M universitat WS 2025/2026
W innsbruck

Type-Checking and Type-Inference

Advanced Functional Programming
Week 2 — Type-Checking and Type-Inference

René Thiemann

Department of Computer Science

RT (DCS @ UIBK) Week 2 2/25
Static and Dynamic Type-Checking def f(x): return ("foo" if x > 3.1415 else 5)
® cvery Haskell expression is type-checked
) . . . L #pi=4x(-1/3+1/5-1/7+1/9 - ...)
® static type-checking: ill-typed expressions are detected at compile time def approxPi(x):
® big advantage: well-typed programs cannot go wrong (w.r.t. typing errors) p=1
® evaluation cannot change the type of an expression y=3
® example: if £ :: String -> Int and e :: String, then f e :: Int, m= -1
independent of evaluation hile (x > 0):
® conclusion: detect type-errors at compile-time, erase types at runtime while Xl)
. . . X -=
e alternative: dynamic type-checking (e.g., Python) += m/
® dynamic: types are determined at run-time P =9 y
® consider f x = if x > 3.1415 then "foo" else 5 y
® now evaluate f (approxPi 1000) - 2 m *= -1
® only after evaluation of approxPi 1000 we can determine the Boolean return (4 * p)
approxPi 1000 > 3.1415
® this Boolean decides whether £ (approxPi 1000) evaluates to the string "foo" or to the # question: do the following python functions lead to type-errors?
number 5 .
® only then we know whether we will get a type error ("foo" - 2) or no type-error (5 - 2) def test1(): return f(approxPi(1000)) - 2

def test2(): return f(approxPi(1001)) - 2

RT (DCS @ UIBK) Week 2 3/25 RT (DCS @ UIBK) Week 2 4/25

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Static Type-Checking and Type-Inference
® type-checking: given expression e, context I" and type ty, determine whether

I'ke :: ty (e has type ty in context I')
using some typing rules, e.g., the ones of Haskell, ML,

® context I': stores types of previously defined variables, functions and constructors
:: a -> [a] -> [al], True :: Bool, id ::
ty instead of ' e :: ty if choice of T is clear

® T might contain (:)
® we often just write e ::

a->a,...

e type-inference: given expression e and context T,
determine a most general type (aka principal type) of e or report non-typability
® most general: tyl is more general than ty2 if there is some type-substitution 7 such that
tylr = ty2

® ais more general than any type ty, choose 7 := {a/ty}
® a -> Int -> b is more general than [b] -> Int -> String, take 7:= {a/[b],b/String}
® a -> Int -> b is not more general than Char -> [Int] -> Char

® Haskell performs type-inference where type-inference will be applied twice

® on function definitions in Haskell programs

® on each expression before it is evaluated in ghci
RT (DCS @ UIBK) Week 2

Example
e f x = if id (x > 0) then id x * f (x - 1) else 1
® guess f Int -> Int
® guess x :: Int
® instantiate if-then-else :: Bool -> Int -> Int -> Int
(if-then-else :: Bool -> a -> a -> a€l)
® instantiate id :: Bool -> Bool (id :: a -> a€l)
® instantiate (>) Int -> Int -> Bool
® instantiate O :: Int
® instantiate id :: Int -> Int
® jnstantiate * :: Int -> Int -> Int
® instantiate - Int -> Int -> Int
® instantiate 1 Int
® instantiate 1 Int

® on next slide, abbreviate Int -> Int -> Bool by IIB, etc.

RT (DCS @ UIBK) Week 2

5/25

7/25

Non-Deterministic Type-Checking Algorithm

® note: we restrict to expressions built from variables, constants and applications

e algorithm to type-check new definition of £ p1 ... pn =
® guess a type for £ of shape tyl ->

-> tyn -> ty

(or take a user-defined type annotation for f)
® guess a type for each variable x in the defining equation

® eg,ifid ::

e.g., id ::

recursion on the expressions
e TV xf :: tifxf ::
e ke :: tifc ::
® type-check all applications

® finally, store f

RT (DCS @ UIBK)

Example Typing

f x =

otyl > L.

