
WS 2025/2026

Advanced Functional Programming
Week 11 – Concurrent Channels, Asynchronous Actions, Cancellations and Timeouts

René Thiemann

Department of Computer Science

Last Week
• parallelism

• use multiple cores to speed up computation
• high-level interface via strategies

• separate what is computed from how it is computed
• expr `using` rpar – evaluate expr in parallel to WHNF
• expr `using` parList rseq – evaluate each list element in parallel to WHNF
• expr `using` parList rdeepseq – evaluate each list element in parallel to normal form

• underlying mechanism: runEval and Eval-monad
• example: parallel quicksort

• concurrency
• separate threads for different tasks
• thread creation via forkIO
• low-level communication via MVars

• blocking operations takeMVar and getMVar
• if main thread ends, then all other threads will be stopped
• example: logger thread with one-message buffer

RT (DCS @ UIBK) Week 11 2/30

Higher Level Interfaces for Concurrency – Channels

RT (DCS @ UIBK) Week 11 3/30

Channels
• design of MVar a: store at most one value of type a
• aim: design a channel, i.e., an arbitrary length FIFO buffer
• advantage: in logger application, sending some log-message is not blocking,

even if there are pending log-messages
• data structure design

• single linked list
• all references in the list will be MVars
• references to both ends of the list

• data structure in Haskell
type Stream a = MVar (Item a)
data Item a = Item a (Stream a)

data Chan a = Chan {
readVar :: MVar (Stream a),
writeVar :: MVar (Stream a)

}
RT (DCS @ UIBK) Week 11 4/30

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channels Illustrated
• data structure
type Stream a = MVar (Item a)
data Item a = Item a (Stream a)
data Chan a = Chan { readVar, writeVar :: MVar (Stream a) }

• left: empty channel; right: channel with elements 5 and 7;
black: normal values; red: MVars

RT (DCS @ UIBK) Week 11 5/30

Channel Operations

newChan :: IO (Chan a)
newChan = do

hole <- newEmptyMVar
rVar <- newMVar hole
wVar <- newMVar hole
return $ Chan { readVar = rVar, writeVar = wVar }

writeChan :: Chan a -> a -> IO ()
writeChan c val = do

newHole <- newEmptyMVar
oldHole <- takeMVar (writeVar c)
putMVar oldHole $ Item val newHole
putMVar (writeVar c) newHole

readChan :: Chan a -> IO a
readChan c = do

rVar <- takeMVar (readVar c)
Item x next <- takeMVar rVar
putMVar (readVar c) next
return x

RT (DCS @ UIBK) Week 11 6/30

Example Application: Improved Logger
• adjusting the logger to use a channel is trivial: use Chan-operations instead of
MVar-operations

• old code
newtype Logger =

Logger (MVar LogCommand)
initLogger = do

m <- newEmptyMVar
...

loop = do
cmd <- takeMVar m

...
logMessage (Logger m) s

= putMVar m (Message s)
logStop (Logger m) = do

s <- newEmptyMVar
putMVar m (Stop s)
takeMVar s

• new code
newtype Logger =

Logger (Chan LogCommand)
initLogger = do

c <- newChan
...

loop = do
cmd <- readChan c

...
logMessage (Logger c) s

= writeChan c (Message s)
logStop (Logger c) = do

s <- newEmptyMVar
writeChan c (Stop s)
takeMVar s

RT (DCS @ UIBK) Week 11 7/30

Testing the Logger (cabal run Demo11 -- logger)
• code for testing the modified logger
message s i = "message " ++ show i ++ " of " ++ s
announceLogMessage l m = do

putStrLn $ "sending message to logger: " ++ m
logMessage l m

mainLogger = do
l <- initLogger
forkIO $ mapM_ (announceLogMessage l . message "fork 1") [1..100]
forkIO $ mapM_ (announceLogMessage l . message "fork 2") [1..100]
mapM_ (announceLogMessage l . message "main thread") [1..100]
logStop l
• announceLogMessage immediately prints a message, before it is send to logger
• in total, three threads send 100 messages each
• logger starts its main loop with 2 seconds delay (delay inserted into Logger-code)

