M universitat WS 2025/2026
™ innsbruck

Advanced Functional Programming
Week 12 — Profiling, Efficient Data Structures

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws25/afp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Week

® channels

® more high level interface for a concurrent data-structure;
implementing double ended linked lists using MVars

® asynchronous actions
® perform |O-actions asynchronously
® wait on tasks to complete
® various versions of async-library
® asynchronous exceptions
® cancellation of tasks
® bracket-construct (or with...-construct) to safely close files, kill external processes, etc.,
even in case of asynchronous exceptions

RT (DCS @ UIBK) Week 12 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Profiling

RT (DCS @ UIBK) Week 12 3/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Profiling
e profiling is a method for analyzing runtime behavior

® aim: get detailed statistics about time and space usage to facilitate performance tuning

e workflow of profiling
1. identify cost centers, i.e., functions for which data should be reported
run program in profiling mode
inspect generated profiling statistics and identify hot-spots
study hot-spots and try to optimize these parts
go back to step 2

ok wN

RT (DCS @ UIBK) Week 12 4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Step 1: Annotate Cost Centers in Haskell

® two ways of annotations
® manual annotation

® use annotation {-# SCC "name" #-7} in front of some expression
(SCC = Set Cost Center)

® resource consumption of running this expression will then be added to the profiling statistics,
tagged with "name"

® jutomatic annotation

® adds cost centers for a selection of functions
® automatic annotation is triggered via ghc-flags or cabal-flags

RT (DCS @ UIBK) Week 12 5/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Step 2: Run Program in Profiling Mode in Haskell

e in Haskell, profiling has to be activated both at compile-time and at run-time
® compile-time
® ghc: use ghc-options -prof (and on demand -fprof-late or other options for automatic
annotations)

® cabal: use cabal-options --enable-profiling and further options for automatic
annotations

® run-time
® add runtime system parameter -p
® obtain executable.prof file that contains profiling statistics

RT (DCS @ UIBK) Week 12 6/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Steps 1 and 2

* take solution of Exercises of week 11 (concurrent termination prover via LPO)

® run via cabal with profiling enabled
cabal run Exercisell --enable-profiling --profiling-detail late --

lpo 5 ariTRSs.txt

+RTS -p
® detail-level (automatic cost centers): default, none, exported-functions,

all-functions, toplevel-functions, late
® observations

® activation of profiling is easy, in particular with automatic cost center annotations
® warning: profiling code may change optimization phase of ghc, so the behavior of profiled

code might be different from original code
® use all-functions and toplevel-functions with care
® late inserts profiling code after optimization and therefore is recommended automatic mode

(requires ghc > 9.4.1)
® disadvantage of late: names of functions after optimization are used

RT (DCS @ UIBK) Week 12

7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Step 3 — Investigate Profiling Statistics

® after execution inspect file Exercisell.prof, (some lines and columns deleted)

COST CENTRE SRC

Y%time %alloc

$f0rdList_$s$ccomparel libraries/ghc-prim/GHC/Classes.hs:486:5-11

$f0rdTerm_$ccompare
$f0rdList_$ccompare
compare

COST CENTRE

MAIN
main
lpoSolverl
runSmtSolverl
$wrunSmtEncoder
$wlpoEncoder
$£0rdTerm_$ccompare
$f0rdTerm_$ccompare
reverselLpoSolverl
parseAri
RT (DCS @ UIBK)

src/TRS.hs:6:49-51
libraries/ghc-prim/GHC/Classes.hs:486:5-11
libraries/ghc-prim/GHC/Classes.hs:424:5-46

SRC entries
<built-in> 0
Exercisell.hs:127:1-4 1
<no location info> 566
<no location info> 566
Abstract_SMT_Encoder.hs:32:1-13 566
<no location info> 551237
TRS.hs:6:49-51 342219684
TRS.hs:6:49-51 174072475
<no location info> 566
Parser_ARI.hs:39:1-8 566

Week 12

oo O ©

O O O o
O O O o

Y%time %alloc

100.
99.
47.
47.
4a7.
45.
28.
14.
47.

0.

W W o 0NN O

100.
99.
48.
48.
47.
10.

0.
0.
48.
3.

