
WS 2025/2026

Advanced Functional Programming
Week 12 – Profiling, Efficient Data Structures

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Week
• channels

• more high level interface for a concurrent data-structure;
implementing double ended linked lists using MVars

• asynchronous actions
• perform IO-actions asynchronously
• wait on tasks to complete
• various versions of async-library

• asynchronous exceptions
• cancellation of tasks
• bracket-construct (or with...-construct) to safely close files, kill external processes, etc.,

even in case of asynchronous exceptions

RT (DCS @ UIBK) Week 12 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Profiling

RT (DCS @ UIBK) Week 12 3/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Profiling
• profiling is a method for analyzing runtime behavior
• aim: get detailed statistics about time and space usage to facilitate performance tuning
• workflow of profiling

1. identify cost centers, i.e., functions for which data should be reported
2. run program in profiling mode
3. inspect generated profiling statistics and identify hot-spots
4. study hot-spots and try to optimize these parts
5. go back to step 2

RT (DCS @ UIBK) Week 12 4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Step 1: Annotate Cost Centers in Haskell
• two ways of annotations
• manual annotation

• use annotation {-# SCC "name" #-} in front of some expression
(SCC = Set Cost Center)

• resource consumption of running this expression will then be added to the profiling statistics,
tagged with "name"

• automatic annotation
• adds cost centers for a selection of functions
• automatic annotation is triggered via ghc-flags or cabal-flags

RT (DCS @ UIBK) Week 12 5/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Step 2: Run Program in Profiling Mode in Haskell
• in Haskell, profiling has to be activated both at compile-time and at run-time
• compile-time

• ghc: use ghc-options -prof (and on demand -fprof-late or other options for automatic
annotations)

• cabal: use cabal-options --enable-profiling and further options for automatic
annotations

• run-time
• add runtime system parameter -p
• obtain executable.prof file that contains profiling statistics

RT (DCS @ UIBK) Week 12 6/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Steps 1 and 2
• take solution of Exercises of week 11 (concurrent termination prover via LPO)
• run via cabal with profiling enabled
cabal run Exercise11 --enable-profiling --profiling-detail late --

lpo 5 ariTRSs.txt
+RTS -p
• detail-level (automatic cost centers): default, none, exported-functions,
all-functions, toplevel-functions, late

• observations
• activation of profiling is easy, in particular with automatic cost center annotations
• warning: profiling code may change optimization phase of ghc, so the behavior of profiled

code might be different from original code
• use all-functions and toplevel-functions with care
• late inserts profiling code after optimization and therefore is recommended automatic mode

(requires ghc ≥ 9.4.1)
• disadvantage of late: names of functions after optimization are used

RT (DCS @ UIBK) Week 12 7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Step 3 – Investigate Profiling Statistics
• after execution inspect file Exercise11.prof, (some lines and columns deleted)

COST CENTRE SRC %time %alloc

$fOrdList_$s$ccompare1 libraries/ghc-prim/GHC/Classes.hs:486:5-11 23.9 0.0
$fOrdTerm_$ccompare src/TRS.hs:6:49-51 22.0 0.0
$fOrdList_$ccompare libraries/ghc-prim/GHC/Classes.hs:486:5-11 21.6 0.0
compare libraries/ghc-prim/GHC/Classes.hs:424:5-46 19.5 0.0

COST CENTRE SRC entries %time %alloc

MAIN <built-in> 0 100.0 100.0
main Exercise11.hs:127:1-4 1 99.6 99.9

lpoSolver1 <no location info> 566 47.5 48.0
runSmtSolver1 <no location info> 566 47.5 48.0
$wrunSmtEncoder Abstract_SMT_Encoder.hs:32:1-13 566 47.2 47.8

$wlpoEncoder <no location info> 551237 45.2 10.2
$fOrdTerm_$ccompare TRS.hs:6:49-51 342219684 28.8 0.0
$fOrdTerm_$ccompare TRS.hs:6:49-51 174072475 14.8 0.0

reverseLpoSolver1 <no location info> 566 47.3 48.0
parseAri Parser_ARI.hs:39:1-8 566 0.3 3.2

RT (DCS @ UIBK) Week 12 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Steps 3 and 4 – Identify Hot-Spots and Analyse
• explanations

