
WS 2025/2026

Advanced Functional Programming
Week 2 – Type-Checking and Type-Inference

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Type-Checking and Type-Inference

RT (DCS @ UIBK) Week 2 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static and Dynamic Type-Checking
• every Haskell expression is type-checked
• static type-checking: ill-typed expressions are detected at compile time
• big advantage: well-typed programs cannot go wrong (w.r.t. typing errors)

• evaluation cannot change the type of an expression
• example: if f :: String -> Int and e :: String, then f e :: Int,

independent of evaluation
• conclusion: detect type-errors at compile-time, erase types at runtime

• alternative: dynamic type-checking (e.g., Python)
• dynamic: types are determined at run-time
• consider f x = if x > 3.1415 then "foo" else 5
• now evaluate f (approxPi 1000) - 2

• only after evaluation of approxPi 1000 we can determine the Boolean
approxPi 1000 > 3.1415

• this Boolean decides whether f (approxPi 1000) evaluates to the string "foo" or to the
number 5

• only then we know whether we will get a type error ("foo" - 2) or no type-error (5 - 2)

RT (DCS @ UIBK) Week 2 3/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

def f(x): return ("foo" if x > 3.1415 else 5)

pi = 4 * (1 - 1/3 + 1/5 - 1/7 + 1/9 - ...)
def approxPi(x):

p = 1
y = 3
m = -1
while (x > 0):

x -= 1
p += m/y
y += 2
m *= -1

return (4 * p)

question: do the following python functions lead to type-errors?
def test1(): return f(approxPi(1000)) - 2
def test2(): return f(approxPi(1001)) - 2

RT (DCS @ UIBK) Week 2 4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static Type-Checking and Type-Inference
• type-checking: given expression e, context Γ and type ty, determine whether

Γ ⊢ e :: ty (e has type ty in context Γ)

using some typing rules, e.g., the ones of Haskell, ML, . . .
• context Γ: stores types of previously defined variables, functions and constructors

• Γ might contain (:) :: a -> [a] -> [a], True :: Bool, id :: a -> a, . . .
• we often just write e :: ty instead of Γ ⊢ e :: ty if choice of Γ is clear

• type-inference: given expression e and context Γ,
determine a most general type (aka principal type) of e or report non-typability

• most general: ty1 is more general than ty2 if there is some type-substitution τ such that
ty1τ = ty2

• a is more general than any type ty, choose τ := {a/ty}
• a -> Int -> b is more general than [b] -> Int -> String, take τ := {a/[b], b/String}
• a -> Int -> b is not more general than Char -> [Int] -> Char

• Haskell performs type-inference where type-inference will be applied twice
• on function definitions in Haskell programs
• on each expression before it is evaluated in ghci

RT (DCS @ UIBK) Week 2 5/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-Deterministic Type-Checking Algorithm
• note: we restrict to expressions built from variables, constants and applications
• algorithm to type-check new definition of f p1 ... pn = rhs in context Γ

• guess a type for f of shape ty1 -> ... -> tyn -> ty
(or take a user-defined type annotation for f)

• guess a type for each variable x in the defining equation
• for each constant c ̸= f that appears in the defining equation, guess an instance w.r.t. Γ

• e.g., if id :: a -> a ∈ Γ, then each occurrence of id can choose a different substitution,
e.g., id :: Int -> Int and id :: Bool -> Bool

• define a local context Γ′ that extends Γ by all guesses
• type-check definition of f by checking Γ′ ⊢ f p1 ... pn :: ty and Γ′ ⊢ rhs :: ty by

recursion on the expressions
• Γ′ ⊢ xf :: t if xf :: t ∈ Γ′ if xf is a variable or xf = f
• Γ′ ⊢ c :: t if c :: t ∈ Γ′ according to guessed instance for each constant c ̸= f
• type-check all applications Γ′ ⊢ e1 :: t1 -> t2 Γ′ ⊢ e2 :: t1

Γ′ ⊢ e1 e2 :: t2
• finally, store f :: ty1 -> ... -> tyn -> ty in Γ

RT (DCS @ UIBK) Week 2 6/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example
• f x = if id (x > 0) then id x * f (x - 1) else 1

• guess f :: Int -> Int
• guess x :: Int
• instantiate if-then-else :: Bool -> Int -> Int -> Int

(if-then-else :: Bool -> a -> a -> a ∈ Γ)
• instantiate id :: Bool -> Bool (id :: a -> a ∈ Γ)
• instantiate (>) :: Int -> Int -> Bool
• instantiate 0 :: Int
• instantiate id :: Int -> Int
• instantiate * :: Int -> Int -> Int
• instantiate - :: Int -> Int -> Int
• instantiate 1 :: Int
• instantiate 1 :: Int

• on next slide, abbreviate Int -> Int -> Bool by IIB, etc.