• result: all "sending message..." outputs are immediately done, no blocking

RT (DCS @ UIBK) Week 11 8/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Extending the Channel-Code – Multicasts
• channel code also supports multicast-operations, i.e., one writer and several readers
• preparation: readMVar in order to read, but not consume some content in an MVar
readMVar :: MVar a -> IO a
readMVar m = do

x <- takeMVar m
putMVar m x
return x

• duplication of channel for multicasts
• both channels will read all upcoming write operations of either channel
• duplicated channel will initially be empty

dupChan :: Chan a -> IO (Chan a)
dupChan c = do

hole <- readMVar (writeVar c)
newRVar <- newMVar hole
return $ Chan { readVar = newRVar, writeVar = writeVar c }

• in implementation of readChan, operation takeMVar has to be replaced by readMVar
RT (DCS @ UIBK) Week 11 9/30

Testing Channel Duplication (cabal run Demo11 -- channel)
• testing code

mainChannel = do
c <- newChan
mapM_ (writeChan c) ['a' .. 'k']
d <- dupChan c
forkIO $ do

mapM_ (writeChan c) ['l' .. 's']
forever (readChan c >>= \ a -> putStrLn $ "read from c: " ++ [a])

forkIO $ do
mapM_ (writeChan d) ['t' .. 'z']
forever (readChan d >>= \ a -> putStrLn $ " read from d: " ++ [a])

threadDelay $ 1000

• letters a..k are only in channel c, they will not be copied to d
• letters l..s are send to c and will become visible in both channels
• letters t..z are send to d and will become visible in both channels
• main thread stops execution after 1ms and kills both forked threads

• result: a..z are received via c, l..z via d, but order of l..z is not fixed, might be ltmunv...

RT (DCS @ UIBK) Week 11 10/30

Final Remarks on MVars and Channels
• operation readMVar is already predefined

• predefined version differs from presented implementation: it is ensured that takeMVar and
putMVar operation are performed atomically

• consequence: no possibility that thread is interrupted between these two operations in the
predefined version

• Chan a is also predefined
• https:
//hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html

• package offers one further primitive for getting full channel content as lazy list
(similar to readFile and hGetContents)

getChanContents :: Chan a -> IO [a]

RT (DCS @ UIBK) Week 11 11/30

Higher Level Interfaces for Concurrency – ASync

RT (DCS @ UIBK) Week 11 12/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html
https://hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Aim: Asynchronous I/O
• task: perform asynchronous I/O

• I/O is performed in background while main thread is doing other tasks
• running example: download some websites in the background
• utilized interface based on Network.HTTP.Conduit (requires some cabal packages)

getURL :: String -> IO ByteString

• first implementation is based on forkIO and MVar

RT (DCS @ UIBK) Week 11 13/30

Asynchronous I/O via forkIO and MVar: cabal run Demo11 -- url1
• source code
mainGetURL1 = do

m1 <- newEmptyMVar
m2 <- newEmptyMVar
forkIO $ do

r <- getURL "http://www.wikipedia.org/wiki/Red"
putMVar m1 r

forkIO $ do
r <- getURL "http://www.wikipedia.org/wiki/Green"
putMVar m2 r

r1 <- takeMVar m1
r2 <- takeMVar m2
print (B.length r1, B.length r2) -- B = ByteString

• code is rather verbose
• try to abstract pattern for asynchronous action execution

RT (DCS @ UIBK) Week 11 14/30

An Interface for Asynchronous Actions
• interface should provide a way to turn I/O-actions into asynchronous actions
• also waiting on results should be possible
• implementation works by synchronization on some MVar

data Async a = Async (MVar a)

async :: IO a -> IO (Async a)
async action = do

var <- newEmptyMVar
forkIO (do r <- action; putMVar var r)
return (Async var)

wait :: Async a -> IO a
wait (Async var) = readMVar var

• readMVar instead of takeMVar, so that multiple waits are supported

RT (DCS @ UIBK) Week 11 15/30

Change of Application (cabal run Demo11 -- url2)
• application code becomes much cleaner

mainGetURL2 = do
a1 <- async $ getURL "http://www.wikipedia.org/wiki/Red"
a2 <- async $ getURL "http://www.wikipedia.org/wiki/Green"
-- do something in between
r1 <- wait a1
r2 <- wait a2
print (B.length r1, B.length r2)