• the first list of cost centers are rankings of overall functions that cause the costs
• the second list of cost centers is a tree like view
• the obscure names are a result of late, use toplevel-functions or manual cost center

annotations for improved readibility
• there are (deleted) time/alloc columns for costs that are caused by the current cost center
• the displayed time/alloc columns are for the accumulated costs

• important: external costs do not occur in the data, e.g., costs of running SMT solver
• analysis of hot-spots

• comparison of terms is the most costly operation
• it is used for lookups in the dictionary to perform memoization in the LPO encoder
• consequence: improve lookups (use integer-index or hash-maps or . . . , cf. exercise)

RT (DCS @ UIBK) Week 12 9/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Another Example: Computation of Mean
• computing the mean of a list of doubles, main function computes mean [1..d]
main = ... -- read d via getArgs and print "mean [1..d]"
mean1 :: [Double] -> Double
mean1 xs = ({-# SCC "sum" #-} sum xs)

/ fromIntegral ({-# SCC "len" #-} length xs)

• running the demo (1 = select mean1 function, 1e8 is value of d) with statistics
cabal run Demo12 -- 1 1e8 +RTS -s

• result: observe high memory consumption of 5.7 GB
• use profiling to trace memory usage over time via flag -hc -l

cabal run Demo12 --enable-profiling --profiling-detail none
-- 1 1e8 +RTS -p -hc -l

• inspect generated data of files Demo12.hp and Demo2.eventlog via
• old: hp2ps Demo12.hp && ps2pdf Demo12.ps && open Demo12.pdf
• new: eventlog2html Demo12.eventlog -o Demo12_ev1.html

(installation via: cabal install eventlog2html)

RT (DCS @ UIBK) Week 12 10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Demo12.hp – mean1
• obtain graph

Demo12 1 1e8 +RTS -p -hc 11,984,793,050 bytes x seconds Thu Jan 8 12:52 2026

seconds0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

by
te

s

0M

500M

1,000M

1,500M

2,000M

2,500M

3,000M

3,500M

(434)wcenumFromTo/runMainIO1

(435)takeWhile/wcenumFro...

• code analysis
• generated list [1..d] is completely constructed in memory
• problem: list elements are generated one-by-one for summation,

and list needs to be kept for computing its length
• interpretation of graph: once the length computation starts, memory can be freed again

RT (DCS @ UIBK) Week 12 11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Solution: Compute Length and Sum in One Go
• optimized code for mean computation
mean2 :: [Double] -> Double
mean2 xs = let (s, l) = foldl' step (0, 0) xs in s / fromIntegral l

where
step :: (Double, Integer) -> Double -> (Double, Integer)
step (s, l) x = let

s' = s + x
l' = l + 1

in s' `seq` l' `seq` (s', l')
• use strict fold (foldl') and seq to avoid generation of thunk in accumulator,

e.g., 0 + x1 + x2 + x3 + ...
• both +RTS -s and +RTS -p -hc -l confirm improved memory usage

(runtime is improved, too: less time required for garbage collection)

RT (DCS @ UIBK) Week 12 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Demo12.hp – mean2

Demo12 2 1e8 +RTS -p -hc 144,486 bytes x seconds Thu Jan 8 12:55 2026

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

by
te

s

0k

5k

10k

15k

20k

25k

30k

35k

40k

45k

50k

(334)mkTextEncoding22/init...

(280)runMainIO1

(282)signal_handlers/GHC.I...

(297)unpackCString#/GHC.In...

(342)$wact/act/$wdo_operat...

(336)$fBufferedIOFD15/newB...

(326)$wmkHandleMVar/stdout...

(146)SYSTEM

RT (DCS @ UIBK) Week 12 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Efficient Data Structures

RT (DCS @ UIBK) Week 12 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Choice of Data Structures
• efficiency is often obtained by choosing suitable data structures
• we have already seen one possibility

• use mutable data structures within purely functional code via ST-monad, STRef- and
STArray-types

• upcoming: an example of a data structure designed for pure functional programming

RT (DCS @ UIBK) Week 12 15/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Dedicated Functional Data Structures
• there are interesting data structures and algorithms targeting pure functional

programming
• non-destructible updates, i.e., immutable data
• advantage: copying of these data structures is O(1)

