M universitat WS 2025/2026
™ innsbruck

Advanced Functional Programming

Week 11 — Concurrent Channels, Asynchronous Actions, Cancellations and Timeouts

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Week

e parallelism

® use multiple cores to speed up computation
® high-level interface via strategies

separate what is computed from how it is computed

expr “using’ rpar — evaluate expr in parallel to WHNF

expr “using’ parList rseq — evaluate each list element in parallel to WHNF

expr “using’ parList rdeepseq — evaluate each list element in parallel to normal form

® underlying mechanism: runEval and Eval-monad
® example: parallel quicksort

® concurrency

® separate threads for different tasks
® thread creation via forkI0
® |ow-level communication via MVars

blocking operations takeMVar and getMVar

® if main thread ends, then all other threads will be stopped
® example: logger thread with one-message buffer

RT (DCS @ UIBK)

Week 11

2/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher Level Interfaces for Concurrency — Channels

RT (DCS @ UIBK) Week 11 3/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channels
® design of MVar a: store at most one value of type a
® aim: design a channel, i.e., an arbitrary length FIFO buffer
® advantage: in logger application, sending some log-message is not blocking,
even if there are pending log-messages

® data structure design

® single linked list
® 3|l references in the list will be MVars
® references to both ends of the list

e data structure in Haskell
type Stream a = MVar (Item a)
data Item a Item a (Stream a)

data Chan a = Chan {
readVar :: MVar (Stream a),
writeVar :: MVar (Stream a)

}

RT (DCS @ UIBK) Week 11 4/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channels lllustrated

® data structure
type Stream a = MVar (Item a)
data Item a = Item a (Stream a)
data Chan a = Chan { readVar, writeVar :: MVar (Stream a) }

e |left: empty channel; right: channel with elements 5 and 7;
black: normal values; red: MVars

MVayv Q"v‘few R)

M AN

{
[415 vﬁ_l
\’ — ~—~—
Sttama Tfema [hu o Streaw o

RT (DCS @ UIBK) Week 11 5/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channel Operations

newChan :: I0 (Chan a)
newChan = do
hole <- newEmptyMVar
rVar <- newMVar hole
wVar <- newMVar hole
return $ Chan { readVar = rVar, writeVar = wVar }

writeChan :: Chan a -> a -> I0 () readChan :: Chan a -> I0 a
writeChan ¢ val = do readChan ¢ = do
newHole <- newEmptyMVar rVar <- takeMVar (readVar c)
oldHole <- takeMVar (writeVar c) Item x next <- takeMVar rVar
putMVar oldHole $ Item val newHole putMVar (readVar c) next
putMVar (writeVar c) newHole return x

RT (DCS @ UIBK) Week 11 6/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Application: Improved Logger

® adjusting the logger to use a channel is trivial: use Chan-operations instead of
MVar-operations

® old code ® new code
newtype Logger = newtype Logger =
Logger (MVar LogCommand) Logger (Chan LogCommand)
initLogger = do initLogger = do
m <- newEmptyMVar ¢ <- newChan
loop = do loop = do
cmd <- takeMVar m cmd <- readChan c
logMessage (Logger m) s logMessage (Logger c) s
= putMVar m (Message s) = writeChan c (Message s)
logStop (Logger m) = do logStop (Logger c) = do
s <- newEmptyMVar s <- newEmptyMVar
putMvar m (Stop s) writeChan ¢ (Stop s)
takeMVar s takeMVar s
RT (DCS @ UIBK) Week 11

7/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Testing the Logger (cabal run Demoll -- logger)

® code for testing the modified logger
message s 1 = "message " ++ show i1 ++ " of " ++ s
announcelogMessage 1 m = do
putStrLln $ "sending message to logger: " ++ m
logMessage 1 m

mainlogger = do
1 <- initLogger
forkI0 $ mapM_ (announcelogMessage 1 . message "fork 1") [1..100]
forkI0 $ mapM_ (announcelLogMessage 1 . message "fork 2") [1..100]
mapM_ (announcelLogMessage 1 . message "main thread") [1..100]
logStop 1
® announcelLogMessage immediately prints a message, before it is send to logger

® in total, three threads send 100 messages each
® logger starts its main loop with 2 seconds delay (delay inserted into Logger-code)

e result: all "sending message..." outputs are immediately done, no blocking

RT (DCS @ UIBK) Week 11 8/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extending the Channel-Code — Multicasts
e channel code also supports multicast-operations, i.e., one writer and several readers

