M universitat WS 2025/2026
™ innsbruck

Advanced Functional Programming
Week 2 — Type-Checking and Type-Inference

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Type-Checking and Type-Inference

RT (DCS @ UIBK) Week 2 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static and Dynamic Type-Checking
e every Haskell expression is type-checked

e static type-checking: ill-typed expressions are detected at compile time

® big advantage: well-typed programs cannot go wrong (w.r.t. typing errors)
® evaluation cannot change the type of an expression
® example: if £ :: String -> Int and e :: String, then f e :: Int,
independent of evaluation
conclusion: detect type-errors at compile-time, erase types at runtime
® alternative: dynamic type-checking (e.g., Python)
® dynamic: types are determined at run-time

® consider f x = if x > 3.1415 then "foo" else 5
® now evaluate f (approxPi 1000) - 2

only after evaluation of approxPi 1000 we can determine the Boolean
approxPi 1000 > 3.1415

this Boolean decides whether £ (approxPi 1000) evaluates to the string "foo" or to the
number 5

only then we know whether we will get a type error ("foo" - 2) or no type-error (5 - 2)

RT (DCS @ UIBK) Week 2 3/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

def f(x): return ("foo" if x > 3.1415 else 5)

#pi=4x(0-1/3+1/56-1/7+1/9 - ...)
def approxPi(x):
p=1
y =3
m= -1
while (x > 0):
x -=1
p += m/y
y += 2
m *= -1
return (4 * p)

question: do the following python functions lead to type-errors?
def testl(): return f(approxPi(1000)) - 2
def test2(): return f(approxPi(1001)) - 2

RT (DCS @ UIBK) Week 2 4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static Type-Checking and Type-Inference

e type-checking: given expression e, context I' and type ty, determine whether

ke :: ty (e has type ty in context IT)

using some typing rules, e.g., the ones of Haskell, ML, ...
® context I': stores types of previously defined variables, functions and constructors
® T might contain (:) :: a -> [a] -> [a], True :: Bool, id :: a -> a, ...
® we often just write e :: ty instead of ' e :: ty if choice of T is clear
e type-inference: given expression e and context T',
determine a most general type (aka principal type) of e or report non-typability
® most general: tyl is more general than ty2 if there is some type-substitution 7 such that
tylr = ty2
® ais more general than any type ty, choose 7 := {a/ty}
® a -> Int -> b is more general than [b] -> Int -> String, take 7 := {a/[b],b/String}
® 2 -> Int -> b is not more general than Char -> [Int] -> Char
e Haskell performs type-inference where type-inference will be applied twice

® on function definitions in Haskell programs

® on each expression before it is evaluated in ghci
RT (DCS @ UIBK) Week 2 5/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Non-Deterministic Type-Checking Algorithm

® note: we restrict to expressions built from variables, constants and applications
® algorithm to type-check new definition of f p1 ... pn = rhs in context '
® guess a type for £ of shape tyl -> ... -> tyn -> ty
(or take a user-defined type annotation for f)

® guess a type for each variable x in the defining equation
for each constant ¢ # £ that appears in the defining equation, guess an instance w.r.t. T’

® eg,ifid :: a -> a €T, then each occurrence of id can choose a different substitution,
e.g., id :: Int -> Int and id :: Bool -> Bool

® define a local context IV that extends I" by all guesses

® type-check definition of £ by checking IV £ pl ... pn :: tyand I rhs :: ty by
recursion on the expressions
® I"Fxf :: tifxf :: t €I if xfisa variable or xf = £
® I"Fc :: tifc :: t €l according to guessed instance for each constant ¢ # f
® type-check all applications T'Fel :: t1 -> 2 I'e2 :: t1
IMFel e2 :: t2
® finally, store f :: tyl -> ... -> tyn -> tyinT

RT (DCS @ UIBK) Week 2 6/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example
= if id (x > 0) then id x * f (x - 1) else 1

e f x
[]
[)

guess f
guess x ::

instantiate (>)
instantiate O

instantiate id ::

instantiate *
instantiate -
instantiate 1
instantiate 1

Int
Int
instantiate if-then-else
(if-then-else

instantiate id ::

-> Int

:: Bool -> Int -> Int -> Int

:: Bool -> a -> a -> a€l)

Bool -> Bool (id :: a -> a€l)
Int -> Int -> Bool

Int

Int -> Int

Int -> Int -> Int

Int -> Int -> Int

Int

Int

® on next slide, abbreviate Int -> Int -> Bool by IIB, etc.