Bool -> Bool

define a local context I that extends T" by all guesses
type-check definition of £ by checking I+ f p1 ... pn ::

t € I if xf is a variable or xf =
t € I according to guessed instance for each constant ¢ # £

IMFel :: t1 -> t2

rhs in context I'

£

ty and I F rhs

I"Fe2 :: t1

I'Fel e2 ::

-> tyn -> tyinI

Week 2

if id (x > 0) then id x * f (x - 1) else 1

t2

/\
/\
/\

/III\
lBTﬁ /B\
e
/IB\ I

IIB I

id
BB

RT (DCS @ UIBK)

¢

VRN
|T| /(lg\

Week 2

SN

TP

AN

- X
(1 I

for each constant c # f that appears in the defining equation, guess an instance w.r.t. T’

a -> a €I, then each occurrence of id can choose a different substitution,
Int -> Int and id ::

1t ty by

6/25

8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing
f x = if id (x > 0) then id x * f (x - 1) else 1

® guesses work out

® we assumed £ :: Int -> Int and x :: Int
® then lhs f x :: Intandrhsif ... :: Int
® sof :: Int -> IntisaddedtoT

e guesses might be too specific, but it is possible to guess most general type

Next Step — Type Inference

® avoid guesses
® compute most generic types instead
® algorithm of Hindley and Milner
® use very generic types first (which might be too generic)

® setup constraints
® solve constraints and thereby specialize initial types

RT (DCS @ UIBK) Week 2

Example Typing — Setting Up Constraints

map £ [1 = []
map f (x : xs) = f x : map f xs
® setup from previous slide
® map :: al -> a2 -> a3, f :: a4, x :: ab,xs :: a6
e [1 :: [a7], [1 [a8], (:) :: a9 -> [a9] -> [a9],

(:) :: al0 -> [a10] -> [a10]

e further assign type-variables to all non-atomic subexpressions of patterns and rhss

® (:) x ::bl,x : xs :: b2, f x :: b3, (:) fx ::
map £ xs :: b6, f x : map f xs :: b7
e finally add constraints to ensure applicability of typing rules

a4, first argument of map in lhss of equations
[a7], a2 = b2, second argument of map in lhss of equations

b4, map £ :: b5,

® al
a2

consider each application el e2

® |lookup types for el :: t1,e2 ::
® add constraint t1 = t2 -> t3

t2,and el e2 :: t3

RT (DCS @ UIBK) Week 2

a3 = [a8], a3 = b7, return type of map equals type of rhss in both equations

9/25

11/25

Example Typing — Inferring a Most General Type

map £ [] = []
map f (x : xs) = f x : map f xs
® n-ary function gets type a0 -> -> an with type-variables a0, ., an
® map :: al -> a2 -> a3
® each variable in defining equation gets assigned fresh type-variable
® £ :: a4 (simplication; usually, one would distinguish the two fs in both defining equations)
® x :: ab
® xs :: a6
e instantiate all type-variables in type of constants by fresh type-variables
® instantiate [1 :: [a7]
® instantiate [] :: [a8]
® instantiate (:) :: a9 -> [a9] -> [a9]
® instantiate (:) :: al0 -> [a10] -> [a10]
RT (DCS @ UIBK) Week 2 10/25
Example Typing — Final Constraints
map £ [1 = []
map f (x : xs) = f x : map f xs
® setup
® map :: al -> a2 -> a3, f :: a4, x :: ab,xs :: ab
° [1 :: [a7],] [a8], (:) :: a9 -> [a9] -> [a9],
(:) :: al0 -> [a10] -> [al0]
® (:) x ::bl,x : xs :: b2, fx :: b3, (:) fx :: b4 map £ :: b5,
map £ xs :: b6, f x : map f xs :: b7
® constraints
® al = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7
® 29 -> [a9] -> [a9] = a5 -> bl
® bl = a6 -> b2
® a4 = ab -> b3
® 210 -> [a10] -> [a10] = b3 -> b4
® al -> a2 -> a3 = a4 -> bb
® b5 = a6 -> b6
® b4 = b6 -> b7
RT (DCS @ UIBK) Week 2 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Typing — Current State

map £ [1 =[]
map f (x : xs) = f x : map f xs
® setup
® map :: al -> a2 -> a3, ...