® preparation: readMVar in order to read, but not consume some content in an MVar
readMVar :: MVar a -> I0 a
readMVar m = do
x <- takeMVar m
putMVar m x
return x

e duplication of channel for multicasts

® both channels will read all upcoming write operations of either channel
® duplicated channel will initially be empty

dupChan :: Chan a -> I0 (Chan a)
dupChan c = do
hole <- readMVar (writeVar c)
newRVar <- newMVar hole
return $§ Chan { readVar = newRVar, writeVar = writeVar c }

® in implementation of readChan, operation takeMVar has to be replaced by readMVar
RT (DCS @ UIBK) Week 11 9/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Testing Channel Duplication (cabal run Demoll -- channel)

e testing code

mainChannel = do
¢ <- newChan

mapM_ (writeChan c) ['a' .. 'k']
d <- dupChan c
forkIO $ do
mapM_ (writeChan c) ['1' .. 's']
forever (readChan ¢ >>= \ a -> putStrLn $ "read from c: " ++ [a])
forkIO $ do
mapM_ (writeChan d) ['t' .. 'z']
forever (readChan d >>= \ a -> putStrln $ " read from d: " ++ [a])

threadDelay $ 1000

letters a..k are only in channel ¢, they will not be copied to d
letters |..s are send to ¢ and will become visible in both channels
letters t..z are send to d and will become visible in both channels
main thread stops execution after 1ms and kills both forked threads

e result: a..z are received via c, |..z via d, but order of |..z is not fixed, might be ltmunv...

RT (DCS @ UIBK) Week 11 10/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Final Remarks on MVars and Channels

® operation readMVar is already predefined

® predefined version differs from presented implementation: it is ensured that takeMVar and
putMVar operation are performed atomically
® consequence: no possibility that thread is interrupted between these two operations in the
predefined version
® Chan a is also predefined
® https:
//hackage .haskell.org/package/base/docs/Control-Concurrent-Chan.html

® package offers one further primitive for getting full channel content as lazy list
(similar to readFile and hGetContents)

getChanContents :: Chan a -> I0 [a]

RT (DCS @ UIBK) Week 11 11/30

https://hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html
https://hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher Level Interfaces for Concurrency — ASync

RT (DCS @ UIBK) Week 11 12/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Aim: Asynchronous |I/0O

e task: perform asynchronous 1/O

® |/O is performed in background while main thread is doing other tasks
® running example: download some websites in the background
® utilized interface based on Network.HTTP.Conduit (requires some cabal packages)

getURL :: String -> I0 ByteString

e first implementation is based on forkIO and MVar

RT (DCS @ UIBK) Week 11 13/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Asynchronous 1/0O via forkIO and MVar: cabal run Demoll -- urll

® source code
mainGetURL1 = do
ml <- newEmptyMVar
m2 <- newEmptyMVar
forkI0O $ do

r <- getURL "http://www.wikipedia.

putMVar ml r
forkIO $ do

r <- getURL "http://www.wikipedia.

putMVar m2 r
rl <- takeMVar ml
r2 <- takeMVar m2

print (B.length rl, B.length r2)

® code is rather verbose

® try to abstract pattern for asynchronous action

RT (DCS @ UIBK)

Week 11

org/wiki/Red"

org/wiki/Green"

-- B = ByteString

execution

14/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

An Interface for Asynchronous Actions

® interface should provide a way to turn |/O-actions into asynchronous actions
® also waiting on results should be possible
¢ implementation works by synchronization on some MVar

data Async a = Async (MVar a)

async :: I0 a -> I0 (Async a)

async action = do
var <- newEmptyMVar
forkI0 (do r <- action; putMVar var r)
return (Async var)

wait :: Async a -> I0 a
wait (Async var) = readMVar var

® readMVar instead of takeMVar, so that multiple waits are supported

RT (DCS @ UIBK) Week 11 15/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Change of Application (cabal run Demoll -- url2)

® application code becomes much cleaner

mainGetURL2 = do

al <-
a2 <-
-- do
rl <-
r2 <-
print

RT (DCS @ UIBK)

async $ getURL "http://www.wikipedia.org/wiki/Red"
async $ getURL "http://www.wikipedia.org/wiki/Green"
something in between

wait al

wait a2

(B.length rl, B.length r2)