N O O ONOWOO ©Oo

8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example LPO: Steps 3 and 4 — Identify Hot-Spots and Analyse

® explanations
® the first list of cost centers are rankings of overall functions that cause the costs
® the second list of cost centers is a tree like view
® the obscure names are a result of late, use toplevel-functions or manual cost center
annotations for improved readibility
® there are (deleted) time/alloc columns for costs that are caused by the current cost center
® the displayed time/alloc columns are for the accumulated costs

® important: external costs do not occur in the data, e.g., costs of running SMT solver

® analysis of hot-spots

® comparison of terms is the most costly operation
® it is used for lookups in the dictionary to perform memoization in the LPO encoder
® consequence: improve lookups (use integer-index or hash-maps or ..., cf. exercise)

RT (DCS @ UIBK) Week 12 9/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Another Example: Computation of Mean

e computing the mean of a list of doubles, main function computes mean [1..d]
main = ... -- read d via getArgs and print "mean [1..d]"
meanl :: [Double] -> Double
meanl xs = ({-# SCC "sum" #-} sum xs)
/ fromIntegral ({-# SCC "len" #-} length xs)

® running the demo (1 = select meanl function, 1e8 is value of d) with statistics
cabal run Demol2 -- 1 1e8 +RTS -s

® result: observe high memory consumption of 5.7 GB

e use profiling to trace memory usage over time via flag -hc -1

cabal run Demol2 --enable-profiling --profiling-detail none
-- 1 1e8 +RTS -p -hc -1
® inspect generated data of files Demo12.hp and Demo2.eventlog via

® old: hp2ps Demol12.hp && ps2pdf Demol2.ps && open Demol2.pdf
® new: eventlog2html Demol2.eventlog -o Demol2_evl.html
(installation via: cabal install eventlog2html)

RT (DCS @ UIBK) Week 12 10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Demo12.hp — meanl
® obtain graph

e code analysis

Thu Jan 8 12:52 2026

Demol2 1 1e8 +RTS -p -hc 11,984,793,050 bytes x seconds

E
3s00m

3,000M

2,500M

2,000M

1,500M

1,000M

500M

30 35 40 45 seconds

I sasyakewnierswscenumFro.

W (s39)swscenumFromTorrunMainior

® generated list [1..d] is completely constructed in memory

® problem: list elements are generated one-by-one for summation,

and list needs to be kept for computing its length

® interpretation of graph: once the length computation starts, memory can be freed again

RT (DCS @ UIBK)

Week 12

11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Solution: Compute Length and Sum in One Go

® optimized code for mean computation
mean2 :: [Double] -> Double
mean2 xs = let (s, 1) = foldl' step (0, 0) xs in s / fromIntegral 1
where
step :: (Double, Integer) -> Double -> (Double, Integer)
step (s, 1) x = let
s'' =8 +x
1'"=1+1
in s' “seq” 1' “seq” (s', 1")
e use strict fold (foldl') and seq to avoid generation of thunk in accumulator,
eg., 0+ x1+x24+x3+ ...
® both +RTS -s and +RTS -p -hc -1 confirm improved memory usage
(runtime is improved, too: less time required for garbage collection)

RT (DCS @ UIBK) Week 12 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Demo12.hp — mean2

‘ Demo12 2 1e8 +RTS -p -hc 144,486 bytes x seconds Thu Jan 8 12:55 2026

[a46)svsTEM

D (326)$wmkHandleMVar/stdout...
[(336)$fBufferediOFD15/newB. .
D (342)$wact/act/$wdo_operat...
B (297)unpackcstring#/GHC.In...
[(282)signal_handlers/GHC.l...

M (280)runMainio1

B (339)mkTextEncoding22/init...

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 2.2 seconds
RT (DCS @ UIBK) Week 12 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Efficient Data Structures

RT (DCS @ UIBK) Week 12 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Choice of Data Structures

e efficiency is often obtained by choosing suitable data structures
e we have already seen one possibility

® use mutable data structures within purely functional code via ST-monad, STRef- and
STArray-types

® upcoming: an example of a data structure designed for pure functional programming

RT (DCS @ UIBK) Week 12 15/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Dedicated Functional Data Structures

® there are interesting data structures and algorithms targeting pure functional
programming
® non-destructible updates, i.e., immutable data
® advantage: copying of these data structures is O(1)
® examples
® finger trees (https://en.wikipedia.org/wiki/Finger_tree)
® priority queues (https://en.wikipedia.org/wiki/Brodal_queue)
® double ended queues (deques);
queue version of Okasaki will be introduced on next slides