RT (DCS @ UIBK) Week 11 16/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Combined with Other Monadic Combinators (cabal run Demo11 -- url3)
• process list of websites, include time information

timeit a = do start <- getCurrentTime; x <- a; end <- getCurrentTime;
return (x, end `diffUTCTime` start)

timeDownload url = do
(page, time) <- timeit $ getURL url
putStrLn $ "downloaded " ++ url

++ " (" ++ show (B.length page) ++ " bytes, " ++ show time ++ ")"

sites = ["http://www.bing.com", ..., "http://www.duckduckgo.com"]

mainGetURL3 = do
as <- mapM (async . timeDownload) sites -- start concurrent download
mapM_ wait as -- and wait on completion

RT (DCS @ UIBK) Week 11 17/30

Error Handling with Async (cabal run Demo11 -- url3bad)
• let us modify the list of websites, so that some website is not existing

(or disable internet connection, or cause some other problem leading to an exception)

sitesBad = ["http://www.bing.com",
"http://someurlThatDoesNot.Exist",
"http://www.metager.de",
"http://www.duckduckgo.com"]

mainGetURL3bad = do
as <- mapM (async . timeDownload) sitesBad
mapM_ wait as

• execution results in deadlock
downloaded http://www.bing.com (52477 bytes, 0.201074s)
... exception error message: ConnectionFailure ...
Demo11: thread blocked indefinitely in an MVar operation

• reason: because of exception during download action, putMVar is not executed in async

RT (DCS @ UIBK) Week 11 18/30

Error Handling with Async – Extend Async (1/1)
• aims

• forward exceptions in asynchronous actions to thread that invokes wait
• ensure that exceptions do not lead to deadlock, by always filling MVars of async

• solution: modify and extend Async
data Async a = Async (MVar (Either SomeException a))

async :: IO a -> IO (Async a)
async action = do

var <- newEmptyMVar :: MVar (Either SomeException a)
forkIO $ do { r <- try action; putMVar var r }
return $ Async var

waitCatch :: Async a -> IO (Either SomeException a)
waitCatch (Async var) = readMVar var

RT (DCS @ UIBK) Week 11 19/30

Error Handling with Async – Extend Async (2/2)
• we also modify wait in a way that exceptions from the forked thread are re-thrown in the

thread that invokes wait
waitCatch :: Async a -> IO (Either SomeException a) -- previous slide

wait :: Async a -> IO a
wait a = do

r <- waitCatch a
case r of

Left e -> throwIO e
Right a -> return a

RT (DCS @ UIBK) Week 11 20/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Merging of Asyncs
• situation

• assume there are multiple asynchronous actions
• aim: wait until the first one is completed
• task: integration into Async-framework

• solution via one more MVar
• for each asynchronous action, a new thread is created that tries to write into this MVar
• implementation in Haskell
waitAny :: [Async a] -> IO a
waitAny as = do

m <- newEmptyMVar
let forkWait a = forkIO $ do r <- try (wait a); putMVar m r
mapM_ forkWait as
wait (Async m)

RT (DCS @ UIBK) Week 11 21/30

Application for Merging of Asyncs (cabal run Demo11 -- url5)
• application stays on high level
mainGetURL5 = do

let download url = (,) url <$> getURL url
as <- mapM (async . download) sites
(url, r) <- waitAny as
putStrLn $ url ++ " was first (" ++ show (B.length r) ++ " size)"

• remarks
• waitAny really just waits on any asynchronous action to complete
• the other actions are not aborted, but will continue to run in the background
• if main = mainGetURL5 then this effect will not be visible, since the main thread stops

soonish after invoking waitAny and then the runtime system stops all other threads

RT (DCS @ UIBK) Week 11 22/30

Cancellation and Timeouts

RT (DCS @ UIBK) Week 11 23/30

Cancellation of Tasks
• cancellations of tasks may be desirable for several reasons

• user of web browser clicks “stop”-button, e.g., to stop downloads
• prover spawns several alternative search algorithms to find a successful proof;

as soon as first search algorithm is successful, the other searches should be stopped
• two parties

(C) a controller thread that wants to cancel some other thread
(W) a worker thread, that should be cancelled

• two cancellation policies
(P) polling: (W) regularly asks (C) whether it should stop
(A) asynchronous cancellation: (W) is interrupted by (C) and will be stopped

• tradeoff
• danger of (P): if (W) does not query regularly, then system becomes inresponsive
• danger of (A): if (W) is interrupted and immediately killed, then it cannot release locks,

close files, kill external spawned processes, etc.

