

Advanced Functional Programming

Week 2 - Type-Checking and Type-Inference

René Thiemann

Department of Computer Science

Type-Checking and Type-Inference

Static and Dynamic Type-Checking

- every Haskell expression is type-checked
- static type-checking: ill-typed expressions are detected at compile time
- big advantage: well-typed programs cannot go wrong (w.r.t. typing errors)
 - evaluation cannot change the type of an expression
 - example: if **f** :: String -> Int and **e** :: String, then **f e** :: Int, independent of evaluation
 - conclusion: detect type-errors at compile-time, erase types at runtime
- alternative: dynamic type-checking (e.g., Python)
 - dynamic: types are determined at run-time
 - consider f x = if x > 3.1415 then "foo" else 5
 - now evaluate f (approxPi 1000) 2
 - only after evaluation of approxPi 1000 we can determine the Boolean approxPi 1000 > 3.1415
 - this Boolean decides whether f (approxPi 1000) evaluates to the string "foo" or to the number 5
 - only then we know whether we will get a type error ("foo" 2) or no type-error (5 2)

```
def f(x): return ("foo" if x > 3.1415 else 5)
 # pi = 4 * (1 - 1/3 + 1/5 - 1/7 + 1/9 - ...)
 def approxPi(x):
   p = 1
   y = 3
   m = -1
   while (x > 0):
      x = 1
      p += m/y
      v += 2
      m *= -1
   return (4 * p)
 # question: do the following python functions lead to type-errors?
 def test1(): return f(approxPi(1000)) - 2
 def test2(): return f(approxPi(1001)) - 2
RT (DCS @ UIBK)
                                       Week 2
                                                                                4/25
```

Static Type-Checking and Type-Inference

• type-checking: given expression e, context Γ and type ty, determine whether

$$\Gamma \vdash \mathbf{e} :: \mathsf{ty}$$
 (e has type ty in context Γ)

using some typing rules, e.g., the ones of Haskell, ML, ...

• context Γ : stores types of previously defined variables, functions and constructors

• we often just write e :: ty instead of $\Gamma \vdash e :: ty$ if choice of Γ is clear

- Γ might contain (:) :: a -> [a] -> [a], True :: Bool, id :: a -> a, ...
- type-inference: given expression e and context Γ , determine a most general type (aka principal type) of e or report non-typability
 - most general: ty1 is more general than ty2 if there is some type-substitution τ such that ty1 τ = ty2

Week 2

- a is more general than any type ty, choose $\tau := \{a/ty\}$
- a -> Int -> b is more general than [b] -> Int -> String, take $\tau := \{a/[b], b/String\}$ a -> Int -> b is not more general than Char -> [Int] -> Char
- Haskell performs type-inference where type-inference will be applied twice
 - on function definitions in Haskell programs
 - on each expression before it is evaluated in ghci

Non-Deterministic Type-Checking Algorithm

- note: we restrict to expressions built from variables, constants and applications
- algorithm to type-check new definition of f p1 ... pn = rhs in context Γ
 - guess a type for f of shape ty1 -> ... -> tyn -> ty
 (or take a user-defined type annotation for f)
 - guess a type for each variable x in the defining equation
 - for each constant $c \neq f$ that appears in the defining equation, guess an instance w.r.t. Γ
 - e.g., if id :: a → a ∈ Γ, then each occurrence of id can choose a different substitution,
 e.g., id :: Int → Int and id :: Bool → Bool
 - define a local context Γ' that extends Γ by all guesses
 - type-check definition of f by checking $\Gamma' \vdash f$ p1 ... pn :: ty and $\Gamma' \vdash rhs$:: ty by recursion on the expressions
 - $\Gamma' \vdash xf :: t \text{ if } xf :: t \in \Gamma' \text{ if } xf \text{ is a variable or } xf = f$
 - $\Gamma' \vdash c :: t \text{ if } c :: t \in \Gamma'$ according to guessed instance for each constant $c \neq f$
 - type-check all applications $\underline{\Gamma' \vdash e1 \ :: \ t1 \rightarrow t2 \qquad \Gamma' \vdash e2 \ :: \ t1}$
 - finally, store $f :: ty1 \rightarrow ... \rightarrow tyn \rightarrow ty$ in Γ