RT (DCS @ UIBK) Week 12 16/25

https://en.wikipedia.org/wiki/Finger_tree
https://en.wikipedia.org/wiki/Brodal_queue
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A First Simple Queue Implementation

® implementation uses two lists to represent queue:
the beginning of the queue (b) and the end of the queue (e) in reverse order
data Queuel a = Queuel [a] [a] -- Queuel b e

emptyl :: Queuel a
emptyl = Queuel [1 []

insertl :: a -> Queuel a -> Queuel a
insertl x (Queuel b e) = Queuel b (x : e)

removel :: Queuel a -> (a, Queuel a)

removel (Queuel (x : b) e) = (x, Queuel b e)

removel (Queuel [] []) = error "empty queue"

removel (Queuel [] e) = removel (Queuel (reverse e) [])

® execution costs: worst case O(n), amortized cost: O(1)

RT (DCS @ UIBK) Week 12 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tuning the Queue Implementation

® aim: get rid of expensive reverse operation
® main internal operation for queues: reverse e and append it to b

e idea: start with reverse and append operation early on and perform it partially, in order to
improve worst case complexity

® rot operation generalizes reverse and append
-- rot b e a=b ++ reverse e ++ a, assumes length e = length b + 1
rot :: [a] -> [a] -> [a] -> [a]
rot [1 [x] a=x: a
rot (x : b) (y : e) a=x : rotbe (y : a)
® observation: with each step of rot, at least one element of resulting list is produced
e improved queue implementation is based on rot, it stores lengths of both lists and keeps
invariant: length e <= length b

® improved execution costs: worst case O(exercise(n)), amortized cost: O(1)

RT (DCS @ UIBK) Week 12 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

An Improved Implementation

data Queue2 a = Queue2 Int [a] Int [a]

empty2 :: Queue2 a
empty2 = Queue2 0 [] 0 []

insert2 :: a -> Queue2 a -> Queue2 a
insert2 x (Queue2 1b b le e) = makeQ2 1b b (le + 1) (x : e)

-- assumes le <= 1b + 1
makeQ2 :: Int -> [a] -> Int -> [a] -> Queue2 a
makeQ2 1b b le e

| le <= 1b = Queue2 1b b le e

| otherwise = Queue2 (1b + le) (rot b e [1) 0 []

remove2 :: Queue2 a -> (a, Queue2 a)

remove2 (Queue2 _ [] _ _) = error "empty queue"

remove2 (Queue2 1xb (x : b) le e) = let newQ = makeQ2 (1xb - 1) b le e
in seq newQ (x, newQ)

RT (DCS @ UIBK) Week 12 19/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Worst Case Complexity

the improved implementation does not have O(1) worst case complexity (see exercise)
problem: although rot delivers one element per recursion step, there might be nested rot
occurrences

solution: enforce that the rot-list is further evaluated on every insertion and removal
operation

technique: create two shared copies where the second copy is used to trigger evaluation of
the spine of the list

upcoming algorithm of Okasaki has worst case complexity of O(1) for each queue
operation
invariants for Queue3 b e b'

® b' is a sublist of b, used for triggering evaluation of b
® length e <= length b (as before)
® Jength b' = length b - length e

RT (DCS @ UIBK) Week 12 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Okasaki’'s Real Time Implementation of Purely Functional Queues

data Queue3 a = Queue3 [a] [a] [a] -- Queue3 b e b', 1b' = 1b - le, le <= 1b

empty3 :: Queue3 a
empty3 = Queue3 [1 [1 []

insert3 :: a -> Queued a -> Queue3 a
insert3 x (Queue3 b e b') = makeQ3 b (x : e) b'

remove3 :: Queue3 a -> (a, Queue3 a)
remove3 (Queue3 [] _ _) = error "empty queue"
remove3 (Queue3d (x : b) e b') = let
new = makeQ3 b e b'
in seq newQ (x, newQ)

makeQ3 :: [a] -> [a] -> [a] -> Queue3 a

makeQ3 b e (_ : b') = Queue3 b e b'
makeQ3 b e [] = let b' = rot b e [] in Queue3 b' [] b’

RT (DCS @ UIBK) Week 12 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Evaluation using Single Steps for Queue Operations

foldl (flip insert3) empty3 [1..10]

RT (DCS @ UIBK)

foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...
foldl ...