® constraints
e U={al = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
a9 -> [a9] -> [a9] = a5 -> bl, bl = a6 -> b2, a4 = a5 -> b3,

al0 -> [al10] -> [al0] = b3 -> b4, al -> a2 -> a3 = a4 -> b5, b5 = a6 -> b6,

b4 = b6 -> b7}

® connection of constraints and types via substitution 7, mapping type-variables to types

® theorem: (st =tr forall s=t € U) iffmap :: (al -> a2 -> a3)7
task: find most general 7 such st =t¢7 forall s=t € U

such a most general unifier (mgu) 7 yields the most general type for map
unification is decidable and a most general unifier can be computed
unification is the core algorithm for type-inference

(unification works on terms, and indeed types are terms where [.] is unary symbol,
. => . is binary symbol, Bool and Int are constants, etc.)

RT (DCS @ UIBK) Week 2

Example: Unification to Determine Type of Map

® a1l = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7,
a9 -> [a9] -> [a9] = a5 -> b1, bl = a6 -> b2, a4 = a5 -> b3,
al0 -> [a10] -> [210] = b3 -> b4, al -> a2 -> a3 = a4 -> bb5,
b5 = a6 -> b6, b4 = b6 -> b7
® decompose: al = a4, a2 = [a7], a2 = b2, a3 = [a8], a3 = b7, a9 = a5,
[a9] -> [a9] = b1, bl = a6 -> b2, a4 = ab -> b3, al0 = b3,
[a10] -> [al0] = b4, a2 -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7
® substitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], a3 = b7, a9 = a5,
[a9] -> [a9] = b1, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,
[a10] -> [al10] = b4, [a7] -> a3 = b5, b5 = a6 -> b6, b4 = b6 -> b7
® substitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = ab,
[a9] -> [a9] = b1, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,
[a10] -> [al1l0] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, bd = b6 -> b7

RT (DCS @ UIBK) Week 2

unification problem

Unification Algorithm of Martelli & Montanari

Transform unification problem U until no further rules are applicable
e {s=stWU U

{f(s1,.--y8n) = flt1,...,tn) WU = {s1 =1,..

{fl..)=g(..)YWU— L, iff#g

{f(..)=2}WU —>{z=f(...)}UuU

{r =t} WU — {z =t} UU{z/t}, if x € Vars(U) \ Vars(t)

o {z=t}WU — L,ifz e Vars(t) and z # ¢

Properties

G Sn =tpUU

® — terminates
e if U < V then U and V' have the same unifiers (L has no unifiers)

e if U 'V (U —* V and there is no <—-step possible on V') then either

® V = 1 and U has no unifier, or
4 V:{le =t1,..
and {zq,..

13/25 RT (DCS @ UIBK) Week 2

Example: Unification to Determine Type of Map

® a1l = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[a9] -> [a9] = b1, bl = a6 -> b2, a4 = ab -> b3, al0 = b3,

., Ty = t,} encodes a substitution 7, where the list z1, ..
S xn N (Vars(ti) U--- U Vars(t,)) = 0; moreover 7 is an mgu of U

(delete)
(decompose)
(clash)

(swap)
(substitute)
(occurs check)

., Xy is distinct

14/25

[a10] -> [a10] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6 -> b7

® substitute: al =

a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,

[a9] -> [a9] = a6 -> b2, bl = a6 -> b2, a4 = a5 -> b3, al0 = b3,

[a10] -> [al1l0] = b4, [a7] -> [a8] = b5, b5 = a6 -> b6, b4 = b6

-> b7

® substitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = ab,

[29] -> [a9]

a6 -> b2, bl = a6 -> b2, a4 = ab -> b3, al0 = b3,

[a10] -> [al10] = b4, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6, b4 = b6 -> b7
® substitute: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = ab,

[29] -> [a9]

a6 -> b2, bl = a6 -> b2, a4 = ab -> b3, al0 = b3,

[a10] -> [a10] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,

b4 = b6 -> b7

15/25 RT (DCS @ UIBK) Week 2

16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Unification to Determine Type of Map