RT (DCS @ UIBK) Week 2 7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing
f x = if id (x > 0) then id x * f (x - 1) else 1

@

@ 1

@ @

ite @ @ @

id @ * @ f @

@ 0 id x @ 1

> x - x

I

BIII

BB III II

I II I I

IIB I III I

IB

B

B

III

I

II

II

I

I

I

II

I

RT (DCS @ UIBK) Week 2 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing
f x = if id (x > 0) then id x * f (x - 1) else 1
• guesses work out

• we assumed f :: Int -> Int and x :: Int
• then lhs f x :: Int and rhs if ... :: Int
• so f :: Int -> Int is added to Γ

• guesses might be too specific, but it is possible to guess most general type

Next Step – Type Inference
• avoid guesses
• compute most generic types instead
• algorithm of Hindley and Milner

• use very generic types first (which might be too generic)
• setup constraints
• solve constraints and thereby specialize initial types

RT (DCS @ UIBK) Week 2 9/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing – Inferring a Most General Type
map f [] = []
map f (x : xs) = f x : map f xs
• n-ary function gets type a0 -> ... -> an with type-variables a0, ..., an

• map :: a1 -> a2 -> a3
• each variable in defining equation gets assigned fresh type-variable

• f :: a4 (simplication; usually, one would distinguish the two fs in both defining equations)
• x :: a5
• xs :: a6

• instantiate all type-variables in type of constants by fresh type-variables
• instantiate [] :: [a7]
• instantiate [] :: [a8]
• instantiate (:) :: a9 -> [a9] -> [a9]
• instantiate (:) :: a10 -> [a10] -> [a10]

RT (DCS @ UIBK) Week 2 10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing – Setting Up Constraints
map f [] = []
map f (x : xs) = f x : map f xs
• setup from previous slide

• map :: a1 -> a2 -> a3, f :: a4, x :: a5, xs :: a6
• [] :: [a7], [] :: [a8], (:) :: a9 -> [a9] -> [a9],
(:) :: a10 -> [a10] -> [a10]

• further assign type-variables to all non-atomic subexpressions of patterns and rhss
• (:) x :: b1, x : xs :: b2, f x :: b3, (:) f x :: b4, map f :: b5,
map f xs :: b6, f x : map f xs :: b7

• finally add constraints to ensure applicability of typing rules
• a1 = a4, first argument of map in lhss of equations
• a2 = [a7], a2 = b2, second argument of map in lhss of equations
• a3 = [a8], a3 = b7, return type of map equals type of rhss in both equations
• consider each application e1 e2

• lookup types for e1 :: t1, e2 :: t2, and e1 e2 :: t3
• add constraint t1 = t2 -> t3

RT (DCS @ UIBK) Week 2 11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing – Final Constraints
map f [] = []
map f (x : xs) = f x : map f xs
• setup

• map :: a1 -> a2 -> a3, f :: a4, x :: a5, xs :: a6
• [] :: [a7], [] :: [a8], (:) :: a9 -> [a9] -> [a9],
(:) :: a10 -> [a10] -> [a10]

• (:) x :: b1, x : xs :: b2, f x :: b3, (:) f x :: b4, map f :: b5,
map f xs :: b6, f x : map f xs :: b7

• constraints
• a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7
• a9 -> [a9] -> [a9] = a5 -> b1
• b1 = a6 -> b2
• a4 = a5 -> b3
• a10 -> [a10] -> [a10] = b3 -> b4
• a1 -> a2 -> a3 = a4 -> b5
• b5 = a6 -> b6
• b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing – Current State
map f [] = []
map f (x : xs) = f x : map f xs
• setup

• map :: a1 -> a2 -> a3, . . .
• constraints

• U = {a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
a9 -> [a9] -> [a9] = a5 -> b1, b1 = a6 -> b2, a4 = a5 -> b3,
a10 -> [a10] -> [a10] = b3 -> b4, a1 -> a2 -> a3 = a4 -> b5, b5 = a6 -> b6,
b4 = b6 -> b7}

• connection of constraints and types via substitution τ , mapping type-variables to types
• theorem: (sτ = tτ for all s = t ∈ U) iff map :: (a1 -> a2 -> a3)τ
• task: find most general τ such sτ = tτ for all s = t ∈ U unification problem
• such a most general unifier (mgu) τ yields the most general type for map
• unification is decidable and a most general unifier can be computed
• unification is the core algorithm for type-inference

(unification works on terms, and indeed types are terms where [.] is unary symbol,
. -> . is binary symbol, Bool and Int are constants, etc.)