RT (DCS @ UIBK)

Week 2 7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing
f x=41if id (x > 0) then id x * f (x - 1) else 1

¢

/ \

/ \ |
/III\ @/ \

il e I I

éB / \ " .d/l\x I /I\

/IB\ | 1|| I _/II\X I

RT (DCS @ UIBK) Week 2 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing
f x =4if id (x > 0) then id x * f (x - 1) else 1

® guesses work out

® we assumed f :: Int -> Int and x :: Int
® thenlhs f x :: Intandrhsif ... :: Int
® sof :: Int -> Intisadded toT

® guesses might be too specific, but it is possible to guess most general type

Next Step — Type Inference

® avoid guesses
® compute most generic types instead

e algorithm of Hindley and Milner

® use very generic types first (which might be too generic)
® setup constraints
® solve constraints and thereby specialize initial types

RT (DCS @ UIBK) Week 2 9/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing — Inferring a Most General Type

map £ [1 = []
map f (x : xs) = f x : map f xs
® n-ary function gets type a0 -> ... -> an with type-variables a0, ..., an
® map :: al -> a2 -> a3
® cach variable in defining equation gets assigned fresh type-variable
® f :: a4 (simplication; usually, one would distinguish the two fs in both defining equations)
® x :: ab
® xs :: ab
e instantiate all type-variables in type of constants by fresh type-variables
® instantiate [] :: [a7]
® instantiate [1 :: [a8]
® instantiate (:) :: a9 -> [a9] -> [a9]
® instantiate (:) :: al0 -> [a10] -> [a10]

RT (DCS @ UIBK) Week 2 10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing — Setting Up Constraints

map £ [1 = []
map f (x : xs) = f x : map f xs
® setup from previous slide
® map :: al -> a2 -> a3, f :: a4, x :: ab,xs :: ab
o [1 :: [a7], [1 :: [a8], (:) :: a9 -> [a9] -> [a9],
(:) :: al0 -> [al0] -> [al0]
e further assign type-variables to all non-atomic subexpressions of patterns and rhss
® (:) x :: bl,x : xs :: b2, f x :: b3, (:) £ x :: b4, map £ :: b5,
map f xs :: b6, f x : map £ xs :: b7
e finally add constraints to ensure applicability of typing rules
® al = a4, first argument of map in lhss of equations
a2 = [a7], a2 = b2, second argument of map in lhss of equations

[}
® a3 = [a8], a3 = b7, return type of map equals type of rhss in both equations
® consider each application el e2

® |ookup types for el :: t1,e2 :: t2,and el e2 :: t3
® add constraint t1 = t2 -> t3

RT (DCS @ UIBK) Week 2 11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing — Final Constraints

map f [1 = []
map f (x : xs) = f x : map f xs
® setup
® map :: al -> a2 -> a3, f :: a4, x :: ab,xs :: ab

e [] :: [a7], [0 :: [a8], (:) :: a9 -> [a9] -> [a9],
(:) :: al0 -> [a10] -> [al0]
® (:) x ::bl,x : xs :: b2, f x :: b3, (:) fx :: bdmap £ :: bb
map f xs :: b6, f x : map £ xs :: b7
® constraints
® al = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7
a9 -> [a9] -> [a9] = a5 -> bl
bl = a6 -> b2
a4 = ab -> b3
al0 -> [a10] -> [a10] = b3 -> b4
al -> a2 -> a3 = a4 -> bb
b5 = a6 -> b6
b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing — Current State

map £ [1 = []
map f (x : xs) = f x : map f xs
® setup
® map :: al -> a2 -> a3, ...
® constraints
® U={al = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
a9 -> [a9] -> [a9] = a5 -> bl, bl = a6 -> b2, a4 = a5 -> b3,
al0 -> [a10] -> [a10] = b3 -> b4, al -> a2 -> a3 = a4 -> b5, bs = a6 -> b6,
b4 = b6 -> b7}
® connection of constraints and types via substitution 7, mapping type-variables to types
® theorem: (s7 =t7 foralls=t e U)iffmap :: (al -> a2 -> a3)7
task: find most general 7 such st =tr forall s=te U unification problem
such a most general unifier (mgu) 7 yields the most general type for map
unification is decidable and a most general unifier can be computed
unification is the core algorithm for type-inference
(unification works on terms, and indeed types are terms where [.] is unary symbol,
. => . is binary symbol, Bool and Int are constants, etc.)