® a1l = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[29]

-> [a9] = a6 -> b2, bl = a6 -> b2, a4 = ab -> b3, al0 = b3,

[a10] -> [al0] = b6 -> b7, [a7] -> [a8] = a6 -> b6, b5 = a6 -> b6,

b4 = b6

-> b7

® decompose: al = a4, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
[29]
[a10] = b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, b4 = b6 -> b7

® substitute: al = a5

[a5]

= a6, [a9] = b2, bl = a6 -> b2, a4 = ab -> b3, al0 = b3, [al0] = b6,

-> b3, a2 = [a7], [a7] = b2, a3 = [a8], [a8] = b7, a9 = a5,
a6, [a5] b2, bl a6 -> b2, a4 = a5 -> b3, al0 = b3, [b3]

[b3]

= = b6,
b7, [a7] = a6, [a8] = b6, b5 = a6 -> b6, b4 = b6 -> b7

® swap:

a6
b7

RT (DCS @ UIBK)

al = a5 -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,
[a5], b2 = [a5], bl = a6 -> b2, a4 = ab -> b3, al0 = b3, b6 = [b3],
[b3], a6 = [a7], b6 = [a8], b5 = a6 -> b6, b4 = b6 -> b7

Week 2

Example: Unification to Determine Type of Map

e final result of unification algorithm: mgu 7

al
ab
a8

ab -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = ab,
[aB], a7 = a5, bl = [a5] -> [ab], a4 = a5 -> b3, al0 = b3, b6 = [b3],
b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

® most general type of map: (al -> a2 -> a3)7, i.e,

RT (DCS @ UIBK)

(a6 -> b3) -> [ab] -> [b3]

Week 2

17/25

19/25

Example: Unification to Determine Type of Map

Remarks

al
ab

[aB], b2 =

b7

substitute: a1l = a5

b6
b4

ab -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = ab,
[a5], bl = a6 -> b2, a4 = a5 -> b3, al0 = b3, b6 = [b3],
[a7], b6 = [a8], b5 = a6 -> b6, bd = b6 -> b7

-> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8], a9 = a5,

[b3], a6

a6 = [a5], [a7] = [a5], bl = [a5] -> [a7], a4 = a5 -> b3, al0 = b3,
[b3], [a8] = [b3], [ab] = [a7], [b3] = [a8], b5 = [ab] -> [b3],

b6 -> [a8]
ab -> b3, a2 = [a7], b2 = [a7], a3 = [a8], b7 = [a8],

decompose: al

a9 = ab, a6 = [ab], a7 = ab, bl = [a5] -> [a7], a4 = a5 -> b3, al0 = b3,

b6 = [b3], a8

b3, ab = a7, b3 = a8, b5 = [ab] -> [b3], b4 = b6 -> [a8]

substitute: al = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = ab,
a6 = [ab], a7 = ab, bl = [ab] -> [ab], a4 = a5 -> b3, al0 = b3, b6 = [b3],
a8 = b3, ab = ab, b3 = b3, b5 = [ab] -> [b3], b4 = [b3] -> [b3]

delete: a1 = a5 -> b3, a2 = [a5], b2 = [a5], a3 = [b3], b7 = [b3], a9 = a5,

a6 = [ab], a7

ab, bl = [ab] -> [ab], a4 = ab -> b3, al0 = b3, b6 = [b3],

a8 = b3, b5 = [a5] -> [b3], b4 = [b3] -> [b3]

RT (DCS @ UIBK)

Week 2 18/25

e we introduced fresh variables for every variable, for every argument of the function, and
every non-atomic subexpression

® this provides a systematic way (algorithm) to setup constraints
® when doing type-inference manually, one often immediately sees certain connections and
uses less variables and less constraints

e failures when running the unification algorithm correspond to type-errors of Haskell
programs

® clash appears on type-inference for function f xs = True ++ xs:

constant (++) [a] -> [a] -> [al, but fist argument True :: Bool;
this results in clash of equation [](a) = Bool

® occurs check appears on type-inference for function f x = x : x:
subexpression (:) x :: [a] -> [a], but the next argument is x :: a;

this results in occurs check of equation [a] = a

RT (DCS @ UIBK)