(Queue3 [1 [1 [1) [1..10]

(insert3 1 (Queuwe3 [1 [1 [1)) [2..10]

(makeQ3 [1 [1] [1) [2..10]

(Queue3 (rot [1 [11 [1) 0O (rot [1 [11 [1)) [2..10]
(insert3 2 (Queue3 (rot [1 [1] [1) [I (rot [I [1] [1))) [3..10]
(makeQ3 (rot [1 [11 [1) [2] (rot [1 [11 [1)) [3..10]
(makeQ3 [1] [2] [1]) [3..10]

(Queue3d [1] [2] [1) [3..10]

(insert3 3 (Queue3 [1] [2] [1)) [4..10]

(makeQ3 [1] [3,2] [1) [4..10]

(Queue3 (rot [1] [3,2] [1) [1 (rot [1] [3,2] [1)) [4..10]

(insert3 4 (Queue3 (rot [1]1 [3,2] [1) [1 (rot [1]1 [3,2] [1))) [5..10]

(makeQ3 (rot [1] [3,2] [1) [4] (rot [1] [3,2] [1)) [5..10]
(makeQ3 (1 : rot [J [2] [3]1) [4] (1 : rot [1 [2] [3]1)) [5..10]
(Queue3 (1 : rot [1 [2] [3]) [4] (rot [1 [2]1 [31)) [5..10]

Week 12

22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Evaluation Continued

e from now on only show intermediate steps, but not single steps

foldl (flip
. (Queue3

. (Queue3

. (Queue3

. (Queue3

.. (Queue3
. (Queue3
... (Queue3
Queue3d (1 :

RT (DCS @ UIBK)

insert3) empty3 [1..10]

(1 : rot [1 [2] [31) [4] (rot [1 [2] [31)) [5..10]

[1,2,3] [5,4] [3]) [6..10]

[1,2,3] [6,5,4] [1) [7..10]

(rot [1,2,3] [7,6,5,4]1 [1) OO0 (rot [1,2,3] [7,6,5,4] [1)) [8..10]
(1 : rot [2,3] [6,5,4] [7]1) [8] (rot [2,3] [6,5,4]1 [71)) [9..10]
(1 : 2 : rot [3] [5,4] [6,7]1) [9,8] (rot [3] [5,4] [6,71)) [10]
(1 :2:3:rot [0 [4] [5,6,7]) [10,9,8] (rot [1 [4]1 [5,6,71)) [I
2 : 3 : rot [1 [4] [5,6,71) [10,9,8] (rot [1 [4] [5,6,71)

Week 12

23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Final Remarks on Purely Functional Queues

e Okasaki's implementation heavily relies upon sharing and lazy evaluation

® using ideas of Okasaki's queue implementation can be used to obtain a worst-case O(1)
implementation of double ended queues (deques)
(with push and pop operations at both ends)

e there are alternative purely functional deque implementations with O(1) worst case
behavior that do not depend on lazy evaluation, but have a more complex implementation
(Kaplan, Tarjan: Purely functional, real-time deques with catenation)

RT (DCS @ UIBK) Week 12 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Literature

® Real World Haskell, Chapter 25

® https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
® https://hackage.haskell.org/package/base/docs/Control-Monad-ST.html

® https://hackage.haskell.org/package/base/docs/Data-STRef .html

® https://hackage.haskell.org/package/array/docs/Data-Array-ST.html

® https://hackage.haskell.org/package/array/docs/Data-Array-MArray.html

e Chris Okasaki, Simple and Efficient Purely Functional Queues and Deques. J. Funct.
Program. 5(4): 583-592 (1995)

RT (DCS @ UIBK) Week 12 25/25

https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
https://hackage.haskell.org/package/base/docs/Control-Monad-ST.html
https://hackage.haskell.org/package/base/docs/Data-STRef.html
https://hackage.haskell.org/package/array/docs/Data-Array-ST.html
https://hackage.haskell.org/package/array/docs/Data-Array-MArray.html
https://doi.org/10.1017/S0956796800001489
https://doi.org/10.1017/S0956796800001489
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Profiling
	
	Efficient Data Structures

