case fMR m [1] of (m2, ys2) -> (min m2 6, m : ys2))
of (mil, ys1) -> (min ml 2, m : ysl) in ys

= let (m, ys) = case (case (1, [m]) of (m2, ys2) -> (min m2 6, m : ys2))
of (mil, ys1) -> (min ml 2, m : ysl) in ys

= let (m, ys) = case (min 1 6, [m, m])
of (mil, ys1) -> (min ml 2, m : ysl) in ys

= let (m, ys) = (min (min 1 6) 2, [m, m, m]) in ys

= [min (min 1 6) 2, min (min 1 6) 2, min (min 1 6) 2] = ... = [1, 1, 1]

RT (DCS @ UIBK) Week 1 18/28

Example with Lazy Initialization

import qualified Data.Array.IArray as L -- lazy, boxed, immutable arrays

fibsLazyArray :: Int -> [Integer]
fibsLazyArray n =
let a :: L.Array Int Integer
a = L.genArray (0,n)
(\i ->if i <=1 then 1 else a L.! (i - 1) +alL.! (i - 2))
in L.elems a

-- lazy approach: in order to construct array a, we already use it

-- index types Ix might be Int, Integer, Char, (Int, Int),

-- L.genArray :: (IArray a e, Ix i) => (i, i) -> (i -> e) -> a i e
-- (L.") :: (IArray a e, Ix i) =>aie ->i ->e
-- L.elems :: (IArray a e, Ix i) => a i e -> [e]

RT (DCS @ UIBK) Week 1 20/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://hackage.haskell.org/package/array/docs/Data-Array-IArray.html
https://hackage.haskell.org/package/array/docs/Data-Array-Unboxed.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lazy Initialization does Not Work with Strict Arrays

import Data.Array.Unboxed as S -- strict, unboxed arrays
-- UArray can store elements of type Int, Word32,
but not Integer, String,

import Data.Word (Word64)

L)

Int -> [Word64]

fibsStrictArray ::
fibsStrictArray n
let a :: S.UArray Int Word64
a = S.genArray (0,n)
(\ i -> if i <= 1 then 1 else a S.!
in S.elems a

(i -1) +as.! (i-2)

-- computation of fibsStrictArray 10 does not succeed

-- similar interface in comparison to lazy arrays
-- S.genArray :: (S.IArray a e, S.Ix i) => (i, i) -> (1 ->e) ->a i e

RT (DCS @ UIBK) Week 1

Lazy Maps and Sets

® Data.Map.Lazy provides lazy dictionaries (or: maps) in Haskell

® multiple construction possibilities
® empty :: Map k v
® insert :: Ord k => k -> v -> Map k v -> Map k v
® unionWith :: Ord k => (v -> v -> v) -> Map k v -> Map k v -> Map k v
® fromList :: Ord k => [(k, v)] -> Map k v

querying single keys
® lookup :: Ord k => k -> Map k v -> Maybe v
! ::0rd k =>Map k v ->k ->v

(optional valu

implemented as balanced trees

Data.Set has similar functionality to represent sets
documentation
® https://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html

® https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html
® https://hackage.haskell.org/package/containers/docs/Data-Set.html

RT (DCS @ UIBK) Week 1

(might throw error)

Another Example for Lazy Containers: Dynamic Programming

® bracketing problem
given is list of n — 1 compatible matrices Ag A1 ... A, 2

in fact, only the dimensions of A; are given: [ao,...,an—1], A; has dimension a; X a; 41
task: figure out cheapest way to multiply all matrices, e.g., (AgA1)(A3(A344))
algorithm computes optimal costs to multiply A; ... A;

cost(i,1) =0

cost(i, j) = min{cost(i, k) + cost(k + 1,7) +

Qi Ak41A541 | 1< k<]} if <j
N———

matrix-multiplication

A Ay = (Ai. . A) (Apyr ... Aj)

i X Q41 Ap41 X541
® naive recursive computation of cost results in exponential algorithm
® solution: dynamic programming
® compute values of cost(i, j) for increasing differences of i and j — without recomputation

21/28 RT (DCS @ UIBK) Week 1 22/28
Implementation of Bracketing Problem in Haskell via Lazy Maps
import qualified Data.Array.IArray as L
import qualified Data.Map.Lazy as M -- lazy dictionaries
optBracketCosts [Integer] -> Integer
optBracketCosts xs =
let n = length xs - 1
a = L.listArray (O,n) xs :: L.Array Int Integer
¢) m = M.fromList [((i,j),cost i j) | i <- [0..n - 1], j <- [i..n-1]]
cost 1 j
| i==3=0
| otherwise = minimum [costSplit k | k <- [i j - 111 where
costSplit k =
let ¢l = m M.! (i,k)
c2 =m M.! (k+1,3)
incl+c2+al.!i*xalltl (k+1)*altl (j+1)
in cost 0 (n-1)
23/28 RT (DCS @ UIBK) Week 1 24/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html
https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html
https://hackage.haskell.org/package/containers/docs/Data-Set.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Analysis of optBracketCosts

no explicit sequence is given, in which dictionary is filled

Comparison of Maps and Immutable Arrays in Haskell

® |ookup is logarithmic for maps, but constant time for arrays
instead, an over-approximation of required values (i,) is used: ® keys are arbitrary ordered objects, whereas type of array indices is restricted
i <- [0..n - 1], j <- [i..n-1] . e
o o) ® keys can have arbitrary gaps, whereas indices in arrays are dense
recursion is done implicitly: from (i,3) withi <= k <= j - 1 . | ¢ deleti d ch f K | .
. m r ion an n -v ir
invoke both (i,%) and (k+1,) aps also support deletion and change of key-value pairs
. . . - ® both are available in strict and lazy version
input list xs is converted to array a for efficient element access I c bl
o . :
the array might be changed to strict version (if input would be [Int]), several variants of maps are avarlable)
- https://haskell-containers.readthedocs.io/en/latest/map.html
but the dictionary must be lazy
RT (DCS @ UIBK) Week 1 25/28 RT (DCS @ UIBK) Week 1 26/28
A Note on the Haskell Sources

the demos and exercises are provided as a cabal package
make sure to have ghc and cabal installed (via package manager or via ghcup);
all programs are tested with ghc version 9.12.2
download and extract the sources from the AFP website Literature
change directory into afp_ 01 (where afp.cabal is located) o Real World Haskell, pages 32-33, 108-110, 270-274, 289-292
workflow for exercise sheet 1

® cabal repl (run cabal project interactively)

® :m Exercise01 (load module Exercise01.hs)

® do {testsBrackets; testsEmb} (run tests)

° (edit src/Exercise01.hs)

° :r (reload program after changes)

® note: on first run, lean-check and other packages might be installed

[

just upload updated version of ExerciseO1.hs in OLAT

RT (DCS @ UIBK) Week 1

27/28 RT (DCS @ UIBK) Week 1 28/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://haskell-containers.readthedocs.io/en/latest/map.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://www.haskell.org/ghcup/
http://cl-informatik.uibk.ac.at/teaching/ws25/afp//material.php
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Organization
	
	Strict- and Lazy-Evaluation