RT (DCS @ UIBK) Week 2 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Unification Algorithm of Martelli & Montanari

Transform unification problem U until no further rules are applicable

e {z=t}WU — {z=t}UU{x/t}, if x € Vars(U) \ Vars(t) (substitute
e {z=t}wU — L,ifze Vars(t)and x # t (occurs check
Properties

* {s=stwlU—=U (delete)
o {f(s1y.-y8n) = f(t1,...,tn)} WU = {s1 =t1,...,8, =t} UU (decompose)
e {f(...)=g(...) WU = L, if f#g (clash)
e {f(...)=z2}WU—={z=f(...)}uU (swap)
)
)

® — terminates
e if U — V then U and V have the same unifiers (_L has no unifiers)

e if U 'V (U <* V and there is no <s-step possible on V) then either

® V =1 and U has no unifier, or
® V={xy=t,...,2, = tp} encodes a substitution 7, where the list x1, ..., z, is distinct
and {z1,...,z,} N (Vars(ty) U---U Vars(t,)) = 0; moreover 7 is an mgu of U

RT (DCS @ UIBK) Week 2 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map

® a1l = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
a9 -> [a9] -> [a9] = a5 -> bl, bl = a6 -> b2, a4 = ab -> b3,
al0 -> [a10] -> [al0] = b3 -> b4, al -> a2 -> a3 = a4 -> b5,
b5 = a6 -> b6, b4 = b6 -> b7

® decompose: al = a4, a2 [a7], a2 = b2, a3 = [a8], a3 = b7, a9 = ab,
[29] -> [29] = b1, bl a6 -> b2, a4 = a5 -> b3, al0 = b3,
[a10] -> [a10] = b4, a2 -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7

® substitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], a3 = b7, a9 = ab,
[a9] -> [a9] = bl, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,
[a10] -> [a10] = b4, [a7] -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7

® sybstitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[29] -> [a9] = bl, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,
[210] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 15/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map

® al = a4, a2 = [aT7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[29] -> [a9] = b1, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7
® substitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = ab,
[29] -> [a9] = a6 -> b2, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7
® substitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[29] -> [a9] = a6 -> b2, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,
[a10] -> [a10] = b4, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6, b4 = b6

-> b7

® syubstitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = a6 -> b2, bl = a6 -> b2, a4 = ab -> b3, al0 = b3,
[a10] -> [a10] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,
b4 = b6 -> b7

RT (DCS @ UIBK) Week 2

16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map

® al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 =
[29] -> [a9] = a6 -> b2, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,
[210] -> [al1l0] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,
b4 = b6 -> b7

® decompose: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 =
[2a9] = a6, [a9] = b2, bl = a6 -> b2, a4 = ab -> b3, al0 = b3, [a10] =
[2a10] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, bd = b6 -> b7

® substitute: al = a5 -> b3, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 =
[a5] = a6, [ab] = b2, bl = a6 -> b2, a4 = ab -> b3, al0 = b3, [b3] = b6,
[b3] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, bd = b6 -> b7

® swap: al = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 =
a6 [a5], b2 = [ab], bl = a6 -> b2, a4 = a5 -> b3, al0 = b3, b6 = [b3],
b7 [b3], a6 = [a7], b6 = [a8], b5 = a6 -> b6, b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map
® 31 = a5 -> b3, a2 = [a7], b2 = [a7], a3 [a8], b7 = [a8], a9 = a5,
ab a6 -> b2, a4 = a5 -> b3, al0 = b3, b6 = [b3],

[a5], b2 = [a5], bl
b7 [b3], a6 = [aT7], b6 [a8], b5 = a6 -> b6, b4 = b6 -> b7

® substitute: al = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,

a6 = [a5], [a7] = [a5], bl = [a5] -> [a7], a4 = a5 -> b3, al0d = b3,
b6 = [b3], [a8] = [b3], [a5] = [a7], [b3] = [a8], b5 = [aB] -> [b3],
b4 = b6 -> [a8]

® decompose: al = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8],
a9 = ab, a6 = [a5], a7 = ab, bl = [ab] -> [a7], a4 = a5 -> b3, al0 = b3,
b6 = [b3], a8 = b3, a5 = a7, b3 = a8, b5 = [ab] -> [b3], b4 = b6 -> [a8]

® substitute: al = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5,
a6 = [ab], a7 = ab, bl = [ab] -> [a5], a4 = a5 -> b3, al0 = b3, b6 = [b3],
a8 = b3, ab = ab, b3 = b3, b5 = [ab] -> [b3], b4 = [b3] -> [b3]

® delete: a1l = a5 -> b3, a2 = [ab], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5,
a6 = [a5], a7 = a5, bl = [a5] -> [a5], a4 = a5 -> b3, al0 = b3, b6 = [b3],
a8 = b3, b5 = [ab] -> [b3], b4 = [b3] -> [b3]

RT (DCS @ UIBK) Week 2 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map

e final result of unification algorithm: mgu 7
al = a5 -> b3, a2 = [a5], b2 = [ab], a3 = [b3], b7 = [b3], a9 = a5,
ab [aB], a7 = ab, bl = [a5] -> [a5], a4 = a5 -> b3, al0 = b3, b6 = [b3],
a8 b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

® most general type of map: (al -> a2 -> a3)7, ie.,

(a5 -> b3) -> [ab] -> [b3]