Example

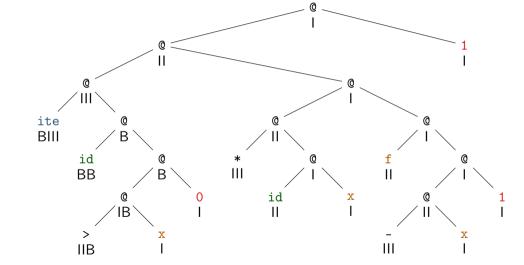
```
• f x = if id (x > 0) then id x * f (x - 1) else 1
     • guess f :: Int -> Int
     • guess x :: Int
     • instantiate if-then-else :: Bool -> Int -> Int -> Int
       (if-then-else :: Bool \rightarrow a \rightarrow a \rightarrow a \in \Gamma)
     • instantiate id :: Bool -> Bool (id :: a \rightarrow a \in \Gamma)
     • instantiate (>) :: Int -> Int -> Bool
     • instantiate 0 :: Int
     • instantiate id :: Int. -> Int.
     • instantiate * :: Int -> Int -> Int
     • instantiate - :: Int -> Int -> Int
     • instantiate 1 :: Int.
     • instantiate 1 :: Int.
```

• on next slide, abbreviate Int -> Int -> Bool by IIB, etc.

RT (DCS © UIBK) Week 2 7/25

Example Typing

```
f x = if id (x > 0) then id x * f (x - 1) else 1
```



Week 2

Example Typing

```
f x = if id (x > 0) then id x * f (x - 1) else 1
```

- guesses work out
 - we assumed f :: Int -> Int and x :: Int
 - then lhs f x :: Int and rhs if ... :: Int
 - so f :: Int -> Int is added to Γ
- guesses might be too specific, but it is possible to guess most general type

Next Step - Type Inference

- avoid guesses
- compute most generic types instead
- algorithm of Hindley and Milner
 - use very generic types first (which might be too generic)
 - setup constraints
 - solve constraints and thereby specialize initial types

Example Typing – Inferring a Most General Type

- each variable in defining equation gets assigned fresh type-variable
 - f :: a4 (simplication; usually, one would distinguish the two fs in both defining equations)
 - x :: a5
 - xs :: a6
- instantiate all type-variables in type of constants by fresh type-variables
 - instantiate [] :: [a7]
 - instantiate [] :: [a8]
 - instantiate (:) :: a9 -> [a9] -> [a9]
 - instantiate (:) :: a10 -> [a10] -> [a10]

Example Typing – Setting Up Constraints

```
map f [] = []
map f (x : xs) = f x : map f xs
```

setup from previous slide

```
map :: a1 -> a2 -> a3, f :: a4, x :: a5, xs :: a6
[] :: [a7], [] :: [a8], (:) :: a9 -> [a9] -> [a9], (:) :: a10 -> [a10]
```

• further assign type-variables to all non-atomic subexpressions of patterns and rhss

```
• (:) x :: b1, x : xs :: b2, f x :: b3, (:) f x :: b4, map f :: b5, map f xs :: b6, f x : map f xs :: b7
```

- finally add constraints to ensure applicability of typing rules
 - a1 = a4, first argument of map in lhss of equations
 - a2 = [a7], a2 = b2, second argument of map in lhss of equations
 - a3 = [a8], a3 = b7, return type of map equals type of rhss in both equations
 - consider each application e1 e2
 - lookup types for e1 :: t1, e2 :: t2, and e1 e2 :: t3
 - add constraint t1 = t2 -> t3

map f [] = []map f (x : xs) = f x : map f xssetup • map :: a1 -> a2 -> a3, f :: a4, x :: a5, xs :: a6 • [] :: [a7]. [] :: [a8]. (:) :: a9 -> [a9] -> [a9]. $(:) :: a10 \rightarrow [a10] \rightarrow [a10]$ • (:) x :: b1, x : xs :: b2, f x :: b3, (:) f x :: b4, map f :: b5, map f xs :: b6, f x : map f xs :: b7 constraints • a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7 • $a9 \rightarrow [a9] \rightarrow [a9] = a5 \rightarrow b1$ • b1 = a6 -> b2• a4 = a5 -> b3