• examples
• finger trees (https://en.wikipedia.org/wiki/Finger_tree)
• priority queues (https://en.wikipedia.org/wiki/Brodal_queue)
• double ended queues (deques);

queue version of Okasaki will be introduced on next slides

RT (DCS @ UIBK) Week 12 16/25

https://en.wikipedia.org/wiki/Finger_tree
https://en.wikipedia.org/wiki/Brodal_queue
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A First Simple Queue Implementation
• implementation uses two lists to represent queue:

the beginning of the queue (b) and the end of the queue (e) in reverse order
data Queue1 a = Queue1 [a] [a] -- Queue1 b e

empty1 :: Queue1 a
empty1 = Queue1 [] []

insert1 :: a -> Queue1 a -> Queue1 a
insert1 x (Queue1 b e) = Queue1 b (x : e)

remove1 :: Queue1 a -> (a, Queue1 a)
remove1 (Queue1 (x : b) e) = (x, Queue1 b e)
remove1 (Queue1 [] []) = error "empty queue"
remove1 (Queue1 [] e) = remove1 (Queue1 (reverse e) [])

• execution costs: worst case O(n), amortized cost: O(1)

RT (DCS @ UIBK) Week 12 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tuning the Queue Implementation
• aim: get rid of expensive reverse operation
• main internal operation for queues: reverse e and append it to b
• idea: start with reverse and append operation early on and perform it partially, in order to

improve worst case complexity
• rot operation generalizes reverse and append
-- rot b e a = b ++ reverse e ++ a, assumes length e = length b + 1
rot :: [a] -> [a] -> [a] -> [a]
rot [] [x] a = x : a
rot (x : b) (y : e) a = x : rot b e (y : a)

• observation: with each step of rot, at least one element of resulting list is produced
• improved queue implementation is based on rot, it stores lengths of both lists and keeps

invariant: length e <= length b
• improved execution costs: worst case O(exercise(n)), amortized cost: O(1)

RT (DCS @ UIBK) Week 12 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

An Improved Implementation
data Queue2 a = Queue2 Int [a] Int [a]

empty2 :: Queue2 a
empty2 = Queue2 0 [] 0 []

insert2 :: a -> Queue2 a -> Queue2 a
insert2 x (Queue2 lb b le e) = makeQ2 lb b (le + 1) (x : e)

-- assumes le <= lb + 1
makeQ2 :: Int -> [a] -> Int -> [a] -> Queue2 a
makeQ2 lb b le e

| le <= lb = Queue2 lb b le e
| otherwise = Queue2 (lb + le) (rot b e []) 0 []

remove2 :: Queue2 a -> (a, Queue2 a)
remove2 (Queue2 _ [] _ _) = error "empty queue"
remove2 (Queue2 lxb (x : b) le e) = let newQ = makeQ2 (lxb - 1) b le e
in seq newQ (x, newQ)

RT (DCS @ UIBK) Week 12 19/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Worst Case Complexity
• the improved implementation does not have O(1) worst case complexity (see exercise)
• problem: although rot delivers one element per recursion step, there might be nested rot

occurrences
• solution: enforce that the rot-list is further evaluated on every insertion and removal

operation
• technique: create two shared copies where the second copy is used to trigger evaluation of

the spine of the list
• upcoming algorithm of Okasaki has worst case complexity of O(1) for each queue

operation
• invariants for Queue3 b e b'

• b' is a sublist of b, used for triggering evaluation of b
• length e <= length b (as before)
• length b' = length b - length e

RT (DCS @ UIBK) Week 12 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Okasaki’s Real Time Implementation of Purely Functional Queues

data Queue3 a = Queue3 [a] [a] [a] -- Queue3 b e b', lb' = lb - le, le <= lb

empty3 :: Queue3 a
empty3 = Queue3 [] [] []

insert3 :: a -> Queue3 a -> Queue3 a
insert3 x (Queue3 b e b') = makeQ3 b (x : e) b'

remove3 :: Queue3 a -> (a, Queue3 a)
remove3 (Queue3 [] _ _) = error "empty queue"
remove3 (Queue3 (x : b) e b') = let

newQ = makeQ3 b e b'
in seq newQ (x, newQ)

makeQ3 :: [a] -> [a] -> [a] -> Queue3 a
makeQ3 b e (_ : b') = Queue3 b e b'
makeQ3 b e [] = let b' = rot b e [] in Queue3 b' [] b'