Week 11

16/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Combined with Other Monadic Combinators (cabal run Demoll -- url3)
® process list of websites, include time information

timeit a = do start <- getCurrentTime; x <- a; end <- getCurrentTime;
return (x, end ~“diffUTCTime” start)

timeDownload url = do
(page, time) <- timeit $ getURL url
putStrln $ "downloaded " ++ url
++ " (" ++ show (B.length page) ++ " bytes, " ++ show time ++ ")"

sites = ["http://www.bing.com", ..., "http://www.duckduckgo.com"]
mainGetURL3 = do

as <- mapM (async . timeDownload) sites -- start concurrent download
mapM_ wait as -- and wait on completion

RT (DCS @ UIBK) Week 11 17/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Error Handling with Async (cabal run Demoll -- url3bad)

e |let us modify the list of websites, so that some website is not existing
(or disable internet connection, or cause some other problem leading to an exception)

sitesBad = ["http://www.bing.com",
"http://someurlThatDoesNot.Exist",
"http://www.metager.de",
"http://www.duckduckgo.com"]

mainGetURL3bad = do
as <- mapM (async . timeDownload) sitesBad
mapM_ wait as

® execution results in deadlock

downloaded http://www.bing.com (52477 bytes, 0.201074s)
. exception error message: ConnectionFailure
Demoll: thread blocked indefinitely in an MVar operation

® reason: because of exception during download action, putMvar is not executed in async

RT (DCS @ UIBK) Week 11 18/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Error Handling with Async — Extend Async (1/1)

® aims
e forward exceptions in asynchronous actions to thread that invokes wait
® ensure that exceptions do not lead to deadlock, by always filling MVars of async
e solution: modify and extend Async
data Async a = Async (MVar (Either SomeException a))

async :: I0 a -> I0 (Async a)

async action = do
var <- newEmptyMVar :: MVar (Either SomeException a)
forkI0 $ do { r <- try action; putMVar var r }
return $ Async var

waitCatch :: Async a -> I0 (Either SomeException a)
waitCatch (Async var) = readMVar var

RT (DCS @ UIBK) Week 11 19/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Error Handling with Async — Extend Async (2/2)

® we also modify wait in a way that exceptions from the forked thread are re-thrown in the
thread that invokes wait
waitCatch :: Async a -> I0 (Either SomeException a) -- previous slide

wait :: Async a -> I0 a
wait a = do
r <- waitCatch a
case r of
Left e -> throwIO e
Right a -> return a

RT (DCS @ UIBK) Week 11 20/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Merging of Asyncs

® sjtuation

® assume there are multiple asynchronous actions
® aim: wait until the first one is completed
® task: integration into Async-framework

® solution via one more MVar
e for each asynchronous action, a new thread is created that tries to write into this MVar
® implementation in Haskell
waitAny :: [Async al] -> I0 a
waitAny as = do
m <- newEmptyMVar
let forkWait a = forkIO $ do r <- try (wait a); putMVar m r
mapM_ forkWait as
wait (Async m)

RT (DCS @ UIBK) Week 11 21/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Application for Merging of Asyncs (cabal run Demoll -- urlb)

® application stays on high level
mainGetURLS = do
let download url = (,) url <$> getURL url
as <- mapM (async . download) sites
(url, r) <- waitAny as
putStrln $ url ++ " was first (" ++ show (B.length r) ++ " size)"

® remarks

® waitAny really just waits on any asynchronous action to complete

® the other actions are not aborted, but will continue to run in the background

® if main = mainGetURL5 then this effect will not be visible, since the main thread stops
soonish after invoking waitAny and then the runtime system stops all other threads

RT (DCS @ UIBK) Week 11 22/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Cancellation and Timeouts

RT (DCS @ UIBK) Week 11 23/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Cancellation of Tasks

e cancellations of tasks may be desirable for several reasons
® user of web browser clicks “stop’-button, e.g., to stop downloads
® prover spawns several alternative search algorithms to find a successful proof;
as soon as first search algorithm is successful, the other searches should be stopped

two parties

(C) a controller thread that wants to cancel some other thread
(W) a worker thread, that should be cancelled

two cancellation policies
(P) polling: (W) regularly asks (C) whether it should stop
(A) asynchronous cancellation: (W) is interrupted by (C) and will be stopped
tradeoff
® danger of (P): if (W) does not query regularly, then system becomes inresponsive
® danger of (A): if (W) is interrupted and immediately killed, then it cannot release locks,
close files, kill external spawned processes, etc.