RT (DCS @ UIBK) Week 2 19/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Remarks

e we introduced fresh variables for every variable, for every argument of the function, and
every non-atomic subexpression
® this provides a systematic way (algorithm) to setup constraints
® when doing type-inference manually, one often immediately sees certain connections and
uses less variables and less constraints

e failures when running the unification algorithm correspond to type-errors of Haskell

programs
® clash appears on type-inference for function f xs = True ++ xs:
constant (++) :: [a]l -> [a] -> [al, but fist argument True :: Bool;

this results in clash of equation [](a) = Bool

® occurs check appears on type-inference for function f x = x : x:
subexpression (:) x :: [a]l -> [al, but the next argumentis x :: a;
this results in occurs check of equation [a] = a

RT (DCS @ UIBK) Week 2 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extensions of the Type-Inference System

® extend expressions, e.g., by allowing 1let and \ x -> e (exercises)

® integrate type-classes
® several functions are defined in type-classes or have type-class constraints

® fromEnum :: Enum a => a -> Int
® sort :: Ord a => [a] -> [a]
® 5 :: Num a => a

® these constraints have to be collected in addition to the equalities in the unification algorithm

® whenever the variables in type-class constraints get instantiated, one needs to look into the
type-class instances to check the instantiation

® examples are given on the next slide, without providing a full algorithm

RT (DCS @ UIBK) Week 2 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extensions of the Type-Inference System

® example 1
® we knowmap :: (a -> b) -> [a] -> [b] and show :: Show ¢ => ¢ -> String
® type-inference on map show works as follows
® map show :: ([a] -> [bl)T, for 7 being mgu of
U={(a ->b) = (¢ -> String)} for constraints C' = {Show c}
® U< {a = c,b = String} and C remains unchanged
® result: map show :: Show ¢ => [c] -> [String] where C is added as constraint
® example 2
® type-inference on f x = map show [(x, True, 'c')] works as follows

® assume x :: a

® map show :: Show b => [b] -> [String]

® [(x, True, 'c')] :: [(a, Bool, Char)]

® unification leads to b = (a, Bool, Char)

® now Show b is instantiated to Show (a, Bool, Char) and simplified to Show a, since

e instance (Show a, Show b, Show c) => Show (a, b, c)
e instance Show Bool
e instance Show Char

® result: £ :: Show a => a -> [String]

RT (DCS @ UIBK) Week 2

22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Limits of Type-Inference in the Presence of Type-Classes

® consider f = if 2 * 2762 < 0 then "overflow" else "okay"
® question: which number-type is chosen for the comparison?
Int or Integer or Float or Double
® type-inference is of no help, e.g., (<) (2 * 2°62) :: (Num a, Ord a) => a -> Bool,
i.e., 2 * 2762 < 0 :: Bool for any suitable a
e default rule

® for numeric types, Haskell uses a default rule: choose Integer as default, or switch to
Double if fractional computations are involved (2.0 < 4)

® if one does not want to use default types, provide explicit type annotation

® note: defaults can be overwritten, e.g. by line default (Int, Float)

® examples
® f evaluates to "okay"
® g =1if 2 * 2762 < (0 :: Int) then "overflow" else "okay" yields "overflow"
® [] in ghciis show ([] :: [al) which evaluates to string [] after defaulting a to Integer
® [] :: String in ghciis show ([] :: String) which evaluates to string ""

RT (DCS @ UIBK) Week 2 23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Limits of Default Rule

e built-in default rule is restricted to built-in numeric type classes
e consider function definition

f :: String -> Bool

f xs = show (read xs) == xs

e function f takes input xs, parses it into an element, which is then converted back to a
string via show and compared to the input

® read xs :: Read a => a
® show (read xs) :: (Show a, Read a) => String
where a is the type for the intermediate result of read xs

e it is completely unclear, which type a should be: Int, Bool, [Doublel, ...
® ghc complains about ambiguous type variables at this point
® solution: provide explicit type annotation, e.g.

f xs = show (read xs :: [(Int, Bool)]) == xs

RT (DCS @ UIBK) Week 2 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

e Simon Thompson, The Craft of Functional Programming, Second Edition,
Addison—Wesley, Chapter 13: “Checking Types”

® J. Roger Hindley. The Principal Type-Scheme of an Object in Combinatory Logic.
Transactions of the American Mathematical Society, volume 146, pages 29—60.
https://doi.org/10.2307%2F1995158

® Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, volume 17(3), pages 348-375.
https://doi.org/10.1016%2F0022-0000%2878%2990014-4

RT (DCS @ UIBK) Week 2 25/25

https://doi.org/10.2307%2F1995158
https://doi.org/10.1016%2F0022-0000%2878%2990014-4
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Type-Checking and Type-Inference