RT (DCS @ UIBK) Week 12 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Evaluation using Single Steps for Queue Operations

foldl (flip insert3) empty3 [1..10]
= foldl ... (Queue3 [] [] []) [1..10]
= foldl ... (insert3 1 (Queue3 [] [] [])) [2..10]
= foldl ... (makeQ3 [] [1] []) [2..10]
= foldl ... (Queue3 (rot [] [1] []) [] (rot [] [1] [])) [2..10]
= foldl ... (insert3 2 (Queue3 (rot [] [1] []) [] (rot [] [1] []))) [3..10]
= foldl ... (makeQ3 (rot [] [1] []) [2] (rot [] [1] [])) [3..10]
= foldl ... (makeQ3 [1] [2] [1]) [3..10]
= foldl ... (Queue3 [1] [2] []) [3..10]
= foldl ... (insert3 3 (Queue3 [1] [2] [])) [4..10]
= foldl ... (makeQ3 [1] [3,2] []) [4..10]
= foldl ... (Queue3 (rot [1] [3,2] []) [] (rot [1] [3,2] [])) [4..10]
= foldl ... (insert3 4 (Queue3 (rot [1] [3,2] []) [] (rot [1] [3,2] []))) [5..10]
= foldl ... (makeQ3 (rot [1] [3,2] []) [4] (rot [1] [3,2] [])) [5..10]
= foldl ... (makeQ3 (1 : rot [] [2] [3]) [4] (1 : rot [] [2] [3])) [5..10]
= foldl ... (Queue3 (1 : rot [] [2] [3]) [4] (rot [] [2] [3])) [5..10]

RT (DCS @ UIBK) Week 12 22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Evaluation Continued
• from now on only show intermediate steps, but not single steps
foldl (flip insert3) empty3 [1..10]

= ... (Queue3 (1 : rot [] [2] [3]) [4] (rot [] [2] [3])) [5..10]
= ... (Queue3 [1,2,3] [5,4] [3]) [6..10]
= ... (Queue3 [1,2,3] [6,5,4] []) [7..10]
= ... (Queue3 (rot [1,2,3] [7,6,5,4] []) [] (rot [1,2,3] [7,6,5,4] [])) [8..10]
= ... (Queue3 (1 : rot [2,3] [6,5,4] [7]) [8] (rot [2,3] [6,5,4] [7])) [9..10]
= ... (Queue3 (1 : 2 : rot [3] [5,4] [6,7]) [9,8] (rot [3] [5,4] [6,7])) [10]
= ... (Queue3 (1 : 2 : 3 : rot [] [4] [5,6,7]) [10,9,8] (rot [] [4] [5,6,7])) []
= Queue3 (1 : 2 : 3 : rot [] [4] [5,6,7]) [10,9,8] (rot [] [4] [5,6,7])

RT (DCS @ UIBK) Week 12 23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Final Remarks on Purely Functional Queues
• Okasaki’s implementation heavily relies upon sharing and lazy evaluation
• using ideas of Okasaki’s queue implementation can be used to obtain a worst-case O(1)

implementation of double ended queues (deques)
(with push and pop operations at both ends)

• there are alternative purely functional deque implementations with O(1) worst case
behavior that do not depend on lazy evaluation, but have a more complex implementation
(Kaplan, Tarjan: Purely functional, real-time deques with catenation)

RT (DCS @ UIBK) Week 12 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature
• Real World Haskell, Chapter 25
• https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
• https://hackage.haskell.org/package/base/docs/Control-Monad-ST.html
• https://hackage.haskell.org/package/base/docs/Data-STRef.html
• https://hackage.haskell.org/package/array/docs/Data-Array-ST.html
• https://hackage.haskell.org/package/array/docs/Data-Array-MArray.html
• Chris Okasaki, Simple and Efficient Purely Functional Queues and Deques. J. Funct.

Program. 5(4): 583-592 (1995)

RT (DCS @ UIBK) Week 12 25/25

https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
https://hackage.haskell.org/package/base/docs/Control-Monad-ST.html
https://hackage.haskell.org/package/base/docs/Data-STRef.html
https://hackage.haskell.org/package/array/docs/Data-Array-ST.html
https://hackage.haskell.org/package/array/docs/Data-Array-MArray.html
https://doi.org/10.1017/S0956796800001489
https://doi.org/10.1017/S0956796800001489
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Profiling
	
	Efficient Data Structures