Example Typing - Final Constraints

• a10 -> [a10] -> [a10] = b3 -> b4

• a1 -> a2 -> a3 = a4 -> b5

b5 = a6 -> b6
b4 = b6 -> b7

Example Typing – Current State

```
map f [] = []
map f (x : xs) = f x : map f xs
```

- setup
- map :: a1 -> a2 -> a3,...
- constraints
- constraints
 U = {a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
- a9 -> [a9] -> [a9] = a5 -> b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 -> [a10] -> [a10] = b3 -> b4, a1 -> a2 -> a3 = a4 -> b5, b5 = a6 -> b6.
 - a10 2 [a10] 2 [a10] = b3 2 b4, a1 2 a2 2 a3 = a4 2 b5, b4 = b6 2 b7

Week 2

- connection of constraints and types via substitution τ , mapping type-variables to types theorem: $(s\tau=t\tau \text{ for all } s=t\in U)$ iff map :: (a1 -> a2 -> a3) τ
 - task: find most general τ such $s\tau = t\tau$ for all $s = t \in U$
 - such a most general unifier (mgu) τ yields the most general type for map
 - unification is decidable and a most general unifier can be computed
 unification is the core algorithm for type-inference

unification problem

Unification Algorithm of Martelli & Montanari Transform unification problem U until no further rules are applicable

• $\{s=s\} \uplus U \hookrightarrow U$

Properties

RT (DCS @ UIBK)

• $V = \bot$ and U has no unifier, or

• $\{f(s_1,\ldots,s_n)=f(t_1,\ldots,t_n)\} \uplus U \hookrightarrow \{s_1=t_1,\ldots,s_n=t_n\} \cup U$

• $\{f(\dots) = g(\dots)\} \uplus U \hookrightarrow \bot$, if $f \neq g$

• $\{f(\dots) = x\} \uplus U \hookrightarrow \{x = f(\dots)\} \cup U$

• $\{x=t\} \uplus U \hookrightarrow \{x=t\} \cup U\{x/t\}$, if $x \in Vars(U) \setminus Vars(t)$

• $\{x=t\} \uplus U \hookrightarrow \bot$ if $x \in Vars(t)$ and $x \neq t$

and $\{x_1,\ldots,x_n\}\cap (Vars(t_1)\cup\cdots\cup Vars(t_n))=\emptyset$; moreover τ is an mgu of UWeek 2

• if $U \hookrightarrow V$ then U and V have the same unifiers (\perp has no unifiers)

• if $U \hookrightarrow^! V$ ($U \hookrightarrow^* V$ and there is no \hookrightarrow -step possible on V) then either

• $V = \{x_1 = t_1, \dots, x_n = t_n\}$ encodes a substitution τ , where the list x_1, \dots, x_n is distinct

14/25

(delete)

(clash)

(swap)

(decompose)

(substitute)

(occurs check)

- a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7. $a9 \rightarrow [a9] \rightarrow [a9] = a5 \rightarrow b1, b1 = a6 \rightarrow b2, a4 = a5 \rightarrow b3,$ $a10 \rightarrow [a10] \rightarrow [a10] = b3 \rightarrow b4$, $a1 \rightarrow a2 \rightarrow a3 = a4 \rightarrow b5$. b5 = a6 -> b6, b4 = b6 -> b7
- decompose: a1 = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7, a9 = a5, [a9] -> [a9] = b1, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3,[a10] -> [a10] = b4, a2 -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7
- substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], a3 = b7, a9 = a5, $[a9] \rightarrow [a9] = b1$, $b1 = a6 \rightarrow b2$, $a4 = a5 \rightarrow b3$, a10 = b3. [a10] -> [a10] = b4, [a7] -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7
- substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5, $[a9] \rightarrow [a9] = b1, b1 = a6 \rightarrow b2, a4 = a5 \rightarrow b3, a10 = b3.$ [a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 15/25

```
• a1 = a4. a2 = [a7]. [a7] = b2. a3 = [a8]. [a8] = b7. a9 = a5.
  [a9] -> [a9] = b1. b1 = a6 -> b2. a4 = a5 -> b3. a10 = b3.
  [a10] \rightarrow [a10] = b4, [a7] \rightarrow [a8] = b5, b5 = a6 \rightarrow b6, b4 = b6 \rightarrow b7
```

- substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5, [a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, [a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7
- substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5. [a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3. $[a10] \rightarrow [a10] = b4$, $[a7] \rightarrow [a8] = a6 \rightarrow b6$, $b5 = a6 \rightarrow b6$, $b4 = b6 \rightarrow b7$
- substitute: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5, [a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3. [a10] -> [a10] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6, b4 = b6 -> b7

Week 2 16/25

- a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5, [a9] -> [a9] = a6 -> b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3. [a10] -> [a10] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6b4 = b6 -> b7
- decompose: a1 = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5, [a9] = a6, [a9] = b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, [a10] = b6. [a10] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, b4 = b6 -> b7
- substitute: a1 = a5 -> b3, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5, [a5] = a6, [a5] = b2, b1 = a6 -> b2, a4 = a5 -> b3, a10 = b3, [b3] = b6, [b3] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, b4 = b6 -> b7
- swap: a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5, $a6 = [a5], b2 = [a5], b1 = a6 \rightarrow b2, a4 = a5 \rightarrow b3, a10 = b3, b6 = [b3],$ b7 = [b3], a6 = [a7], b6 = [a8], b5 = a6 -> b6, b4 = b6 -> b7

RT (DCS @ UIBK) Week 2 17/25

```
Example: Unification to Determine Type of Map
  • a1 = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,
    a6 = [a5], b2 = [a5], b1 = a6 \rightarrow b2, a4 = a5 \rightarrow b3, a10 = b3, b6 = [b3].
    b7 = [b3], a6 = [a7], b6 = [a8], b5 = a6 -> b6, b4 = b6 -> b7
  • substitute: a1 = a5 \rightarrow b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,
    a6 = [a5], [a7] = [a5], b1 = [a5] -> [a7], a4 = a5 -> b3, a10 = b3,
```

b6 = [b3], [a8] = [b3], [a5] = [a7], [b3] = [a8], b5 = [a5] -> [b3], b4 = b6 -> [a8]• decompose: $a1 = a5 \rightarrow b3$, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8],

a9 = a5, a6 = [a5], a7 = a5, b1 = [a5] -> [a7], a4 = a5 -> b3, a10 = b3,b6 = [b3], a8 = b3, a5 = a7, b3 = a8, b5 = [a5] -> [b3], b4 = b6 -> [a8]

• substitute: a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5.

a6 = [a5], a7 = a5, b1 = [a5] -> [a5], a4 = a5 -> b3, a10 = b3, b6 = [b3].

a8 = b3, a5 = a5, b3 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

• delete: $a1 = a5 \rightarrow b3$, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5.

RT (DCS @ UIBK)

18/25

- final result of unification algorithm: mgu τ a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5, a6 = [a5], a7 = a5, b1 = [a5] -> [a5], a4 = a5 -> b3, a10 = b3, b6 = [b3], a8 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]
- most general type of map: $(a1 \rightarrow a2 \rightarrow a3)\tau$, i.e., $(a5 \rightarrow b3) \rightarrow [a5] \rightarrow [b3]$

Remarks

- we introduced fresh variables for every variable, for every argument of the function, and every non-atomic subexpression
 - this provides a systematic way (algorithm) to setup constraints
 - when doing type-inference manually, one often immediately sees certain connections and uses less variables and less constraints
- failures when running the unification algorithm correspond to type-errors of Haskell programs
 - clash appears on type-inference for function f xs = True ++ xs:
 constant (++) :: [a] -> [a], but fist argument True :: Bool;
 this results in clash of equation [] (a) = Bool
 - occurs check appears on type-inference for function f x = x : x: subexpression (:) x :: [a] -> [a], but the next argument is x :: a; this results in occurs check of equation [a] = a