RT (DCS @ UIBK) Week 2 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Unification Algorithm of Martelli & Montanari
Transform unification problem U until no further rules are applicable
• {s = s} ⊎ U ↪→ U (delete)
• {f(s1, . . . , sn) = f(t1, . . . , tn)} ⊎ U ↪→ {s1 = t1, . . . , sn = tn} ∪ U (decompose)
• {f(. . .) = g(. . .)} ⊎ U ↪→ ⊥, if f ̸= g (clash)
• {f(. . .) = x} ⊎ U ↪→ {x = f(. . .)} ∪ U (swap)
• {x = t} ⊎ U ↪→ {x = t} ∪ U{x/t}, if x ∈ Vars(U) \ Vars(t) (substitute)
• {x = t} ⊎ U ↪→ ⊥, if x ∈ Vars(t) and x ̸= t (occurs check)

Properties
• ↪→ terminates
• if U ↪→ V then U and V have the same unifiers (⊥ has no unifiers)
• if U ↪→! V (U ↪→∗ V and there is no ↪→-step possible on V) then either

• V = ⊥ and U has no unifier, or
• V = {x1 = t1, . . . , xn = tn} encodes a substitution τ , where the list x1, . . . , xn is distinct

and {x1, . . . , xn} ∩ (Vars(t1) ∪ · · · ∪Vars(tn)) = ∅; moreover τ is an mgu of U

RT (DCS @ UIBK) Week 2 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map
• a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
a9 -> [a9] -> [a9] = a5 -> b1, b1 = a6 -> b2, a4 = a5 -> b3,
a10 -> [a10] -> [a10] = b3 -> b4, a1 -> a2 -> a3 = a4 -> b5,
b5 = a6 -> b6, b4 = b6 -> b7

• decompose: a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7, a9 = a5,
[a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, a2 -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], a3 = b7, a9 = a5,
[a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 15/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map
• a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,
b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map
• a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,
[a10] -> [a10] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,
b4 = b6 -> b7

• decompose: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] = a6, [a9] = b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, [a10] = b6,
[a10] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a5 -> b3, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a5] = a6, [a5] = b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, [b3] = b6,
[b3] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, b4 = b6 -> b7

• swap: a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,
a6 = [a5], b2 = [a5], b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, b6 = [b3],
b7 = [b3], a6 = [a7], b6 = [a8], b5 = a6 -> b6, b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map
• a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,
a6 = [a5], b2 = [a5], b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, b6 = [b3],
b7 = [b3], a6 = [a7], b6 = [a8], b5 = a6 -> b6, b4 = b6 -> b7

• substitute: a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,
a6 = [a5], [a7] = [a5], b1 = [a5] -> [a7], a4 = a5 -> b3, a10 = b3,
b6 = [b3], [a8] = [b3], [a5] = [a7], [b3] = [a8], b5 = [a5] -> [b3],
b4 = b6 -> [a8]

• decompose: a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8],
a9 = a5, a6 = [a5], a7 = a5, b1 = [a5] -> [a7], a4 = a5 -> b3, a10 = b3,
b6 = [b3], a8 = b3, a5 = a7, b3 = a8, b5 = [a5] -> [b3], b4 = b6 -> [a8]

• substitute: a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5,
a6 = [a5], a7 = a5, b1 = [a5] -> [a5], a4 = a5 -> b3, a10 = b3, b6 = [b3],
a8 = b3, a5 = a5, b3 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

• delete: a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5,
a6 = [a5], a7 = a5, b1 = [a5] -> [a5], a4 = a5 -> b3, a10 = b3, b6 = [b3],
a8 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

RT (DCS @ UIBK) Week 2 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map
• final result of unification algorithm: mgu τ
a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5,
a6 = [a5], a7 = a5, b1 = [a5] -> [a5], a4 = a5 -> b3, a10 = b3, b6 = [b3],
a8 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

• most general type of map: (a1 -> a2 -> a3)τ , i.e.,
(a5 -> b3) -> [a5] -> [b3]