® imperative languages usually take (P) as default: danger of inconsistent state of (A)
¢ Haskell takes (A) as default: pure computations cannot poll

RT (DCS @ UIBK) Week 11 24/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Asynchronous Exceptions

e exception handling has been handled before
® however, there are two kinds of exceptions
® synchronous exceptions

® occurence is anticipated
® example: if code performs readFile, it is clear that this might lead to an I/O-exception

® asynchronous exceptions

® these are raised by a different thread and are not anticipated
® example: code that just computes some complex function and then prints the result does not
expect any exception

® in Haskell, asynchronous exceptions can be thrown via
throwTo :: Exception e => Threadld -> e -> I0 (O

® ThreadId is obtained from forkIO
® throwTo tid has no effect, if thread tid is already finished

RT (DCS @ UIBK) Week 11 25/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extending Async Again for Cancellations
® aim: implement cancel :: Async a -> I0 ()
e solution: extend datatype Async by ThreadId
data Async a = Async ThreadId (MVar (Either SomeException a))

cancel (Async t var) = throwTo t ThreadKilled

async :: I0 a -> I0 (Async a)

async action = do
var <- newEmptyMVar
t <- forkIO $ do { r <- try action; putMVar var r }
return $§ Async t var

® ThreadKilled exception is usually used for cancelling threads
® note: this version of Async is available in module Control.Concurrent.Async

® also available: waitAnyCancel :: [Async a] -> I0 (Async a, a),
like waitAny, but with cancellation of remaining asynchronous actions

RT (DCS @ UIBK) Week 11 26/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Asynchronous Exceptions for Timeouts

® aim: run some 10 action within a given time limit
timeout :: Int -> I0 a -> I0 (Maybe a)
® implementation available in module System.Timeout

® semantics

® timeout t mis Just <$> m, provided the result is computed within t microseconds
(approximately)
® timeout t mis Nothing, if timeout occurs

e implementation is based on asynchronous exceptions

® a separate thread is spawned, which throws a timeout exception after delay t©
® this exception is catched and turned into a Nothing result

RT (DCS @ UIBK) Week 11 27/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Catching Asynchronous Exceptions

® module Control.Exception provides high-level functions that take care of releasing
some resource, even in case of (asynchronous) exceptions

® we illustrate bracket in more detail

® bracket :: I0 a (require resource)
-> (a -> I0 b) (finally release resource)
-> (a -> 10 ©) (compute in-between)
-> 10 c (result of in-between computation)

e if an exception occurs, the release code is executed and then the exception is re-thrown

® example
bracket (openFile "filename" ReadMode) hClose
(\ handle -> do { ... })

e further high-level exception handling functions

® bracketOnError is like bracket, but release only happens if exception occurs
® finally, onException, ...are specialized versions of bracket(onError)

RT (DCS @ UIBK) Week 11 28/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Application

® with functions like bracket and timeout and waitAnyCancel it is now possible to
implement sophisticated search-strategies, e.g., in termination proof search

® example
® search in parallel for some LPO and some other termination order (for at most 5 seconds)
® with 2 seconds delay, try tree-automata based termination techniques (for at most 10
seconds)
® take the first successful result of any of the above techniques
® iterate this process until either a full termination proof has been established, or all
techniques fail

e bracket and similar functions should be used to reliably kill externally spawned processes
if the own thread is cancelled

RT (DCS @ UIBK) Week 11 29/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature
e Simon Marlow, Parallel and Concurrent Programming in Haskell, 2013, O'Reilly, Chapters
7-9
® https:
//hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html

® https:
//hackage .haskell.org/package/async/docs/Control-Concurrent-Async.html

® https://hackage.haskell.org/package/base/docs/Control-Exception.html

RT (DCS @ UIBK) Week 11 30/30

https://hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html
https://hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html
https://hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html
https://hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html
https://hackage.haskell.org/package/base/docs/Control-Exception.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Higher Level Interfaces for Concurrency – Channels
	
	Higher Level Interfaces for Concurrency – ASync
	
	Cancellation and Timeouts