Extensions of the Type-Inference System

- extend expressions, e.g., by allowing let and $\xspace x -> e$ (exercises)
- integrate type-classes
 - several functions are defined in type-classes or have type-class constraints

```
fromEnum :: Enum a => a -> Int
sort :: Ord a => [a] -> [a]
5 :: Num a => a
```

- these constraints have to be collected in addition to the equalities in the unification algorithm
- whenever the variables in type-class constraints get instantiated, one needs to look into the type-class instances to check the instantiation
- examples are given on the next slide, without providing a full algorithm

Extensions of the Type-Inference System

- example 1
 - we know map :: (a -> b) -> [a] -> [b] and show :: Show c => c -> String
 - type-inference on map show works as follows
 - map show :: ([a] -> [b]) τ , for τ being mgu of
 - $U = \{(a \rightarrow b) = (c \rightarrow String)\}\$ for constraints $C = \{Show c\}$ $U \hookrightarrow \{a = c, b = String\}\$ and C remains unchanged
 - result: map show :: Show c => [c] -> [String] where C is added as constraint
- example 2
 - type-inference on f x = map show [(x, True, 'c')] works as follows
 - assume x :: a
 - map show :: Show b => [b] -> [String]
 - [(x, True, 'c')] :: [(a, Bool, Char)]
 - unification leads to b = (a, Bool, Char)
 - now Show b is instantiated to Show (a, Bool, Char) and simplified to Show a, since
 - instance (Show a, Show b, Show c) => Show (a, b, c)
 - instance Show Bool
 - instance Show Char
 - result: f :: Show a => a -> [String]

Limits of Type-Inference in the Presence of Type-Classes

- consider f = if 2 * 2^62 < 0 then "overflow" else "okay"
 - question: which number-type is chosen for the comparison? Int or Integer or Float or Double
 - type-inference is of no help, e.g., (<) (2 * 2^62) :: (Num a, Ord a) => a -> Bool, i.e., 2 * 2^62 < 0 :: Bool for any suitable a
- default rule
 - for numeric types, Haskell uses a default rule: choose Integer as default, or switch to Double if fractional computations are involved (2.0 < 4)
 - if one does not want to use default types, provide explicit type annotation
 - note: defaults can be overwritten, e.g. by line default (Int, Float)
- examples
 - f evaluates to "okav"
 - $g = if 2 * 2^62 < (0 :: Int) then "overflow" else "okay" yields "overflow"$
 - [] in ghci is show ([] :: [a]) which evaluates to string [] after defaulting a to Integer
 - [] :: String in ghci is show ([] :: String) which evaluates to string ""

Limits of Default Rule

- built-in default rule is restricted to built-in numeric type classes
- consider function definition

```
f :: String -> Bool
f xs = show (read xs) == xs
```

- function f takes input xs, parses it into an element, which is then converted back to a string via show and compared to the input
 - read xs :: Read a => a
 - show (read xs) :: (Show a, Read a) => String where a is the type for the intermediate result of read xs
- it is completely unclear, which type a should be: Int, Bool, [Double], ...
- ghc complains about ambiguous type variables at this point
- solution: provide explicit type annotation, e.g.

```
f xs = show (read xs :: [(Int, Bool)]) == xs
```

Literature

- Simon Thompson, The Craft of Functional Programming, Second Edition, Addison-Wesley, Chapter 13: "Checking Types"
- J. Roger Hindley. The Principal Type-Scheme of an Object in Combinatory Logic. Transactions of the American Mathematical Society, volume 146, pages 29—60. https://doi.org/10.2307%2F1995158
- Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System Sciences, volume 17(3), pages 348-375.

https://doi.org/10.1016%2F0022-0000%2878%2990014-4