RT (DCS @ UIBK) Week 2 19/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Remarks
• we introduced fresh variables for every variable, for every argument of the function, and

every non-atomic subexpression
• this provides a systematic way (algorithm) to setup constraints
• when doing type-inference manually, one often immediately sees certain connections and

uses less variables and less constraints
• failures when running the unification algorithm correspond to type-errors of Haskell

programs
• clash appears on type-inference for function f xs = True ++ xs:

constant (++) :: [a] -> [a] -> [a], but fist argument True :: Bool;
this results in clash of equation [](a) = Bool

• occurs check appears on type-inference for function f x = x : x:
subexpression (:) x :: [a] -> [a], but the next argument is x :: a;
this results in occurs check of equation [a] = a

RT (DCS @ UIBK) Week 2 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extensions of the Type-Inference System
• extend expressions, e.g., by allowing let and \ x -> e (exercises)
• integrate type-classes

• several functions are defined in type-classes or have type-class constraints
• fromEnum :: Enum a => a -> Int
• sort :: Ord a => [a] -> [a]
• 5 :: Num a => a

• these constraints have to be collected in addition to the equalities in the unification algorithm
• whenever the variables in type-class constraints get instantiated, one needs to look into the

type-class instances to check the instantiation
• examples are given on the next slide, without providing a full algorithm

RT (DCS @ UIBK) Week 2 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extensions of the Type-Inference System
• example 1

• we know map :: (a -> b) -> [a] -> [b] and show :: Show c => c -> String
• type-inference on map show works as follows

• map show :: ([a] -> [b])τ , for τ being mgu of
U = {(a -> b) = (c -> String)} for constraints C = {Show c}

• U ↪→ {a = c, b = String} and C remains unchanged
• result: map show :: Show c => [c] -> [String] where C is added as constraint

• example 2
• type-inference on f x = map show [(x, True, 'c')] works as follows

• assume x :: a
• map show :: Show b => [b] -> [String]
• [(x, True, 'c')] :: [(a, Bool, Char)]
• unification leads to b = (a, Bool, Char)
• now Show b is instantiated to Show (a, Bool, Char) and simplified to Show a, since

• instance (Show a, Show b, Show c) => Show (a, b, c)
• instance Show Bool
• instance Show Char

• result: f :: Show a => a -> [String]

RT (DCS @ UIBK) Week 2 22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Limits of Type-Inference in the Presence of Type-Classes
• consider f = if 2 * 2^62 < 0 then "overflow" else "okay"

• question: which number-type is chosen for the comparison?
Int or Integer or Float or Double

• type-inference is of no help, e.g., (<) (2 * 2^62) :: (Num a, Ord a) => a -> Bool,
i.e., 2 * 2^62 < 0 :: Bool for any suitable a

• default rule
• for numeric types, Haskell uses a default rule: choose Integer as default, or switch to
Double if fractional computations are involved (2.0 < 4)

• if one does not want to use default types, provide explicit type annotation
• note: defaults can be overwritten, e.g. by line default (Int, Float)

• examples
• f evaluates to "okay"
• g = if 2 * 2^62 < (0 :: Int) then "overflow" else "okay" yields "overflow"
• [] in ghci is show ([] :: [a]) which evaluates to string [] after defaulting a to Integer
• [] :: String in ghci is show ([] :: String) which evaluates to string ""

RT (DCS @ UIBK) Week 2 23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Limits of Default Rule
• built-in default rule is restricted to built-in numeric type classes
• consider function definition
f :: String -> Bool
f xs = show (read xs) == xs

• function f takes input xs, parses it into an element, which is then converted back to a
string via show and compared to the input

• read xs :: Read a => a
• show (read xs) :: (Show a, Read a) => String

where a is the type for the intermediate result of read xs

• it is completely unclear, which type a should be: Int, Bool, [Double], . . .
• ghc complains about ambiguous type variables at this point
• solution: provide explicit type annotation, e.g.
f xs = show (read xs :: [(Int, Bool)]) == xs

RT (DCS @ UIBK) Week 2 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature
• Simon Thompson, The Craft of Functional Programming, Second Edition,

Addison–Wesley, Chapter 13: “Checking Types”
• J. Roger Hindley. The Principal Type-Scheme of an Object in Combinatory Logic.

Transactions of the American Mathematical Society, volume 146, pages 29—60.
https://doi.org/10.2307%2F1995158

• Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, volume 17(3), pages 348–375.
https://doi.org/10.1016%2F0022-0000%2878%2990014-4

RT (DCS @ UIBK) Week 2 25/25

https://doi.org/10.2307%2F1995158
https://doi.org/10.1016%2F0022-0000%2878%2990014-4
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Type-Checking and Type-Inference