• imperative languages usually take (P) as default: danger of inconsistent state of (A)
• Haskell takes (A) as default: pure computations cannot poll

RT (DCS @ UIBK) Week 11 24/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Asynchronous Exceptions
• exception handling has been handled before
• however, there are two kinds of exceptions

• synchronous exceptions
• occurence is anticipated
• example: if code performs readFile, it is clear that this might lead to an I/O-exception

• asynchronous exceptions
• these are raised by a different thread and are not anticipated
• example: code that just computes some complex function and then prints the result does not

expect any exception

• in Haskell, asynchronous exceptions can be thrown via
throwTo :: Exception e => ThreadId -> e -> IO ()

• ThreadId is obtained from forkIO
• throwTo tid has no effect, if thread tid is already finished

RT (DCS @ UIBK) Week 11 25/30

Extending Async Again for Cancellations
• aim: implement cancel :: Async a -> IO ()
• solution: extend datatype Async by ThreadId

data Async a = Async ThreadId (MVar (Either SomeException a))

cancel (Async t var) = throwTo t ThreadKilled

async :: IO a -> IO (Async a)
async action = do

var <- newEmptyMVar
t <- forkIO $ do { r <- try action; putMVar var r }
return $ Async t var

• ThreadKilled exception is usually used for cancelling threads
• note: this version of Async is available in module Control.Concurrent.Async
• also available: waitAnyCancel :: [Async a] -> IO (Async a, a),

like waitAny, but with cancellation of remaining asynchronous actions
RT (DCS @ UIBK) Week 11 26/30

Asynchronous Exceptions for Timeouts
• aim: run some IO action within a given time limit

timeout :: Int -> IO a -> IO (Maybe a)
• implementation available in module System.Timeout
• semantics

• timeout t m is Just <$> m, provided the result is computed within t microseconds
(approximately)

• timeout t m is Nothing, if timeout occurs
• implementation is based on asynchronous exceptions

• a separate thread is spawned, which throws a timeout exception after delay t
• this exception is catched and turned into a Nothing result

RT (DCS @ UIBK) Week 11 27/30

Catching Asynchronous Exceptions
• module Control.Exception provides high-level functions that take care of releasing

some resource, even in case of (asynchronous) exceptions
• we illustrate bracket in more detail
• bracket :: IO a (require resource)

-> (a -> IO b) (finally release resource)
-> (a -> IO c) (compute in-between)
-> IO c (result of in-between computation)

• if an exception occurs, the release code is executed and then the exception is re-thrown
• example
bracket (openFile "filename" ReadMode) hClose

(\ handle -> do { ... })
• further high-level exception handling functions

• bracketOnError is like bracket, but release only happens if exception occurs
• finally, onException, . . . are specialized versions of bracket(onError)

RT (DCS @ UIBK) Week 11 28/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Application
• with functions like bracket and timeout and waitAnyCancel it is now possible to

implement sophisticated search-strategies, e.g., in termination proof search
• example

• search in parallel for some LPO and some other termination order (for at most 5 seconds)
• with 2 seconds delay, try tree-automata based termination techniques (for at most 10

seconds)
• take the first successful result of any of the above techniques
• iterate this process until either a full termination proof has been established, or all

techniques fail

• bracket and similar functions should be used to reliably kill externally spawned processes
if the own thread is cancelled

RT (DCS @ UIBK) Week 11 29/30

Literature
• Simon Marlow, Parallel and Concurrent Programming in Haskell, 2013, O’Reilly, Chapters

7 – 9
• https:
//hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html

• https:
//hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html

• https://hackage.haskell.org/package/base/docs/Control-Exception.html

RT (DCS @ UIBK) Week 11 30/30

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html
https://hackage.haskell.org/package/base/docs/Control-Concurrent-Chan.html
https://hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html
https://hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html
https://hackage.haskell.org/package/base/docs/Control-Exception.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Higher Level Interfaces for Concurrency – Channels
	
	Higher Level Interfaces for Concurrency – ASync
	
	Cancellation and Timeouts