Week 2 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extensions of the Type-Inference System

® example 1

Extensions of the Type-Inference System ® we know map :: (a ->b) -> [a] -> [b] and show :: Show ¢ => ¢ -> String
)]] ® type-inference on map show works as follows
® extend expressions, e.g., by allowing let and \ x -> e (exercises) * map show :: ([a] -> [b])7, for + being mgu of
® integrate type-classes U={(a -> b) = (c -> String)} for constraints C' = {Show c}
® several functions are defined in type-classes or have type-class constraints ® U< {a = c,b = String} and C remains unchanged
o ® result: map show :: Show c¢ => [c] -> [String] where C is added as constraint
fromEnum :: Enum a => a -> Int
® sort :: Ord a => [a] -> [a] ® example 2
® 5 :: Numa =>a ® type-inference on f x = map show [(x, True, 'c')] works as follows
® these constraints have to be collected in addition to the equalities in the unification algorithm ® assume x :: a
® whenever the variables in type-class constraints get instantiated, one needs to look into the ® map show :: Show b => [b] -> [String]
type-class instances to check the instantiation ® [(x, True, 'c')] :: [(a, Bool, Char)]

unification leads to b = (a, Bool, Char)

now Show b is instantiated to Show (a, Bool, Char) and simplified to Show a, since
e instance (Show a, Show b, Show c) => Show (a, b, c)

e instance Show Bool

e instance Show Char

® examples are given on the next slide, without providing a full algorithm

® result: £ :: Show a => a -> [String]
RT (DCS @ UIBK) Week 2 21/25 RT (DCS @ UIBK) Week 2 22/25
Limits of Type-Inference in the Presence of Type-Classes Limits of Default Rule
® consider f = if 2 * 2762 < 0 then "overflow" else "okay" ® built-in default rule is restricted to built-in numeric type classes
® question: which number-type is chosen for the comparison? e consider function definition
Int or Integer or Float or Double .
® type-inference is of no help, e.g., (<) (2 * 2762) :: (Num a, Ord a) => a -> Bool, f :: String -> Bool
i.e., 2 * 2762 < 0 :: Bool for any suitable a f xs = show (read xs) == xs
o default rule e function £ takes input xs, parses it into an element, which is then converted back to a
® for numeric types, Haskell uses a default rule: choose Integer as default, or switch to string via show and compared to the input
Double if fractional computations are involved (2.0 < 4) ® read xs :: Read a => a
® if one does not want to use default types, provide explicit type annotation ® show (rfaad xs) i (Shof" a, Re.ad a) => String
® note: defaults can be overwritten, e.g. by line default (Int, Float) where a is the type for the intermediate result of read xs
e examples ® it is completely unclear, which type a should be: Int, Bool, [Double], ...
® £ evaluates to "okay" e ghc complains about ambiguous type variables at this point
® g =if 2 *x 2762 < (0 :: Int) then "overflow" else "okay" yields "overflow" e solution: provide explicit tvpe annotation. e
® [] in ghciis show ([] :: [a]) which evaluates to string [] after defaulting a to Integer ution. provi xplicit type ann 'on, €.g.
® [] :: String in ghciis show ([] :: String) which evaluates to string "" f xs = show (read xs :: [(Int, Bool)]) == xs

RT (DCS @ UIBK) Week 2 23/25 RT (DCS @ UIBK) Week 2 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature
® Simon Thompson, The Craft of Functional Programming, Second Edition,
Addison-Wesley, Chapter 13: “Checking Types”

e J. Roger Hindley. The Principal Type-Scheme of an Object in Combinatory Logic.
Transactions of the American Mathematical Society, volume 146, pages 29—60.
https://doi.org/10.2307%2F1995158

® Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, volume 17(3), pages 348-375.
https://doi.org/10.10167%2F0022-0000%2878%2990014-4

RT (DCS @ UIBK) Week 2 25/25

https://doi.org/10.2307%2F1995158
https://doi.org/10.1016%2F0022-0000%2878%2990014-4
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Type-Checking and Type-Inference

